
§1 X ETEX PART 1: INTRODUCTION 3

March 14, 2024 at 19:03

1. Introduction. This is X ETEX, a program derived from and extending the capabilities of TEX, a
document compiler intended to produce typesetting of high quality. The Pascal program that follows is the
definition of TEX82, a standard version of TEX that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.
The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As

a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.
A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of

difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TEXbook.

4 PART 1: INTRODUCTION X ETEX §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.
No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping

TEX82 “frozen” from now on; stability and reliability are to be its main virtues.
On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and

the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.
This program contains code for various features extending TEX, therefore this program is called ‘X ETEX’

and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].
A similar test suite called the “e−TRIP test” is available for helping to determine whether a particular

implementation deserves to be known as ‘ε-TEX’.

define eTeX version = 2 { \eTeXversion }
define eTeX revision ≡ ".6" { \eTeXrevision }
define eTeX version string ≡ ´−2.6´ { current ε-TEX version }
define XeTeX version = 0 { \XeTeXversion }
define XeTeX revision ≡ ".999996" { \XeTeXrevision }
define XeTeX version string ≡ ´−0.999996´ { current X ETEX version }
define XeTeX banner ≡ ´This␣is␣XeTeX,␣Version␣3.141592653´, eTeX version string ,

XeTeX version string { printed when X ETEX starts }
define banner ≡ ´This␣is␣TeX,␣Version␣3.141592653´ { printed when TEX starts }
define TEX ≡ XETEX { change program name into XETEX }
define TeXXeT code = 0 { the TEX--XET feature is optional }
define XeTeX dash break code = 1 { non-zero to enable breaks after en- and em-dashes }
define XeTeX upwards code = 2 { non-zero if the main vertical list is being built upwards }
define XeTeX use glyph metrics code = 3 { non-zero to use exact glyph height/depth }
define XeTeX inter char tokens code = 4 { non-zero to enable \XeTeXinterchartokens insertion }
define XeTeX input normalization code = 5 { normalization mode:, 1 for NFC, 2 for NFD, else none }
define XeTeX default input mode code = 6 { input mode for newly opened files }
define XeTeX input mode auto = 0

§2 X ETEX PART 1: INTRODUCTION 5

define XeTeX input mode utf8 = 1
define XeTeX input mode utf16be = 2
define XeTeX input mode utf16le = 3
define XeTeX input mode raw = 4
define XeTeX input mode icu mapping = 5

define XeTeX default input encoding code = 7 { str number of encoding name if mode = ICU }
define XeTeX tracing fonts code = 8 { non-zero to log native fonts used }
define XeTeX interword space shaping code = 9 { controls shaping of space chars in context when

using native fonts; set to 1 for contextual adjustment of space width only, and 2 for full
cross-space shaping (e.g. multi-word ligatures) }

define XeTeX generate actual text code = 10 { controls output of /ActualText for native-word nodes }
define XeTeX hyphenatable length code = 11 { sets maximum hyphenatable word length }
define eTeX states = 12 { number of ε-TEX state variables in eqtb }

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29–
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new ’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — ε-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments real ← integer ; no procedures are declared local
to other procedures.)
The portions of this program that involve system-dependent code, where changes might be necessary

because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.
Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE

floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

6 PART 1: INTRODUCTION X ETEX §4

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘⟨Global variables 13 ⟩’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, . . . ,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.
Actually the heading shown here is not quite normal: The program line does not mention any output

file, because Pascal-H would ask the TEX user to specify a file name if output were specified here.

define mtype ≡ t@&y@&p@&e { this is a WEB coding trick: }
format mtype ≡ type { ‘mtype’ will be equivalent to ‘type’ }
format type ≡ true { but ‘type ’ will not be treated as a reserved word }

⟨Compiler directives 9 ⟩
program TEX ; { all file names are defined dynamically }
label ⟨Labels in the outer block 6 ⟩
const ⟨Constants in the outer block 11 ⟩
mtype ⟨Types in the outer block 18 ⟩
var ⟨Global variables 13 ⟩
procedure initialize ; { this procedure gets things started properly }
var ⟨Local variables for initialization 19 ⟩
begin ⟨ Initialize whatever TEX might access 8 ⟩
end;

⟨Basic printing procedures 57 ⟩
⟨Error handling procedures 82 ⟩

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start here ’. If you want to skip down to the main program now, you can look up ‘start here ’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. Three labels must be declared in the main program, so we give them symbolic names.

define start of TEX = 1 { go here when TEX’s variables are initialized }
define end of TEX = 9998 { go here to close files and terminate gracefully }
define final end = 9999 { this label marks the ending of the program }

⟨Labels in the outer block 6 ⟩ ≡
start of TEX, end of TEX, final end ; { key control points }

This code is used in section 4.

§7 X ETEX PART 1: INTRODUCTION 7

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug . . .gubed’, with apologies to people who wish to preserve the purity of English.
Similarly, there is some conditional code delimited by ‘stat . . . tats’ that is intended for use when statistics

are to be kept about TEX’s memory usage. The stat . . . tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug ≡ @{ { change this to ‘debug ≡ ’ when debugging }
define gubed ≡ @} { change this to ‘gubed ≡ ’ when debugging }
format debug ≡ begin
format gubed ≡ end

define stat ≡ @{ { change this to ‘stat ≡ ’ when gathering usage statistics }
define tats ≡ @} { change this to ‘tats ≡ ’ when gathering usage statistics }
format stat ≡ begin
format tats ≡ end

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init . . . tini’.

define init ≡ { change this to ‘init ≡ @{’ in the production version }
define tini ≡ { change this to ‘tini ≡ @}’ in the production version }
format init ≡ begin
format tini ≡ end

⟨ Initialize whatever TEX might access 8 ⟩ ≡
⟨ Set initial values of key variables 23 ⟩
init ⟨ Initialize table entries (done by INITEX only) 189 ⟩ tini

This code is used in section 4.

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when TEX is being debugged, but
they cause range checking and other redundant code to be eliminated when the production system is being
generated. Arithmetic overflow will be detected in all cases.

⟨Compiler directives 9 ⟩ ≡
@{@&$C−, A+, D−@} { no range check, catch arithmetic overflow, no debug overhead }
debug @{@&$C+, D+@} gubed { but turn everything on when debugging }

This code is used in section 4.

8 PART 1: INTRODUCTION X ETEX §10

10. This TEX implementation conforms to the rules of the Pascal User Manual published by Jensen and
Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case x of
1: ⟨ code for x = 1 ⟩;
3: ⟨ code for x = 3 ⟩;
othercases ⟨ code for x ̸= 1 and x ̸= 3 ⟩
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others :’ as a default label, and other Pascals
allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise :’, etc. The definitions of othercases and endcases
should be changed to agree with local conventions. Note that no semicolon appears before endcases in this
program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course,
if no default mechanism is available, the case statements of TEX will have to be laboriously extended by
listing all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but
not happily!)

define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

§11 X ETEX PART 1: INTRODUCTION 9

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

⟨Constants in the outer block 11 ⟩ ≡
mem max = 30000;

{ greatest index in TEX’s internal mem array; must be strictly less than max halfword ; must be
equal to mem top in INITEX, otherwise ≥ mem top }

mem min = 0; { smallest index in TEX’s internal mem array; must be min halfword or more; must be
equal to mem bot in INITEX, otherwise ≤ mem bot }

buf size = 500; {maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed max halfword }

error line = 72; {width of context lines on terminal error messages }
half error line = 42; {width of first lines of contexts in terminal error messages; should be between 30

and error line − 15 }
max print line = 79; {width of longest text lines output; should be at least 60 }
stack size = 200; {maximum number of simultaneous input sources }
max in open = 6;
{maximum number of input files and error insertions that can be going on simultaneously }

font max = 75; {maximum internal font number; must not exceed max quarterword and must be at
most font base + 256 }

font mem size = 20000; { number of words of font info for all fonts }
param size = 60; {maximum number of simultaneous macro parameters }
nest size = 40; {maximum number of semantic levels simultaneously active }
max strings = 3000; {maximum number of strings; must not exceed max halfword }
string vacancies = 8000; { the minimum number of characters that should be available for the user’s

control sequences and font names, after TEX’s own error messages are stored }
pool size = 32000; {maximum number of characters in strings, including all error messages and help

texts, and the names of all fonts and control sequences; must exceed string vacancies by the total
length of TEX’s own strings, which is currently about 23000 }

save size = 600; { space for saving values outside of current group; must be at most max halfword }
trie size = 8000; { space for hyphenation patterns; should be larger for INITEX than it is in production

versions of TEX }
trie op size = 500; { space for “opcodes” in the hyphenation patterns }
dvi buf size = 800; { size of the output buffer; must be a multiple of 8 }
file name size = 40; { file names shouldn’t be longer than this }
pool name = ´TeXformats:TEX.POOL␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣´;
{ string of length file name size ; tells where the string pool appears }

This code is used in section 4.

10 PART 1: INTRODUCTION X ETEX §12

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX

to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this
distinction.

define mem bot = 0
{ smallest index in the mem array dumped by INITEX; must not be less than mem min }

define mem top ≡ 30000 { largest index in the mem array dumped by INITEX; must be substantially
larger than mem bot and not greater than mem max }

define font base = 0 { smallest internal font number; must not be less than min quarterword }
define hash size = 2100 {maximum number of control sequences; it should be at most about

(mem max −mem min)/10 }
define hash prime = 1777 { a prime number equal to about 85% of hash size }
define hyph size = 307 { another prime; the number of \hyphenation exceptions }
define biggest char = 65535 { the largest allowed character number; must be ≤ max quarterword , this

refers to UTF16 codepoints that we store in strings, etc; actual character codes can exceed
this range, up to biggest usv }

define too big char = 65536 { biggest char + 1 }
define biggest usv = ˝10FFFF { the largest Unicode Scalar Value }
define too big usv = ˝110000 { biggest usv + 1 }
define number usvs = ˝110000 { biggest usv + 1 }
define special char = ˝110001 { biggest usv + 2 }
define biggest reg = 255 { the largest allowed register number; must be ≤ max quarterword }
define number regs = 256 { biggest reg + 1 }
define font biggest = 255 { the real biggest font }
define number fonts = font biggest − font base + 2
define number math families = 256
define number math fonts = number math families + number math families + number math families
define math font biggest = number math fonts − 1
define text size = 0 { size code for the largest size in a family }
define script size = number math families { size code for the medium size in a family }
define script script size = number math families + number math families

{ size code for the smallest size in a family }
define biggest lang = 255 { the largest hyphenation language }
define too big lang = 256 { biggest lang + 1 }
define hyphenatable length limit = 4095

{ hard limit for hyphenatable length; runtime value is max hyphenatable length }

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a
global variable called bad .
This is the first of many sections of TEX where global variables are defined.

⟨Global variables 13 ⟩ ≡
bad : integer ; { is some “constant” wrong? }
See also sections 20, 26, 30, 32, 39, 50, 54, 61, 77, 80, 83, 100, 108, 114, 121, 137, 138, 139, 140, 146, 181, 190, 199, 207, 239,

272, 279, 282, 283, 301, 316, 327, 331, 334, 335, 338, 339, 340, 363, 391, 397, 416, 421, 422, 444, 472, 481, 515, 524, 528,
547, 548, 555, 562, 567, 574, 584, 585, 590, 628, 631, 641, 652, 682, 685, 686, 695, 703, 726, 762, 767, 812, 818, 862, 869,

871, 873, 876, 881, 887, 895, 920, 940, 953, 959, 961, 975, 980, 997, 1001, 1004, 1025, 1034, 1036, 1043, 1086, 1128, 1320,
1335, 1353, 1359, 1385, 1396, 1400, 1429, 1449, 1462, 1470, 1515, 1561, 1584, 1625, 1627, 1646, 1653, 1669, and 1670.

This code is used in section 4.

§14 X ETEX PART 1: INTRODUCTION 11

14. Later on we will say ‘if mem max ≥ max halfword then bad ← 14’, or something similar. (We can’t
do that until max halfword has been defined.)

⟨Check the “constant” values for consistency 14 ⟩ ≡
bad ← 0;
if (half error line < 30) ∨ (half error line > error line − 15) then bad ← 1;
if max print line < 60 then bad ← 2;
if dvi buf size mod 8 ̸= 0 then bad ← 3;
if mem bot + 1100 > mem top then bad ← 4;
if hash prime > hash size then bad ← 5;
if max in open ≥ 128 then bad ← 6;
if mem top < 256 + 11 then bad ← 7; {we will want null list > 255 }

See also sections 133, 320, 557, and 1303.

This code is used in section 1386.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit ’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart ’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch ’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done ’ or to ‘found ’ or to ‘not found ’, and
they are sometimes repeated by going to ‘continue ’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common ending ’.
Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal

compilers will complain about redundant labels.

define exit = 10 { go here to leave a procedure }
define restart = 20 { go here to start a procedure again }
define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }
define done = 30 { go here to exit a loop }
define done1 = 31 { like done , when there is more than one loop }
define done2 = 32 { for exiting the second loop in a long block }
define done3 = 33 { for exiting the third loop in a very long block }
define done4 = 34 { for exiting the fourth loop in an extremely long block }
define done5 = 35 { for exiting the fifth loop in an immense block }
define done6 = 36 { for exiting the sixth loop in a block }
define found = 40 { go here when you’ve found it }
define found1 = 41 { like found , when there’s more than one per routine }
define found2 = 42 { like found , when there’s more than two per routine }
define not found = 45 { go here when you’ve found nothing }
define not found1 = 46 { like not found , when there’s more than one }
define not found2 = 47 { like not found , when there’s more than two }
define not found3 = 48 { like not found , when there’s more than three }
define not found4 = 49 { like not found , when there’s more than four }
define common ending = 50 { go here when you want to merge with another branch }

12 PART 1: INTRODUCTION X ETEX §16

16. Here are some macros for common programming idioms.

define incr (#) ≡ #← #+ 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 { decrease a variable by unity }
define negate (#) ≡ #← −# { change the sign of a variable }
define loop ≡ while true do { repeat over and over until a goto happens }
format loop ≡ xclause { WEB’s xclause acts like ‘while true do’ }
define do nothing ≡ { empty statement }
define return ≡ goto exit { terminate a procedure call }
format return ≡ nil
define empty = 0 { symbolic name for a null constant }

§17 X ETEX PART 2: THE CHARACTER SET 13

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.
Such an internal code is relevant to users of TEX primarily because it governs the positions of characters

in the fonts. For example, the character ‘A’ has ASCII code 65 = 1́01 , and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.
TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides

an index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII code ,
which is a subrange of the integers. For xetex, we rename ASCII code as UTF16 code . But we also have a
new type UTF8 code , used when we construct filenames to pass to the system libraries.

define ASCII code ≡ UTF16 code
define packed ASCII code ≡ packed UTF16 code

⟨Types in the outer block 18 ⟩ ≡
ASCII code = 0 . . biggest char ; { 16-bit numbers }
UTF8 code = 0 . . 255; { 8-bit numbers }
UnicodeScalar = 0 . . biggest usv ; {Unicode scalars }

See also sections 25, 38, 105, 113, 135, 174, 238, 299, 330, 583, 630, 974, 979, and 1488.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 4́0 through 1́76 ; all of these characters are
now available on most computer terminals.
Since we are dealing with more characters than were present in the first Pascal compilers, we have to

decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.
In order to accommodate this difference, we shall use the name text char to stand for the data type of

the characters that are converted to and from ASCII code when they are input and output. We shall also
assume that text char consists of the elements chr (first text char) through chr (last text char), inclusive.
The following definitions should be adjusted if necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = biggest char { ordinal number of the largest element of text char }

⟨Local variables for initialization 19 ⟩ ≡
i: integer ;

See also sections 188 and 981.

This code is used in section 4.

14 PART 2: THE CHARACTER SET X ETEX §20

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

⟨Global variables 13 ⟩ +≡
xchr : array [ASCII code] of text char ; { specifies conversion of output characters }

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the xchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

define null code = 0́ {ASCII code that might disappear }
define carriage return = 1́5 {ASCII code used at end of line }
define invalid code = 1́77 {ASCII code that many systems prohibit in text files }

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in xchr [0 . . 3́7], but the safest
policy is to blank everything out by using the code shown below.
However, other settings of xchr will make TEX more friendly on computers that have an extended character

set, so that users can type things like ‘≠’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an xchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than 4́0 . To get the
most “permissive” character set, change ´␣´ on the right of these assignment statements to chr (i).

⟨ Set initial values of key variables 23 ⟩ ≡
for i← 0 to 3́7 do xchr [i]← ´␣´;
for i← 1́77 to 3́77 do xchr [i]← ´␣´;

See also sections 24, 62, 78, 81, 84, 101, 122, 191, 241, 280, 284, 302, 317, 398, 417, 473, 516, 525, 556, 586, 591, 629, 632, 642,

687, 696, 704, 727, 819, 941, 982, 1044, 1087, 1321, 1336, 1354, 1397, 1412, 1516, 1562, 1628, 1647, and 1671.

This code is used in section 8.

24. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr . Note that if xchr [i] = xchr [j] where i < j < 1́77 , the value of xord [xchr [i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 4́0 in case there
is a coincidence.

⟨ Set initial values of key variables 23 ⟩ +≡
for i← 0 to 1́76 do xord [xchr [i]]← i;

§25 X ETEX PART 3: INPUT AND OUTPUT 15

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.
The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s

terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.
TEX needs to deal with two kinds of files. We shall use the term alpha file for a file that contains textual

data, and the term byte file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.
The program actually makes use also of a third kind of file, called a word file , when dumping and reloading

base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

⟨Types in the outer block 18 ⟩ +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
alpha file = packed file of text char ; { files that contain textual data }
byte file = packed file of eight bits ; { files that contain binary data }

26. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get , put , eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name of file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name of file .

⟨Global variables 13 ⟩ +≡
name of file : packed array [1 . . file name size] of char ;
{ on some systems this may be a record variable }

name of file16 : array [1 . . file name size] of UTF16 code ;
{ but sometimes we need a UTF16 version of the name }

name length : 0 . . file name size ;
{ this many characters are actually relevant in name of file (the rest are blank) }

name length16 : 0 . . file name size ;

16 PART 3: INPUT AND OUTPUT X ETEX §27

27. The Pascal-H compiler with which the present version of TEX was prepared has extended the rules of
Pascal in a very convenient way. To open file f , we can write

reset (f, name , ´/O´) for input;
rewrite (f, name , ´/O´) for output.

The ‘name ’ parameter, which is of type ‘packed array [⟨any ⟩] of char ’, stands for the name of the external
file that is being opened for input or output. Blank spaces that might appear in name are ignored.

The ‘/O’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat (f) ̸= 0 after an unsuccessful reset
or rewrite . This allows TEX to undertake appropriate corrective action.

TEX’s file-opening procedures return false if no file identified by name of file could be opened.

define reset OK (#) ≡ erstat (#) = 0
define rewrite OK (#) ≡ erstat (#) = 0

function a open in (var f : alpha file): boolean ; { open a text file for input }
begin reset (f, name of file , ´/O´); a open in ← reset OK (f);
end;

function a open out (var f : alpha file): boolean ; { open a text file for output }
begin rewrite (f,name of file , ´/O´); a open out ← rewrite OK (f);
end;

function b open in (var f : byte file): boolean ; { open a binary file for input }
begin reset (f, name of file , ´/O´); b open in ← reset OK (f);
end;

function b open out (var f : byte file): boolean ; { open a binary file for output }
begin rewrite (f,name of file , ´/O´); b open out ← rewrite OK (f);
end;

function w open in (var f : word file): boolean ; { open a word file for input }
begin reset (f, name of file , ´/O´); w open in ← reset OK (f);
end;

function w open out (var f : word file): boolean ; { open a word file for output }
begin rewrite (f,name of file , ´/O´); w open out ← rewrite OK (f);
end;

28. Files can be closed with the Pascal-H routine ‘close (f)’, which should be used when all input or output
with respect to f has been completed. This makes f available to be opened again, if desired; and if f was
used for output, the close operation makes the corresponding external file appear on the user’s area, ready
to be read.
These procedures should not generate error messages if a file is being closed before it has been successfully

opened.

procedure a close (var f : alpha file); { close a text file }
begin close (f);
end;

procedure b close (var f : byte file); { close a binary file }
begin close (f);
end;

procedure w close (var f : word file); { close a word file }
begin close (f);
end;

§29 X ETEX PART 3: INPUT AND OUTPUT 17

29. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/O. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII code values. TEX’s conventions should be efficient, and they should blend nicely with the user’s
operating environment.

30. Input from text files is read one line at a time, using a routine called input ln . This function is defined
in terms of global variables called buffer , first , and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

⟨Global variables 13 ⟩ +≡
buffer : array [0 . . buf size] of ASCII code ; { lines of characters being read }
first : 0 . . buf size ; { the first unused position in buffer }
last : 0 . . buf size ; { end of the line just input to buffer }
max buf stack : 0 . . buf size ; { largest index used in buffer }

18 PART 3: INPUT AND OUTPUT X ETEX §31

31. The input ln function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true , unless the file has already been entirely read, in which case it
returns false and sets last ← first . In general, the ASCII code numbers that represent the next line of the
file are input into buffer [first], buffer [first +1], . . . , buffer [last − 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer [last − 1] ̸= "␣".

An overflow error is given, however, if the normal actions of input ln would make last ≥ buf size ; this is
done so that other parts of TEX can safely look at the contents of buffer [last + 1] without overstepping the
bounds of the buffer array. Upon entry to input ln , the condition first < buf size will always hold, so that
there is always room for an “empty” line.
The variable max buf stack , which is used to keep track of how large the buf size parameter must be to

accommodate the present job, is also kept up to date by input ln .
If the bypass eoln parameter is true , input ln will do a get before looking at the first character of the line;

this skips over an eoln that was in f↑. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.
Standard Pascal says that a file should have eoln immediately before eof , but TEX needs only a weaker

restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f↑ will be undefined).

Since the inner loop of input ln is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

function input ln (var f : alpha file ; bypass eoln : boolean): boolean ;
{ inputs the next line or returns false }

var last nonblank : 0 . . buf size ; { last with trailing blanks removed }
begin if bypass eoln then
if ¬eof (f) then get (f); { input the first character of the line into f↑ }

last ← first ; { cf. Matthew 19 : 30 }
if eof (f) then input ln ← false
else begin last nonblank ← first ;
while ¬eoln (f) do
begin if last ≥ max buf stack then

begin max buf stack ← last + 1;
if max buf stack = buf size then ⟨Report overflow of the input buffer, and abort 35 ⟩;
end;

buffer [last]← xord [f↑]; get (f); incr (last);
if buffer [last − 1] ̸= "␣" then last nonblank ← last ;
end;

last ← last nonblank ; input ln ← true ;
end;

end;

32. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term in , and when it is
considered an output file the file variable is term out .

⟨Global variables 13 ⟩ +≡
term in : alpha file ; { the terminal as an input file }
term out : alpha file ; { the terminal as an output file }

§33 X ETEX PART 3: INPUT AND OUTPUT 19

33. Here is how to open the terminal files in Pascal-H. The ‘/I’ switch suppresses the first get .

define t open in ≡ reset (term in , ´TTY:´, ´/O/I´) { open the terminal for text input }
define t open out ≡ rewrite (term out , ´TTY:´, ´/O´) { open the terminal for text output }

34. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update terminal , is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear terminal , is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake up terminal , is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

define update terminal ≡ break (term out) { empty the terminal output buffer }
define clear terminal ≡ break in (term in , true) { clear the terminal input buffer }
define wake up terminal ≡ do nothing { cancel the user’s cancellation of output }

35. We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final end ’ should be replaced
by something that quietly terminates the program.)

⟨Report overflow of the input buffer, and abort 35 ⟩ ≡
if format ident = 0 then
begin write ln (term out , ´Buffer␣size␣exceeded!´); goto final end ;
end

else begin cur input .loc field ← first ; cur input .limit field ← last − 1;
overflow ("buffer␣size", buf size);
end

This code is used in sections 31 and 1567.

20 PART 3: INPUT AND OUTPUT X ETEX §36

36. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term in for input from the terminal. (The file term out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last − 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by TEX is in buffer [loc].
This character should not be blank, and we should have loc < last .

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘\input’ need not be typed immediately
after ‘**’.)

define loc ≡ cur input .loc field { location of first unread character in buffer }

37. The following program does the required initialization without retrieving a possible command line. It
should be clear how to modify this routine to deal with command lines, if the system permits them.

function init terminal : boolean ; { gets the terminal input started }
label exit ;
begin t open in ;
loop begin wake up terminal ; write (term out , ´**´); update terminal ;
if ¬input ln (term in , true) then { this shouldn’t happen }

begin write ln (term out); write (term out , ´!␣End␣of␣file␣on␣the␣terminal...␣why?´);
init terminal ← false ; return;
end;

loc ← first ;
while (loc < last) ∧ (buffer [loc] = "␣") do incr (loc);
if loc < last then
begin init terminal ← true ; return; { return unless the line was all blank }
end;

write ln (term out , ´Please␣type␣the␣name␣of␣your␣input␣file.´);
end;

exit : end;

§38 X ETEX PART 4: STRING HANDLING 21

38. String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.
Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled

with a simple data structure. The array str pool contains all of the (eight-bit) ASCII codes in all of the
strings, and the array str start contains indices of the starting points of each string. Strings are referred
to by integer numbers, so that string number s comprises the characters str pool [j] for str start macro [s] ≤
j < str start macro [s + 1]. Additional integer variables pool ptr and str ptr indicate the number of entries
used so far in str pool and str start , respectively; locations str pool [pool ptr] and str start macro [str ptr] are
ready for the next string to be allocated.
String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in

accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.
Elements of the str pool array must be ASCII codes that can actually be printed; i.e., they must have an

xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)
Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range −128 . . 127.

To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si (#) ≡ # { convert from ASCII code to packed ASCII code }
define so(#) ≡ # { convert from packed ASCII code to ASCII code }
define str start macro(#) ≡ str start [(#)− too big char]

⟨Types in the outer block 18 ⟩ +≡
pool pointer = 0 . . pool size ; { for variables that point into str pool }
str number = 0 . . max strings ; { for variables that point into str start }
packed ASCII code = 0 . . biggest char ; { elements of str pool array }

39. ⟨Global variables 13 ⟩ +≡
str pool : packed array [pool pointer] of packed ASCII code ; { the characters }
str start : array [str number] of pool pointer ; { the starting pointers }
pool ptr : pool pointer ; { first unused position in str pool }
str ptr : str number ; { number of the current string being created }
init pool ptr : pool pointer ; { the starting value of pool ptr }
init str ptr : str number ; { the starting value of str ptr }

40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

function length (s : str number): integer ; { the number of characters in string number s }
begin if (s ≥ ˝10000) then length ← str start macro(s+ 1)− str start macro(s)
else if (s ≥ ˝20) ∧ (s < ˝7F) then length ← 1
else if (s ≤ ˝7F) then length ← 3
else if (s < ˝100) then length ← 4

else length ← 8
end;

22 PART 4: STRING HANDLING X ETEX §41

41. The length of the current string is called cur length :

define cur length ≡ (pool ptr − str start macro(str ptr))

42. Strings are created by appending character codes to str pool . The append char macro, defined here,
does not check to see if the value of pool ptr has gotten too high; this test is supposed to be made before
append char is used. There is also a flush char macro, which erases the last character appended.

To test if there is room to append l more characters to str pool , we shall write str room (l), which aborts
TEX and gives an apologetic error message if there isn’t enough room.

define append char (#) ≡ { put ASCII code # at the end of str pool }
begin if (si (#) > ˝FFFF) then
begin str pool [pool ptr]← si ((#− ˝10000) div ˝400+ ˝D800); incr (pool ptr);
str pool [pool ptr]← si ((#)mod ˝400+ ˝DC00); incr (pool ptr);
end

else begin str pool [pool ptr]← si (#); incr (pool ptr);
end;

end
define flush char ≡ decr (pool ptr) { forget the last character in the pool }
define str room (#) ≡ {make sure that the pool hasn’t overflowed }

begin if pool ptr + # > pool size then overflow ("pool␣size", pool size − init pool ptr);
end

43. Once a sequence of characters has been appended to str pool , it officially becomes a string when the
function make string is called. This function returns the identification number of the new string as its value.

function make string : str number ; { current string enters the pool }
begin if str ptr = max strings then overflow ("number␣of␣strings",max strings − init str ptr);
incr (str ptr); str start macro(str ptr)← pool ptr ; make string ← str ptr − 1;
end;

44. To destroy the most recently made string, we say flush string .

define flush string ≡
begin decr (str ptr); pool ptr ← str start macro(str ptr);
end

procedure append str (s : str number); { append an existing string to the current string }
var i: integer ; j: pool pointer ;
begin i← length (s); str room (i); j ← str start macro(s);
while (i > 0) do
begin append char (str pool [j]); incr (j); decr (i);
end;

end;

§45 X ETEX PART 4: STRING HANDLING 23

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal. Empirical tests indicate
that str eq buf is used in such a way that it tends to return true about 80 percent of the time.

function str eq buf (s : str number ; k : integer): boolean ; { test equality of strings }
label not found ; { loop exit }
var j: pool pointer ; { running index }
result : boolean ; { result of comparison }

begin j ← str start macro(s);
while j < str start macro(s+ 1) do
begin if buffer [k] ≥ ˝10000 then

if so(str pool [j]) ̸= ˝D800+ (buffer [k]− ˝10000) div ˝400 then
begin result ← false ; goto not found ;
end

else if so(str pool [j + 1]) ̸= ˝DC00+ (buffer [k]− ˝10000)mod ˝400 then
begin result ← false ; goto not found ;
end

else incr (j)
else if so(str pool [j]) ̸= buffer [k] then

begin result ← false ; goto not found ;
end;

incr (j); incr (k);
end;

result ← true ;
not found : str eq buf ← result ;

end;

24 PART 4: STRING HANDLING X ETEX §46

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length.

function str eq str (s, t : str number): boolean ; { test equality of strings }
label not found ; { loop exit }
var j, k: pool pointer ; { running indices }
result : boolean ; { result of comparison }

begin result ← false ;
if length (s) ̸= length (t) then goto not found ;
if (length (s) = 1) then
begin if s < 65536 then
begin if t < 65536 then
begin if s ̸= t then goto not found ;
end

else begin if s ̸= str pool [str start macro(t)] then goto not found ;
end;

end
else begin if t < 65536 then

begin if str pool [str start macro(s)] ̸= t then goto not found ;
end

else begin if str pool [str start macro(s)] ̸= str pool [str start macro(t)] then goto not found ;
end;

end;
end

else begin j ← str start macro(s); k ← str start macro(t);
while j < str start macro(s+ 1) do

begin if str pool [j] ̸= str pool [k] then goto not found ;
incr (j); incr (k);
end;

end;
result ← true ;

not found : str eq str ← result ;
end;

47. The initial values of str pool , str start , pool ptr , and str ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

init function get strings started : boolean ;
{ initializes the string pool, but returns false if something goes wrong }

label done , exit ;
var m,n: text char ; { characters input from pool file }
g: str number ; { garbage }
a: integer ; { accumulator for check sum }
c: boolean ; { check sum has been checked }

begin pool ptr ← 0; str ptr ← 0; str start [0]← 0; ⟨Make the first 256 strings 48 ⟩;
⟨Read the other strings from the TEX.POOL file and return true , or give an error message and return

false 51 ⟩;
exit : end;
tini

§48 X ETEX PART 4: STRING HANDLING 25

48. The first 65536 strings will consist of a single character only. But we don’t actually make them; they’re
simulated on the fly.

⟨Make the first 256 strings 48 ⟩ ≡
begin str ptr ← too big char ; str start macro(str ptr)← pool ptr ;
end

This code is used in section 47.

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘^^A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example xchr [3́2] = ´≠´, would like string 3́2 to be the single
character 3́2 instead of the three characters 1́36 , 1́36 , 1́32 (^^Z). On the other hand, even people with
an extended character set will want to represent string 1́5 by ^^M, since 1́5 is carriage return ; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.
Unprintable characters of codes 128–255 are, similarly, rendered ^^80–^^ff.
The boolean expression defined here should be true unless TEX internal code number k corresponds to a

non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TEXbook would, for example, be ‘k ∈ [0, 1́0 . . 1́2 , 1́4 , 1́5 , 3́3 , 1́77 . . 3́77]’.
If character k cannot be printed, and k < 2́00 , then character k + 1́00 or k − 1́00 must be printable;
moreover, ASCII codes [4́1 . . 4́6 , 6́0 . . 7́1 , 1́36 , 1́41 . . 1́46 , 1́60 . . 1́71] must be printable. Thus, at
least 80 printable characters are needed.

50. When the WEB system program called TANGLE processes the TEX.WEB description that you are now
reading, it outputs the Pascal program TEX.PAS and also a string pool file called TEX.POOL. The INITEX

program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in TEX’s string memory.

⟨Global variables 13 ⟩ +≡
init pool file : alpha file ; { the string-pool file output by TANGLE }
tini

51. define bad pool (#) ≡
begin wake up terminal ; write ln (term out , #); a close (pool file); get strings started ← false ;
return;
end

⟨Read the other strings from the TEX.POOL file and return true , or give an error message and return
false 51 ⟩ ≡

name of file ← pool name ; {we needn’t set name length }
if a open in (pool file) then
begin c← false ;
repeat ⟨Read one string, but return false if the string memory space is getting too tight for

comfort 52 ⟩;
until c;
a close (pool file); get strings started ← true ;
end

else bad pool (´!␣I␣can´´t␣read␣TEX.POOL.´)

This code is used in section 47.

26 PART 4: STRING HANDLING X ETEX §52

52. ⟨Read one string, but return false if the string memory space is getting too tight for comfort 52 ⟩ ≡
begin if eof (pool file) then bad pool (´!␣TEX.POOL␣has␣no␣check␣sum.´);
read (pool file ,m, n); { read two digits of string length }
if m = ´*´ then ⟨Check the pool check sum 53 ⟩
else begin if (xord [m] < "0") ∨ (xord [m] > "9") ∨ (xord [n] < "0") ∨ (xord [n] > "9") then

bad pool (´!␣TEX.POOL␣line␣doesn´´t␣begin␣with␣two␣digits.´);
l← xord [m] ∗ 10 + xord [n]− "0" ∗ 11; { compute the length }
if pool ptr + l+ string vacancies > pool size then bad pool (´!␣You␣have␣to␣increase␣POOLSIZE.´);
for k ← 1 to l do
begin if eoln (pool file) then m← ´␣´ else read (pool file ,m);
append char (xord [m]);
end;

read ln (pool file); g ← make string ;
end;

end

This code is used in section 51.

53. The WEB operation @$ denotes the value that should be at the end of this TEX.POOL file; any other
value means that the wrong pool file has been loaded.

⟨Check the pool check sum 53 ⟩ ≡
begin a← 0; k ← 1;
loop begin if (xord [n] < "0") ∨ (xord [n] > "9") then

bad pool (´!␣TEX.POOL␣check␣sum␣doesn´´t␣have␣nine␣digits.´);
a← 10 ∗ a+ xord [n]− "0";
if k = 9 then goto done ;
incr (k); read (pool file , n);
end;

done : if a ̸= @$ then bad pool (´!␣TEX.POOL␣doesn´´t␣match;␣TANGLE␣me␣again.´);
c← true ;
end

This code is used in section 52.

§54 X ETEX PART 5: ON-LINE AND OFF-LINE PRINTING 27

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print ’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector , which has the following possible values:

term and log , the normal setting, prints on the terminal and on the transcript file.
log only , prints only on the transcript file.
term only , prints only on the terminal.
no print , doesn’t print at all. This is used only in rare cases before the transcript file is open.
pseudo , puts output into a cyclic buffer that is used by the show context routine; when we get to that routine

we shall discuss the reasoning behind this curious mode.
new string , appends the output to the current string in the string pool.
0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term and log ’, etc., have been assigned numeric codes that satisfy the convenient
relations no print + 1 = term only , no print + 2 = log only , term only + 2 = log only + 1 = term and log .
Three additional global variables, tally and term offset and file offset , record the number of characters

that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term offset and file offset , on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no print = 16 { selector setting that makes data disappear }
define term only = 17 { printing is destined for the terminal only }
define log only = 18 { printing is destined for the transcript file only }
define term and log = 19 { normal selector setting }
define pseudo = 20 { special selector setting for show context }
define new string = 21 { printing is deflected to the string pool }
define max selector = 21 { highest selector setting }

⟨Global variables 13 ⟩ +≡
log file : alpha file ; { transcript of TEX session }
selector : 0 . . max selector ; {where to print a message }
dig : array [0 . . 22] of 0 . . 15; { digits in a number being output }
tally : integer ; { the number of characters recently printed }
term offset : 0 . . max print line ; { the number of characters on the current terminal line }
file offset : 0 . . max print line ; { the number of characters on the current file line }
trick buf : array [0 . . error line] of ASCII code ; { circular buffer for pseudoprinting }
trick count : integer ; { threshold for pseudoprinting, explained later }
first count : integer ; { another variable for pseudoprinting }

55. ⟨ Initialize the output routines 55 ⟩ ≡
selector ← term only ; tally ← 0; term offset ← 0; file offset ← 0;

See also sections 65, 563, and 568.

This code is used in section 1386.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm , wterm ln , and wterm cr in this section.

define wterm (#) ≡ write (term out , #)
define wterm ln (#) ≡ write ln (term out , #)
define wterm cr ≡ write ln (term out)
define wlog (#) ≡ write (log file , #)
define wlog ln (#) ≡ write ln (log file , #)
define wlog cr ≡ write ln (log file)

28 PART 5: ON-LINE AND OFF-LINE PRINTING X ETEX §57

57. To end a line of text output, we call print ln .

⟨Basic printing procedures 57 ⟩ ≡
procedure print ln ; { prints an end-of-line }

begin case selector of
term and log : begin wterm cr ; wlog cr ; term offset ← 0; file offset ← 0;
end;

log only : begin wlog cr ; file offset ← 0;
end;

term only : begin wterm cr ; term offset ← 0;
end;

no print , pseudo ,new string : do nothing ;
othercases write ln (write file [selector])
endcases;
end; { tally is not affected }

See also sections 58, 59, 63, 66, 67, 68, 69, 292, 293, 553, 741, 1415, and 1633.

This code is used in section 4.

§58 X ETEX PART 5: ON-LINE AND OFF-LINE PRINTING 29

58. The print raw char procedure sends one character to the desired destination, using the xchr array to
map it into an external character compatible with input ln . All printing comes through print ln , print char
or print visible char . When printing a multi-byte character, the boolean parameter incr offset is set false
except for the very last byte, to avoid calling print ln in the middle of such character.

⟨Basic printing procedures 57 ⟩ +≡
procedure print raw char (s : ASCII code ; incr offset : boolean); { prints a single character }

label exit ; { label is not used but nonetheless kept (for other changes?) }
begin case selector of
term and log : begin wterm (xchr [s]); wlog (xchr [s]);
if incr offset then

begin incr (term offset); incr (file offset);
end;

if term offset = max print line then
begin wterm cr ; term offset ← 0;
end;

if file offset = max print line then
begin wlog cr ; file offset ← 0;
end;

end;
log only : begin wlog (xchr [s]);
if incr offset then incr (file offset);
if file offset = max print line then print ln ;
end;

term only : begin wterm (xchr [s]);
if incr offset then incr (term offset);
if term offset = max print line then print ln ;
end;

no print : do nothing ;
pseudo : if tally < trick count then trick buf [tally mod error line]← s;
new string : begin if pool ptr < pool size then append char (s);
end; {we drop characters if the string space is full }

othercases write (write file [selector], xchr [s])
endcases;
incr (tally);

exit : end;

30 PART 5: ON-LINE AND OFF-LINE PRINTING X ETEX §59

59. The print char procedure sends one character to the desired destination. Control sequence names, file
names and string constructed with \string might contain ASCII code values that can’t be printed using
print raw char . These characters will be printed in three- or four-symbol form like ‘^^A’ or ‘^^e4’, unless
the -8bit option is enabled. Output that goes to the terminal and/or log file is treated differently when it
comes to determining whether a character is printable.

define print visible char (#) ≡ print raw char (#, true)
define print lc hex (#) ≡ l← #;

if l < 10 then print visible char (l + "0") else print visible char (l − 10 + "a")

⟨Basic printing procedures 57 ⟩ +≡
procedure print char (s : integer); { prints a single character }

label exit ;
var l: small number ;
begin if (selector > pseudo) ∧ (¬doing special) then

{ “printing” to a new string, encode as UTF-16 rather than UTF-8 }
begin if s ≥ ˝10000 then

begin print visible char (˝D800+ (s− ˝10000) div ˝400);
print visible char (˝DC00+ (s− ˝10000)mod ˝400);
end

else print visible char (s);
return;
end;

if ⟨Character s is the current new-line character 270 ⟩ then
if selector < pseudo then
begin print ln ; return;
end;

if (s < 32) ∧ (eight bit p = 0) ∧ (¬doing special) then { control char: ^^X }
begin print visible char ("^"); print visible char ("^"); print visible char (s+ 64);
end

else if s < 127 then { printable ASCII }
print visible char (s)

else if (s = 127) then { DEL }
begin if (eight bit p = 0) ∧ (¬doing special) then
begin print visible char ("^"); print visible char ("^"); print visible char ("?")
end

else print visible char (s)
end

else if (s < ˝A0) ∧ (eight bit p = 0) ∧ (¬doing special) then {C1 controls: ^^xx }
begin print visible char ("^"); print visible char ("^"); print lc hex ((smod ˝100) div ˝10);
print lc hex (smod ˝10);
end

else if selector = pseudo then print visible char (s)
{ Don’t UTF8-encode text in trick buf , we’ll handle that when printing error context. }

else begin { char ≥ 128: encode as UTF8 }
if s < ˝800 then

begin print raw char (˝C0+ s div ˝40, false); print raw char (˝80+ smod ˝40, true);
end

else if s < ˝10000 then
begin print raw char (˝E0+ (s div ˝1000), false);
print raw char (˝80+ (smod ˝1000) div ˝40, false);
print raw char (˝80+ (smod ˝40), true);
end

else begin print raw char (˝F0+ (s div ˝40000), false);

§59 X ETEX PART 5: ON-LINE AND OFF-LINE PRINTING 31

print raw char (˝80+ (smod ˝40000) div ˝1000, false);
print raw char (˝80+ (smod ˝1000) div ˝40, false);
print raw char (˝80+ (smod ˝40), true);
end

end;
exit : end;

60. define native room (#) ≡
while native text size ≤ native len + # do
begin native text size ← native text size + 128;
native text ← xrealloc(native text ,native text size ∗ sizeof (UTF16 code));
end

define append native (#) ≡
begin native text [native len]← #; incr (native len);
end

61. ⟨Global variables 13 ⟩ +≡
doing special : boolean ;
native text : ↑UTF16 code ; { buffer for collecting native-font strings }
native text size : integer ; { size of buffer }
native len : integer ;
save native len : integer ;

62. ⟨ Set initial values of key variables 23 ⟩ +≡
doing special ← false ; native text size ← 128;
native text ← xmalloc(native text size ∗ sizeof (UTF16 code));

32 PART 5: ON-LINE AND OFF-LINE PRINTING X ETEX §63

63. An entire string is output by calling print . Note that if we are outputting the single standard ASCII
character c, we could call print ("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print char ("c") is quicker, so TEX goes directly to the print char routine when it knows that
this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)

⟨Basic printing procedures 57 ⟩ +≡
procedure print (s : integer); { prints string s }
label exit ;
var j: pool pointer ; { current character code position }
nl : integer ; { new-line character to restore }

begin if s ≥ str ptr then s← "???" { this can’t happen }
else if s < biggest char then

if s < 0 then s← "???" { can’t happen }
else begin if selector > pseudo then

begin print char (s); return; { internal strings are not expanded }
end;

if (⟨Character s is the current new-line character 270 ⟩) then
if selector < pseudo then
begin print ln ; return;
end;

nl ← new line char ; new line char ← −1; print char (s); new line char ← nl ; return;
end;

j ← str start macro(s);
while j < str start macro(s+ 1) do
begin if (so(str pool [j]) ≥ ˝D800) ∧ (so(str pool [j]) ≤ ˝DBFF) ∧ (j + 1 <

str start macro(s+ 1)) ∧ (so(str pool [j + 1]) ≥ ˝DC00) ∧ (so(str pool [j + 1]) ≤ ˝DFFF) then
begin print char (˝10000+(so(str pool [j])− ˝D800) ∗ ˝400+ so(str pool [j+1])− ˝DC00); j ← j+2;
end

else begin print char (so(str pool [j])); incr (j);
end;

end;
exit : end;

64. Old versions of TEX needed a procedure called slow print whose function is now subsumed by print
and the new functionality of print char and print visible char . We retain the old name slow print here as a
possible aid to future software archæologists.

define slow print ≡ print

65. Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term offset variable is temporarily incorrect, but the discrepancy is not serious since we assume
that this part of the program is system dependent.

⟨ Initialize the output routines 55 ⟩ +≡
wterm (banner);
if format ident = 0 then wterm ln (´␣(no␣format␣preloaded)´)
else begin slow print (format ident); print ln ;
end;

update terminal ;

§66 X ETEX PART 5: ON-LINE AND OFF-LINE PRINTING 33

66. The procedure print nl is like print , but it makes sure that the string appears at the beginning of a
new line.

⟨Basic printing procedures 57 ⟩ +≡
procedure print nl (s : str number); { prints string s at beginning of line }

begin if ((term offset > 0) ∧ (odd (selector))) ∨ ((file offset > 0) ∧ (selector ≥ log only)) then print ln ;
print (s);
end;

67. The procedure print esc prints a string that is preceded by the user’s escape character (which is usually
a backslash).

⟨Basic printing procedures 57 ⟩ +≡
procedure print esc(s : str number); { prints escape character, then s }

var c: integer ; { the escape character code }
begin ⟨ Set variable c to the current escape character 269 ⟩;
if c ≥ 0 then
if c ≤ biggest usv then print char (c);

slow print (s);
end;

68. An array of digits in the range 0 . . 15 is printed by print the digs .

⟨Basic printing procedures 57 ⟩ +≡
procedure print the digs (k : eight bits); { prints dig [k − 1] . . . dig [0] }

begin while k > 0 do
begin decr (k);
if dig [k] < 10 then print char ("0"+ dig [k])
else print char ("A"− 10 + dig [k]);
end;

end;

69. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (−n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

⟨Basic printing procedures 57 ⟩ +≡
procedure print int (n : integer); { prints an integer in decimal form }
var k: 0 . . 23; { index to current digit; we assume that |n| < 1023 }
m: integer ; { used to negate n in possibly dangerous cases }

begin k ← 0;
if n < 0 then
begin print char ("−");
if n > −100000000 then negate (n)
else begin m← −1− n; n← m div 10; m← (mmod 10) + 1; k ← 1;
if m < 10 then dig [0]← m
else begin dig [0]← 0; incr (n);
end;

end;
end;

repeat dig [k]← nmod 10; n← n div 10; incr (k);
until n = 0;
print the digs (k);
end;

34 PART 5: ON-LINE AND OFF-LINE PRINTING X ETEX §70

70. Here is a trivial procedure to print two digits; it is usually called with a parameter in the range
0 ≤ n ≤ 99.

procedure print two(n : integer); { prints two least significant digits }
begin n← abs (n)mod 100; print char ("0"+ (n div 10)); print char ("0"+ (nmod 10));
end;

71. Hexadecimal printing of nonnegative integers is accomplished by print hex .

procedure print hex (n : integer); { prints a positive integer in hexadecimal form }
var k: 0 . . 22; { index to current digit; we assume that 0 ≤ n < 1622 }
begin k ← 0; print char ("""");
repeat dig [k]← nmod 16; n← n div 16; incr (k);
until n = 0;
print the digs (k);
end;

72. Old versions of TEX needed a procedure called print ASCII whose function is now subsumed by print .
We retain the old name here as a possible aid to future software archæologists.

define print ASCII ≡ print

73. Roman numerals are produced by the print roman int routine. Readers who like puzzles might enjoy
trying to figure out how this tricky code works; therefore no explanation will be given. Notice that 1990
yields mcmxc, not mxm.

procedure print roman int (n : integer);
label exit ;
var j, k: pool pointer ; {mysterious indices into str pool }
u, v: nonnegative integer ; {mysterious numbers }

begin j ← str start macro("m2d5c2l5x2v5i"); v ← 1000;
loop begin while n ≥ v do

begin print char (so(str pool [j])); n← n− v;
end;

if n ≤ 0 then return; { nonpositive input produces no output }
k ← j + 2; u← v div (so(str pool [k − 1])− "0");
if str pool [k − 1] = si ("2") then
begin k ← k + 2; u← u div (so(str pool [k − 1])− "0");
end;

if n+ u ≥ v then
begin print char (so(str pool [k])); n← n+ u;
end

else begin j ← j + 2; v ← v div (so(str pool [j − 1])− "0");
end;

end;
exit : end;

74. The print subroutine will not print a string that is still being created. The following procedure will.

procedure print current string ; { prints a yet-unmade string }
var j: pool pointer ; { points to current character code }
begin j ← str start macro(str ptr);
while j < pool ptr do
begin print char (so(str pool [j])); incr (j);
end;

end;

§75 X ETEX PART 5: ON-LINE AND OFF-LINE PRINTING 35

75. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term only or term and log . The input is placed into locations first through last − 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll mode .

define prompt input (#) ≡
begin wake up terminal ; print (#); term input ;
end { prints a string and gets a line of input }

procedure term input ; { gets a line from the terminal }
var k: 0 . . buf size ; { index into buffer }
begin update terminal ; { now the user sees the prompt for sure }
if ¬input ln (term in , true) then fatal error ("End␣of␣file␣on␣the␣terminal!");
term offset ← 0; { the user’s line ended with ⟨return⟩ }
decr (selector); { prepare to echo the input }
if last ̸= first then
for k ← first to last − 1 do print (buffer [k]);

print ln ; incr (selector); { restore previous status }
end;

36 PART 6: REPORTING ERRORS X ETEX §76

76. Reporting errors. When something anomalous is detected, TEX typically does something like this:

print err ("Something␣anomalous␣has␣been␣detected");
help3 ("This␣is␣the␣first␣line␣of␣my␣offer␣to␣help.")
("This␣is␣the␣second␣line.␣I´m␣trying␣to")
("explain␣the␣best␣way␣for␣you␣to␣proceed.");
error ;

A two-line help message would be given using help2 , etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that max print line will not be exceeded.)

The print err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error stop mode , it also enters into a dialog with the user,
during which time the help message may be printed.

77. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch mode = 0 { omits all stops and omits terminal output }
define nonstop mode = 1 { omits all stops }
define scroll mode = 2 { omits error stops }
define error stop mode = 3 { stops at every opportunity to interact }
define print err (#) ≡

begin if interaction = error stop mode then wake up terminal ;
print nl ("!␣"); print (#);
end

⟨Global variables 13 ⟩ +≡
interaction : batch mode . . error stop mode ; { current level of interaction }

78. ⟨ Set initial values of key variables 23 ⟩ +≡
interaction ← error stop mode ;

79. TEX is careful not to call error when the print selector setting might be unusual. The only possible
values of selector at the time of error messages are

no print (when interaction = batch mode and log file not yet open);
term only (when interaction > batch mode and log file not yet open);
log only (when interaction = batch mode and log file is open);
term and log (when interaction > batch mode and log file is open).

⟨ Initialize the print selector based on interaction 79 ⟩ ≡
if interaction = batch mode then selector ← no print else selector ← term only

This code is used in sections 1319 and 1391.

§80 X ETEX PART 6: REPORTING ERRORS 37

80. A global variable deletions allowed is set false if the get next routine is active when error is called; this
ensures that get next and related routines like get token will never be called recursively. A similar interlock
is provided by set box allowed .

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless , warning issued , error message issued , and fatal error stop .
Another global variable, error count , is increased by one when an error occurs without an interactive

dialog, and it is reset to zero at the end of every paragraph. If error count reaches 100, TEX decides that
there is no point in continuing further.

define spotless = 0 { history value when nothing has been amiss yet }
define warning issued = 1 { history value when begin diagnostic has been called }
define error message issued = 2 { history value when error has been called }
define fatal error stop = 3 { history value when termination was premature }

⟨Global variables 13 ⟩ +≡
deletions allowed : boolean ; { is it safe for error to call get token? }
set box allowed : boolean ; { is it safe to do a \setbox assignment? }
history : spotless . . fatal error stop ; { has the source input been clean so far? }
error count : −1 . . 100; { the number of scrolled errors since the last paragraph ended }

81. The value of history is initially fatal error stop , but it will be changed to spotless if TEX survives the
initialization process.

⟨ Set initial values of key variables 23 ⟩ +≡
deletions allowed ← true ; set box allowed ← true ; error count ← 0; { history is initialized elsewhere }

82. Since errors can be detected almost anywhere in TEX, we want to declare the error procedures near
the beginning of the program. But the error procedures in turn use some other procedures, which need to
be declared forward before we get to error itself.
It is possible for error to be called recursively if some error arises when get token is being used to delete

a token, and/or if some fatal error occurs while TEX is trying to fix a non-fatal one. But such recursion is
never more than two levels deep.

⟨Error handling procedures 82 ⟩ ≡
procedure normalize selector ; forward ;
procedure get token ; forward ;
procedure term input ; forward ;
procedure show context ; forward ;
procedure begin file reading ; forward ;
procedure open log file ; forward ;
procedure close files and terminate ; forward ;
procedure clear for error prompt ; forward ;
procedure give err help ; forward ;
debug procedure debug help ; forward ; gubed

See also sections 85, 86, 97, 98, 99, and 1455.

This code is used in section 4.

38 PART 6: REPORTING ERRORS X ETEX §83

83. Individual lines of help are recorded in the array help line , which contains entries in positions 0 . .
(help ptr − 1). They should be printed in reverse order, i.e., with help line [0] appearing last.

define hlp1 (#) ≡ help line [0]← #; end
define hlp2 (#) ≡ help line [1]← #; hlp1
define hlp3 (#) ≡ help line [2]← #; hlp2
define hlp4 (#) ≡ help line [3]← #; hlp3
define hlp5 (#) ≡ help line [4]← #; hlp4
define hlp6 (#) ≡ help line [5]← #; hlp5
define help0 ≡ help ptr ← 0 { sometimes there might be no help }
define help1 ≡ begin help ptr ← 1; hlp1 { use this with one help line }
define help2 ≡ begin help ptr ← 2; hlp2 { use this with two help lines }
define help3 ≡ begin help ptr ← 3; hlp3 { use this with three help lines }
define help4 ≡ begin help ptr ← 4; hlp4 { use this with four help lines }
define help5 ≡ begin help ptr ← 5; hlp5 { use this with five help lines }
define help6 ≡ begin help ptr ← 6; hlp6 { use this with six help lines }

⟨Global variables 13 ⟩ +≡
help line : array [0 . . 5] of str number ; { helps for the next error }
help ptr : 0 . . 6; { the number of help lines present }
use err help : boolean ; { should the err help list be shown? }

84. ⟨ Set initial values of key variables 23 ⟩ +≡
help ptr ← 0; use err help ← false ;

85. The jump out procedure just cuts across all active procedure levels and goes to end of TEX . This
is the only nontrivial goto statement in the whole program. It is used when there is no recovery from a
particular error.
Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump out

should simply be ‘close files and terminate ; ’ followed by a call on some system procedure that quietly
terminates the program.

⟨Error handling procedures 82 ⟩ +≡
procedure jump out ;

begin goto end of TEX ;
end;

86. Here now is the general error routine.

⟨Error handling procedures 82 ⟩ +≡
procedure error ; { completes the job of error reporting }
label continue , exit ;
var c: UnicodeScalar ; {what the user types }
s1 , s2 , s3 , s4 : integer ; { used to save global variables when deleting tokens }

begin if history < error message issued then history ← error message issued ;
print char ("."); show context ;
if interaction = error stop mode then ⟨Get user’s advice and return 87 ⟩;
incr (error count);
if error count = 100 then
begin print nl ("(That␣makes␣100␣errors;␣please␣try␣again.)"); history ← fatal error stop ;
jump out ;
end;
⟨Put help message on the transcript file 94 ⟩;

exit : end;

§87 X ETEX PART 6: REPORTING ERRORS 39

87. ⟨Get user’s advice and return 87 ⟩ ≡
loop begin continue : if interaction ̸= error stop mode then return;
clear for error prompt ; prompt input ("?␣");
if last = first then return;
c← buffer [first];
if c ≥ "a" then c← c+ "A"− "a"; { convert to uppercase }
⟨ Interpret code c and return if done 88 ⟩;
end

This code is used in section 86.

88. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.
There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

⟨ Interpret code c and return if done 88 ⟩ ≡
case c of
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9": if deletions allowed then

⟨Delete c− "0" tokens and goto continue 92 ⟩;
debug "D": begin debug help ; goto continue ; end; gubed
"E": if base ptr > 0 then

if input stack [base ptr].name field ≥ 256 then
begin print nl ("You␣want␣to␣edit␣file␣"); slow print (input stack [base ptr].name field);
print ("␣at␣line␣"); print int (line); interaction ← scroll mode ; jump out ;
end;

"H": ⟨Print the help information and goto continue 93 ⟩;
"I": ⟨ Introduce new material from the terminal and return 91 ⟩;
"Q", "R", "S": ⟨Change the interaction level and return 90 ⟩;
"X": begin interaction ← scroll mode ; jump out ;
end;

othercases do nothing
endcases;
⟨Print the menu of available options 89 ⟩

This code is used in section 87.

89. ⟨Print the menu of available options 89 ⟩ ≡
begin print ("Type␣<return>␣to␣proceed,␣S␣to␣scroll␣future␣error␣messages,");
print nl ("R␣to␣run␣without␣stopping,␣Q␣to␣run␣quietly,");
print nl ("I␣to␣insert␣something,␣");
if base ptr > 0 then
if input stack [base ptr].name field ≥ 256 then print ("E␣to␣edit␣your␣file,");

if deletions allowed then
print nl ("1␣or␣...␣or␣9␣to␣ignore␣the␣next␣1␣to␣9␣tokens␣of␣input,");

print nl ("H␣for␣help,␣X␣to␣quit.");
end

This code is used in section 88.

40 PART 6: REPORTING ERRORS X ETEX §90

90. Here the author of TEX apologizes for making use of the numerical relation between "Q", "R", "S",
and the desired interaction settings batch mode , nonstop mode , scroll mode .

⟨Change the interaction level and return 90 ⟩ ≡
begin error count ← 0; interaction ← batch mode + c− "Q"; print ("OK,␣entering␣");
case c of
"Q": begin print esc("batchmode"); decr (selector);
end;

"R": print esc("nonstopmode");
"S": print esc("scrollmode");
end; { there are no other cases }
print ("..."); print ln ; update terminal ; return;
end

This code is used in section 88.

91. When the following code is executed, buffer [(first +1) . . (last − 1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with TEX’s input stacks.

⟨ Introduce new material from the terminal and return 91 ⟩ ≡
begin begin file reading ; { enter a new syntactic level for terminal input }
{ now state = mid line , so an initial blank space will count as a blank }

if last > first + 1 then
begin loc ← first + 1; buffer [first]← "␣";
end

else begin prompt input ("insert>"); loc ← first ;
end;

first ← last ; cur input .limit field ← last − 1; { no end line char ends this line }
return;
end

This code is used in section 88.

92. We allow deletion of up to 99 tokens at a time.

⟨Delete c− "0" tokens and goto continue 92 ⟩ ≡
begin s1 ← cur tok ; s2 ← cur cmd ; s3 ← cur chr ; s4 ← align state ; align state ← 1000000;
OK to interrupt ← false ;
if (last > first + 1) ∧ (buffer [first + 1] ≥ "0") ∧ (buffer [first + 1] ≤ "9") then
c← c ∗ 10 + buffer [first + 1]− "0" ∗ 11

else c← c− "0";
while c > 0 do
begin get token ; { one-level recursive call of error is possible }
decr (c);
end;

cur tok ← s1 ; cur cmd ← s2 ; cur chr ← s3 ; align state ← s4 ; OK to interrupt ← true ;
help2 ("I␣have␣just␣deleted␣some␣text,␣as␣you␣asked.")
("You␣can␣now␣delete␣more,␣or␣insert,␣or␣whatever."); show context ; goto continue ;
end

This code is used in section 88.

§93 X ETEX PART 6: REPORTING ERRORS 41

93. ⟨Print the help information and goto continue 93 ⟩ ≡
begin if use err help then
begin give err help ; use err help ← false ;
end

else begin if help ptr = 0 then help2 ("Sorry,␣I␣don´t␣know␣how␣to␣help␣in␣this␣situation.")
("Maybe␣you␣should␣try␣asking␣a␣human?");

repeat decr (help ptr); print (help line [help ptr]); print ln ;
until help ptr = 0;
end;

help4 ("Sorry,␣I␣already␣gave␣what␣help␣I␣could...")
("Maybe␣you␣should␣try␣asking␣a␣human?")
("An␣error␣might␣have␣occurred␣before␣I␣noticed␣any␣problems.")
("``If␣all␣else␣fails,␣read␣the␣instructions.´´");
goto continue ;
end

This code is used in section 88.

94. ⟨Put help message on the transcript file 94 ⟩ ≡
if interaction > batch mode then decr (selector); { avoid terminal output }
if use err help then
begin print ln ; give err help ;
end

else while help ptr > 0 do
begin decr (help ptr); print nl (help line [help ptr]);
end;

print ln ;
if interaction > batch mode then incr (selector); { re-enable terminal output }
print ln

This code is used in section 86.

95. A dozen or so error messages end with a parenthesized integer, so we save a teeny bit of program space
by declaring the following procedure:

procedure int error (n : integer);
begin print ("␣("); print int (n); print char (")"); error ;
end;

96. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.

procedure normalize selector ;
begin if log opened then selector ← term and log
else selector ← term only ;
if job name = 0 then open log file ;
if interaction = batch mode then decr (selector);
end;

42 PART 6: REPORTING ERRORS X ETEX §97

97. The following procedure prints TEX’s last words before dying.

define succumb ≡
begin if interaction = error stop mode then interaction ← scroll mode ;

{ no more interaction }
if log opened then error ;
debug if interaction > batch mode then debug help ;
gubed
history ← fatal error stop ; jump out ; { irrecoverable error }
end

⟨Error handling procedures 82 ⟩ +≡
procedure fatal error (s : str number); { prints s, and that’s it }
begin normalize selector ;
print err ("Emergency␣stop"); help1 (s); succumb ;
end;

98. Here is the most dreaded error message.

⟨Error handling procedures 82 ⟩ +≡
procedure overflow (s : str number ; n : integer); { stop due to finiteness }

begin normalize selector ; print err ("TeX␣capacity␣exceeded,␣sorry␣["); print (s); print char ("=");
print int (n); print char ("]"); help2 ("If␣you␣really␣absolutely␣need␣more␣capacity,")
("you␣can␣ask␣a␣wizard␣to␣enlarge␣me."); succumb ;
end;

99. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index
entries for ‘this can’t happen’ may help to pinpoint the problem.

⟨Error handling procedures 82 ⟩ +≡
procedure confusion (s : str number); { consistency check violated; s tells where }
begin normalize selector ;
if history < error message issued then
begin print err ("This␣can´t␣happen␣("); print (s); print char (")");
help1 ("I´m␣broken.␣Please␣show␣this␣to␣someone␣who␣can␣fix␣can␣fix");
end

else begin print err ("I␣can´t␣go␣on␣meeting␣you␣like␣this");
help2 ("One␣of␣your␣faux␣pas␣seems␣to␣have␣wounded␣me␣deeply...")
("in␣fact,␣I´m␣barely␣conscious.␣Please␣fix␣it␣and␣try␣again.");
end;

succumb ;
end;

100. Users occasionally want to interrupt TEX while it’s running. If the Pascal runtime system allows
this, one can implement a routine that sets the global variable interrupt to some nonzero value when such
an interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the
Pascal debugger.

define check interrupt ≡
begin if interrupt ̸= 0 then pause for instructions ;
end

⟨Global variables 13 ⟩ +≡
interrupt : integer ; { should TEX pause for instructions? }
OK to interrupt : boolean ; { should interrupts be observed? }

§101 X ETEX PART 6: REPORTING ERRORS 43

101. ⟨ Set initial values of key variables 23 ⟩ +≡
interrupt ← 0; OK to interrupt ← true ;

102. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have nearly the full flexibility of the error routine. TEX checks for interrupts only at times when it is
safe to do this.

procedure pause for instructions ;
begin if OK to interrupt then
begin interaction ← error stop mode ;
if (selector = log only) ∨ (selector = no print) then incr (selector);
print err ("Interruption"); help3 ("You␣rang?")
("Try␣to␣insert␣an␣instruction␣for␣me␣(e.g.,␣`I\showlists´),")
("unless␣you␣just␣want␣to␣quit␣by␣typing␣`X´."); deletions allowed ← false ; error ;
deletions allowed ← true ; interrupt ← 0;
end;

end;

44 PART 7: ARITHMETIC WITH SCALED DIMENSIONS X ETEX §103

103. Arithmetic with scaled dimensions. The principal computations performed by TEX are done
entirely in terms of integers less than 231 in magnitude; and divisions are done only when both dividend
and divisor are nonnegative. Thus, the arithmetic specified in this program can be carried out in exactly
the same way on a wide variety of computers, including some small ones. Why? Because the arithmetic
calculations need to be spelled out precisely in order to guarantee that TEX will produce identical output
on different machines. If some quantities were rounded differently in different implementations, we would
find that line breaks and even page breaks might occur in different places. Hence the arithmetic of TEX has
been designed with care, and systems that claim to be implementations of TEX82 should follow precisely the
calculations as they appear in the present program.
(Actually there are three places where TEX uses div with a possibly negative numerator. These are

harmless; see div in the index. Also if the user sets the \time or the \year to a negative value, some
diagnostic information will involve negative-numerator division. The same remarks apply for mod as well
as for div.)

104. Here is a routine that calculates half of an integer, using an unambiguous convention with respect to
signed odd numbers.

function half (x : integer): integer ;
begin if odd (x) then half ← (x+ 1) div 2
else half ← x div 2;
end;

105. Fixed-point arithmetic is done on scaled integers that are multiples of 2−16. In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

define unity ≡ 2́00000 { 216, represents 1.00000 }
define two ≡ 4́00000 { 217, represents 2.00000 }

⟨Types in the outer block 18 ⟩ +≡
scaled = integer ; { this type is used for scaled integers }
nonnegative integer = 0 . . 1́7777777777 ; { 0 ≤ x < 231 }
small number = 0 . . hyphenatable length limit ; { this type is self-explanatory }

106. The following function is used to create a scaled integer from a given decimal fraction (.d0d1 . . . dk−1),
where 0 ≤ k ≤ 17. The digit di is given in dig [i], and the calculation produces a correctly rounded result.

function round decimals (k : small number): scaled ; { converts a decimal fraction }
var a: integer ; { the accumulator }
begin a← 0;
while k > 0 do
begin decr (k); a← (a+ dig [k] ∗ two) div 10;
end;

round decimals ← (a+ 1) div 2;
end;

§107 X ETEX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 45

107. Conversely, here is a procedure analogous to print int . If the output of this procedure is subsequently
read by TEX and converted by the round decimals routine above, it turns out that the original value will
be reproduced exactly; the “simplest” such decimal number is output, but there is always at least one digit
following the decimal point.
The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield

the original number if and only if they form a fraction f in the range s− δ ≤ 10 · 216f < s. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

procedure print scaled (s : scaled); { prints scaled real, rounded to five digits }
var delta : scaled ; { amount of allowable inaccuracy }
begin if s < 0 then
begin print char ("−"); negate (s); { print the sign, if negative }
end;

print int (s div unity); { print the integer part }
print char ("."); s← 10 ∗ (smod unity) + 5; delta ← 10;
repeat if delta > unity then s← s+ 1́00000 − 50000; { round the last digit }
print char ("0"+ (s div unity)); s← 10 ∗ (smod unity); delta ← delta ∗ 10;

until s ≤ delta ;
end;

108. Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2−16 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 230 − 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.
The present implementation of TEX does not check for overflow when dimensions are added or subtracted.

This could be done by inserting a few dozen tests of the form ‘if x ≥ 1́0000000000 then report overflow ’,
but the chance of overflow is so remote that such tests do not seem worthwhile.
TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,

and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith error to true instead of reporting errors directly to the user. Another global
variable, remainder , holds the remainder after a division.

⟨Global variables 13 ⟩ +≡
arith error : boolean ; { has arithmetic overflow occurred recently? }
remainder : scaled ; { amount subtracted to get an exact division }

109. The first arithmetical subroutine we need computes nx + y, where x and y are scaled and n is an
integer. We will also use it to multiply integers.

define nx plus y (#) ≡ mult and add (#, 7́777777777)
define mult integers (#) ≡ mult and add (#, 0, 1́7777777777)

function mult and add (n : integer ; x, y,max answer : scaled): scaled ;
begin if n < 0 then
begin negate (x); negate (n);
end;

if n = 0 then mult and add ← y
else if ((x ≤ (max answer − y)div n)∧ (−x ≤ (max answer + y)div n)) then mult and add ← n ∗x+ y
else begin arith error ← true ; mult and add ← 0;

end;
end;

46 PART 7: ARITHMETIC WITH SCALED DIMENSIONS X ETEX §110

110. We also need to divide scaled dimensions by integers.

function x over n (x : scaled ; n : integer): scaled ;
var negative : boolean ; { should remainder be negated? }
begin negative ← false ;
if n = 0 then
begin arith error ← true ; x over n ← 0; remainder ← x;
end

else begin if n < 0 then
begin negate (x); negate (n); negative ← true ;
end;

if x ≥ 0 then
begin x over n ← x div n; remainder ← xmod n;
end

else begin x over n ← −((−x) div n); remainder ← −((−x)mod n);
end;

end;
if negative then negate (remainder);
end;

111. Then comes the multiplication of a scaled number by a fraction n/d, where n and d are nonnegative
integers ≤ 216 and d is positive. It would be too dangerous to multiply by n and then divide by d, in separate
operations, since overflow might well occur; and it would be too inaccurate to divide by d and then multiply
by n. Hence this subroutine simulates 1.5-precision arithmetic.

function xn over d (x : scaled ; n, d : integer): scaled ;
var positive : boolean ; {was x ≥ 0? }
t, u, v: nonnegative integer ; { intermediate quantities }

begin if x ≥ 0 then positive ← true
else begin negate (x); positive ← false ;
end;

t← (xmod 1́00000) ∗ n; u← (x div 1́00000) ∗ n+ (t div 1́00000);
v ← (umod d) ∗ 1́00000 + (tmod 1́00000);
if u div d ≥ 1́00000 then arith error ← true
else u← 1́00000 ∗ (u div d) + (v div d);
if positive then
begin xn over d ← u; remainder ← v mod d;
end

else begin xn over d ← −u; remainder ← −(v mod d);
end;

end;

§112 X ETEX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 47

112. The next subroutine is used to compute the “badness” of glue, when a total t is supposed to be made
from amounts that sum to s. According to The TEXbook, the badness of this situation is 100(t/s)3; however,
badness is simply a heuristic, so we need not squeeze out the last drop of accuracy when computing it. All
we really want is an approximation that has similar properties.
The actual method used to compute the badness is easier to read from the program than to describe

in words. It produces an integer value that is a reasonably close approximation to 100(t/s)3, and all
implementations of TEX should use precisely this method. Any badness of 213 or more is treated as infinitely
bad, and represented by 10000.
It is not difficult to prove that

badness (t+ 1, s) ≥ badness (t, s) ≥ badness (t, s+ 1).

The badness function defined here is capable of computing at most 1095 distinct values, but that is plenty.

define inf bad = 10000 { infinitely bad value }
function badness (t, s : scaled): halfword ; { compute badness, given t ≥ 0 }
var r: integer ; { approximation to αt/s, where α3 ≈ 100 · 218 }
begin if t = 0 then badness ← 0
else if s ≤ 0 then badness ← inf bad
else begin if t ≤ 7230584 then r ← (t ∗ 297) div s { 2973 = 99.94× 218 }
else if s ≥ 1663497 then r ← t div (s div 297)
else r ← t;

if r > 1290 then badness ← inf bad { 12903 < 231 < 12913 }
else badness ← (r ∗ r ∗ r + 4́00000) div 1́000000 ;
end; { that was r3/218, rounded to the nearest integer }

end;

113. When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.
We shall use the type glue ratio for such proportionality ratios. A glue ratio should take the same amount

of memory as an integer (usually 32 bits) if it is to blend smoothly with TEX’s other data structures. Thus
glue ratio should be equivalent to short real in some implementations of Pascal. Alternatively, it is possible
to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982), 10–27.
(But the routines cited there must be modified to allow negative glue ratios.)

define set glue ratio zero(#) ≡ #← 0.0 { store the representation of zero ratio }
define set glue ratio one (#) ≡ #← 1.0 { store the representation of unit ratio }
define float (#) ≡ # { convert from glue ratio to type real }
define unfloat (#) ≡ # { convert from real to type glue ratio }
define float constant (#) ≡ #.0 { convert integer constant to real }

⟨Types in the outer block 18 ⟩ +≡
glue ratio = real ; { one-word representation of a glue expansion factor }

48 PART 7B: RANDOM NUMBERS X ETEX §114

114. Random numbers.
This section is (almost) straight from MetaPost. I had to change the types (use integer instead of fraction),

but that should not have any influence on the actual calculations (the original comments refer to quantities
like fraction four (230), and that is the same as the numeric representation of maxdimen).
I’ve copied the low-level variables and routines that are needed, but only those (e.g. m log), not the

accompanying ones like m exp . Most of the following low-level numeric routines are only needed within the
calculation of norm rand . I’ve been forced to rename make fraction to make frac because TeX already has
a routine by that name with a wholly different function (it creates a fraction noad for math typesetting) –
Taco
And now let’s complete our collection of numeric utility routines by considering random number generation.

METAPOST generates pseudo-random numbers with the additive scheme recommended in Section 3.6 of The
Art of Computer Programming; however, the results are random fractions between 0 and fraction one − 1,
inclusive.
There’s an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence

xn = (xn−55 − xn−31) mod 228, we generate batches of 55 new xn’s at a time by calling new randoms . The
global variable j random tells which element has most recently been consumed.

⟨Global variables 13 ⟩ +≡
randoms : array [0 . . 54] of integer ; { the last 55 random values generated }
j random : 0 . . 54; { the number of unused randoms }
random seed : scaled ; { the default random seed }

115. A small bit of metafont is needed.

define fraction half ≡ 1́000000000 { 227, represents 0.50000000 }
define fraction one ≡ 2́000000000 { 228, represents 1.00000000 }
define fraction four ≡ 1́0000000000 { 230, represents 4.00000000 }
define el gordo ≡ 1́7777777777 { 231 − 1, the largest value that METAPOST likes }
define halfp(#) ≡ (#) div 2
define double (#) ≡ #← #+ # {multiply a variable by two }

§116 X ETEX PART 7B: RANDOM NUMBERS 49

116. The make frac routine produces the fraction equivalent of p/q, given integers p and q; it computes
the integer f = ⌊228p/q + 1

2⌋, when p and q are positive. If p and q are both of the same scaled type t, the
“type relation” make frac(t, t) = fraction is valid; and it’s also possible to use the subroutine “backwards,”
using the relation make frac(t, fraction) = t between scaled types.
If the result would have magnitude 231 or more, make frac sets arith error ← true . Most of METAPOST’s

internal computations have been designed to avoid this sort of error.
If this subroutine were programmed in assembly language on a typical machine, we could simply compute

(228 ∗ p)div q, since a double-precision product can often be input to a fixed-point division instruction. But
when we are restricted to Pascal arithmetic it is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique would be about three times faster
than the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional
multiplications and divisions.
This operation is part of METAPOST’s “inner loop”; indeed, it will consume nearly 10% of the running

time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will
therefore make METAPOST run faster. The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. System wizards should be careful to replace it with a
routine that is guaranteed to produce identical results in all cases.
As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But

when a procedure is not part of the “inner loop,” such changes aren’t advisable; simplicity and robustness
are preferable to trickery, unless the cost is too high.

function make frac(p, q : integer): integer ;
var f : integer ; { the fraction bits, with a leading 1 bit }
n: integer ; { the integer part of |p/q| }
negative : boolean ; { should the result be negated? }
be careful : integer ; { disables certain compiler optimizations }

begin if p ≥ 0 then negative ← false
else begin negate (p); negative ← true ;
end;

if q ≤ 0 then
begin debug if q = 0 then confusion ("/"); gubed
negate (q); negative ← ¬negative ;
end;

n← p div q; p← pmod q;
if n ≥ 8 then
begin arith error ← true ;
if negative then make frac ← −el gordo else make frac ← el gordo ;
end

else begin n← (n− 1) ∗ fraction one ; ⟨Compute f = ⌊228(1 + p/q) + 1
2⌋ 117 ⟩;

if negative then make frac ← −(f + n) else make frac ← f + n;
end;

end;

50 PART 7B: RANDOM NUMBERS X ETEX §117

117. The repeat loop here preserves the following invariant relations between f , p, and q: (i) 0 ≤ p < q;
(ii) fq + p = 2k(q + p0), where k is an integer and p0 is the original value of p.
Notice that the computation specifies (p−q)+p instead of (p+p)−q, because the latter could overflow. Let

us hope that optimizing compilers do not miss this point; a special variable be careful is used to emphasize
the necessary order of computation. Optimizing compilers should keep be careful in a register, not store it
in memory.

⟨Compute f = ⌊228(1 + p/q) + 1
2⌋ 117 ⟩ ≡

f ← 1;
repeat be careful ← p− q; p← be careful + p;
if p ≥ 0 then f ← f + f + 1
else begin double (f); p← p+ q;
end;

until f ≥ fraction one ;
be careful ← p− q;
if be careful + p ≥ 0 then incr (f)

This code is used in section 116.

118.

function take frac(q : integer ; f : integer): integer ;
var p: integer ; { the fraction so far }
negative : boolean ; { should the result be negated? }
n: integer ; { additional multiple of q }
be careful : integer ; { disables certain compiler optimizations }

begin ⟨Reduce to the case that f ≥ 0 and q > 0 119 ⟩;
if f < fraction one then n← 0
else begin n← f div fraction one ; f ← f mod fraction one ;
if q ≤ el gordo div n then n← n ∗ q
else begin arith error ← true ; n← el gordo ;
end;

end;
f ← f + fraction one ; ⟨Compute p = ⌊qf/228 + 1

2⌋ − q 120 ⟩;
be careful ← n− el gordo ;
if be careful + p > 0 then
begin arith error ← true ; n← el gordo − p;
end;

if negative then take frac ← −(n+ p)
else take frac ← n+ p;
end;

119. ⟨Reduce to the case that f ≥ 0 and q > 0 119 ⟩ ≡
if f ≥ 0 then negative ← false
else begin negate (f); negative ← true ;
end;

if q < 0 then
begin negate (q); negative ← ¬negative ;
end;

This code is used in section 118.

§120 X ETEX PART 7B: RANDOM NUMBERS 51

120. The invariant relations in this case are (i) ⌊(qf + p)/2k⌋ = ⌊qf0/228 + 1
2⌋, where k is an integer and

f0 is the original value of f ; (ii) 2k ≤ f < 2k+1.

⟨Compute p = ⌊qf/228 + 1
2⌋ − q 120 ⟩ ≡

p← fraction half ; { that’s 227; the invariants hold now with k = 28 }
if q < fraction four then
repeat if odd (f) then p← halfp(p+ q) else p← halfp(p);
f ← halfp(f);

until f = 1
else repeat if odd (f) then p← p+ halfp(q − p) else p← halfp(p);

f ← halfp(f);
until f = 1

This code is used in section 118.

121. The subroutines for logarithm and exponential involve two tables. The first is simple: two to the [k]
equals 2k. The second involves a bit more calculation, which the author claims to have done correctly:
spec log [k] is 227 times ln

(
1/(1− 2−k)

)
= 2−k + 1

22
−2k + 1

32
−3k + · · · , rounded to the nearest integer.

⟨Global variables 13 ⟩ +≡
two to the : array [0 . . 30] of integer ; { powers of two }
spec log : array [1 . . 28] of integer ; { special logarithms }

122. ⟨ Set initial values of key variables 23 ⟩ +≡
two to the [0]← 1;
for k ← 1 to 30 do two to the [k]← 2 ∗ two to the [k − 1];
spec log [1]← 93032640; spec log [2]← 38612034; spec log [3]← 17922280; spec log [4]← 8662214;
spec log [5]← 4261238; spec log [6]← 2113709; spec log [7]← 1052693; spec log [8]← 525315;
spec log [9]← 262400; spec log [10]← 131136; spec log [11]← 65552; spec log [12]← 32772;
spec log [13]← 16385;
for k ← 14 to 27 do spec log [k]← two to the [27− k];
spec log [28]← 1;

123.

function m log (x : integer): integer ;
var y, z: integer ; { auxiliary registers }
k: integer ; { iteration counter }

begin if x ≤ 0 then ⟨Handle non-positive logarithm 125 ⟩
else begin y ← 1302456956 + 4− 100; { 14× 227 ln 2 ≈ 1302456956.421063 }
z ← 27595 + 6553600; { and 216 × .421063 ≈ 27595 }
while x < fraction four do
begin double (x); y ← y − 93032639; z ← z − 48782;
end; { 227 ln 2 ≈ 93032639.74436163 and 216 × .74436163 ≈ 48782 }

y ← y + (z div unity); k ← 2;
while x > fraction four + 4 do
⟨ Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 124 ⟩;

m log ← y div 8;
end;

end;

52 PART 7B: RANDOM NUMBERS X ETEX §124

124. ⟨ Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 124 ⟩ ≡
begin z ← ((x− 1) div two to the [k]) + 1; { z = ⌈x/2k⌉ }
while x < fraction four + z do
begin z ← halfp(z + 1); k ← k + 1;
end;

y ← y + spec log [k]; x← x− z;
end

This code is used in section 123.

125. ⟨Handle non-positive logarithm 125 ⟩ ≡
begin print err ("Logarithm␣of␣"); print scaled (x); print ("␣has␣been␣replaced␣by␣0");
help2 ("Since␣I␣don´t␣take␣logs␣of␣non−positive␣numbers,")
("I´m␣zeroing␣this␣one.␣Proceed,␣with␣fingers␣crossed."); error ; m log ← 0;
end

This code is used in section 123.

126. The following somewhat different subroutine tests rigorously if ab is greater than, equal to, or less
than cd, given integers (a, b, c, d). In most cases a quick decision is reached. The result is +1, 0, or −1 in
the three respective cases.

define return sign (#) ≡
begin ab vs cd ← #; return;
end

function ab vs cd (a, b, c, d : integer): integer ;
label exit ;
var q, r: integer ; { temporary registers }
begin ⟨Reduce to the case that a, c ≥ 0, b, d > 0 127 ⟩;
loop begin q ← a div d; r ← c div b;
if q ̸= r then
if q > r then return sign (1) else return sign (−1);

q ← amod d; r ← cmod b;
if r = 0 then
if q = 0 then return sign (0) else return sign (1);

if q = 0 then return sign (−1);
a← b; b← q; c← d; d← r;
end; { now a > d > 0 and c > b > 0 }

exit : end;

§127 X ETEX PART 7B: RANDOM NUMBERS 53

127. ⟨Reduce to the case that a, c ≥ 0, b, d > 0 127 ⟩ ≡
if a < 0 then
begin negate (a); negate (b);
end;

if c < 0 then
begin negate (c); negate (d);
end;

if d ≤ 0 then
begin if b ≥ 0 then

if ((a = 0) ∨ (b = 0)) ∧ ((c = 0) ∨ (d = 0)) then return sign (0)
else return sign (1);

if d = 0 then
if a = 0 then return sign (0) else return sign (−1);

q ← a; a← c; c← q; q ← −b; b← −d; d← q;
end

else if b ≤ 0 then
begin if b < 0 then
if a > 0 then return sign (−1);

if c = 0 then return sign (0)
else return sign (−1);
end

This code is used in section 126.

128. To consume a random integer, the program below will say ‘next random ’ and then it will fetch
randoms [j random].

define next random ≡
if j random = 0 then new randoms
else decr (j random)

procedure new randoms ;
var k: 0 . . 54; { index into randoms }
x: integer ; { accumulator }

begin for k ← 0 to 23 do
begin x← randoms [k]− randoms [k + 31];
if x < 0 then x← x+ fraction one ;
randoms [k]← x;
end;

for k ← 24 to 54 do
begin x← randoms [k]− randoms [k − 24];
if x < 0 then x← x+ fraction one ;
randoms [k]← x;
end;

j random ← 54;
end;

54 PART 7B: RANDOM NUMBERS X ETEX §129

129. To initialize the randoms table, we call the following routine.

procedure init randoms (seed : integer);
var j, jj , k: integer ; {more or less random integers }
i: 0 . . 54; { index into randoms }

begin j ← abs (seed);
while j ≥ fraction one do j ← halfp(j);
k ← 1;
for i← 0 to 54 do
begin jj ← k; k ← j − k; j ← jj ;
if k < 0 then k ← k + fraction one ;
randoms [(i ∗ 21)mod 55]← j;
end;

new randoms ; new randoms ; new randoms ; { “warm up” the array }
end;

130. To produce a uniform random number in the range 0 ≤ u < x or 0 ≥ u > x or 0 = u = x, given a
scaled value x, we proceed as shown here.
Note that the call of take frac will produce the values 0 and x with about half the probability that it will

produce any other particular values between 0 and x, because it rounds its answers.

function unif rand (x : integer): integer ;
var y: integer ; { trial value }
begin next random ; y ← take frac(abs (x), randoms [j random]);
if y = abs (x) then unif rand ← 0
else if x > 0 then unif rand ← y
else unif rand ← −y;

end;

131. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with
the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).

function norm rand : integer ;
var x, u, l: integer ; {what the book would call 216X, 228U , and −224 lnU }
begin repeat repeat next random ; x← take frac(112429, randoms [j random]− fraction half);

{ 216
√

8/e ≈ 112428.82793 }
next random ; u← randoms [j random];

until abs (x) < u;
x← make frac(x, u); l← 139548960−m log (u); { 224 · 12 ln 2 ≈ 139548959.6165 }

until ab vs cd (1024, l, x, x) ≥ 0;
norm rand ← x;
end;

§132 X ETEX PART 8: PACKED DATA 55

132. Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory word , which contains either a (signed) integer, possibly scaled, or a (signed) glue ratio , or a
small number of fields that are one half or one quarter of the size used for storing integers.
If x is a variable of type memory word , it contains up to four fields that can be referred to as follows:

x.int (an integer)
x.sc (a scaled integer)
x.gr (a glue ratio)

x.hh .lh , x.hh .rh (two halfword fields)
x.hh .b0 , x.hh .b1 , x.hh .rh (two quarterword fields, one halfword field)

x.qqqq .b0 , x.qqqq .b1 , x.qqqq .b2 , x.qqqq .b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.
Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must

contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem max as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs
all of the memory word variants into the space of a single integer. This means, for example, that glue ratio
words should be short real instead of real on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 . . 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘−128 . . 127’.

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min quarterword . . max quarterword ’ can be packed into a
quarterword, and if integers having the subrange ‘min halfword . . max halfword ’ can be packed into a
halfword, everything should work satisfactorily.
It is usually most efficient to have min quarterword = min halfword = 0, so one should try to achieve this

unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min quarterword = 0 { smallest allowable value in a quarterword }
define max quarterword = ˝FFFF { largest allowable value in a quarterword }
define min halfword ≡ −˝FFFFFFF { smallest allowable value in a halfword }
define max halfword ≡ ˝3FFFFFFF { largest allowable value in a halfword }

133. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

⟨Check the “constant” values for consistency 14 ⟩ +≡
init if (mem min ̸= mem bot) ∨ (mem max ̸= mem top) then bad ← 10;
tini
if (mem min > mem bot) ∨ (mem max < mem top) then bad ← 10;
if (min quarterword > 0) ∨ (max quarterword < ˝7FFF) then bad ← 11;
if (min halfword > 0) ∨ (max halfword < ˝3FFFFFFF) then bad ← 12;
if (min quarterword < min halfword) ∨ (max quarterword > max halfword) then bad ← 13;
if (mem min < min halfword) ∨ (mem max ≥ max halfword) ∨

(mem bot −mem min > max halfword + 1) then bad ← 14;
if (font base < min quarterword) ∨ (font max > max quarterword) then bad ← 15;
if font max > font base + 256 then bad ← 16;
if (save size > max halfword) ∨ (max strings > max halfword) then bad ← 17;
if buf size > max halfword then bad ← 18;
if max quarterword −min quarterword < ˝FFFF then bad ← 19;

56 PART 8: PACKED DATA X ETEX §134

134. The operation of adding or subtracting min quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros qi and qo for input and output to and from
quarterword format.
The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘x+0’

and ‘x− 0’, if these macros are simplified in the obvious way when min quarterword = 0.

define qi (#) ≡ #+min quarterword { to put an eight bits item into a quarterword }
define qo(#) ≡ #−min quarterword { to take an eight bits item out of a quarterword }
define hi (#) ≡ #+min halfword { to put a sixteen-bit item into a halfword }
define ho(#) ≡ #−min halfword { to take a sixteen-bit item from a halfword }

135. The reader should study the following definitions closely:

define sc ≡ int { scaled data is equivalent to integer }
⟨Types in the outer block 18 ⟩ +≡
quarterword = min quarterword . . max quarterword ; { 1/4 of a word }
halfword = min halfword . . max halfword ; { 1/2 of a word }
two choices = 1 . . 2; { used when there are two variants in a record }
four choices = 1 . . 4; { used when there are four variants in a record }
two halves = packed record rh : halfword ;
case two choices of
1: (lh : halfword);
2: (b0 : quarterword ; b1 : quarterword);
end;

four quarters = packed record b0 : quarterword ;
b1 : quarterword ;
b2 : quarterword ;
b3 : quarterword ;
end;

memory word = record
case four choices of
1: (int : integer);
2: (gr : glue ratio);
3: (hh : two halves);
4: (qqqq : four quarters);
end;

word file = gzFile ;

136. When debugging, we may want to print a memory word without knowing what type it is; so we print
it in all modes.

debug procedure print word (w : memory word); { prints w in all ways }
begin print int (w.int); print char ("␣");
print scaled (w.sc); print char ("␣");
print scaled (round (unity ∗ float (w.gr))); print ln ;
print int (w.hh .lh); print char ("="); print int (w.hh .b0); print char (":"); print int (w.hh .b1);
print char (";"); print int (w.hh .rh); print char ("␣");
print int (w.qqqq .b0); print char (":"); print int (w.qqqq .b1); print char (":"); print int (w.qqqq .b2);
print char (":"); print int (w.qqqq .b3);
end;
gubed

§137 X ETEX PART 9: DYNAMIC MEMORY ALLOCATION 57

137. Dynamic memory allocation. The TEX system does nearly all of its own memory allocation, so
that it can readily be transported into environments that do not have automatic facilities for strings, garbage
collection, etc., and so that it can be in control of what error messages the user receives. The dynamic storage
requirements of TEX are handled by providing a large array mem in which consecutive blocks of words are
used as nodes by the TEX routines.
Pointer variables are indices into this array, or into another array called eqtb that will be explained later.

A pointer variable might also be a special flag that lies outside the bounds of mem , so we allow pointers to
assume any halfword value. The minimum halfword value represents a null pointer. TEX does not assume
that mem [null] exists.

define pointer ≡ halfword { a flag or a location in mem or eqtb }
define null ≡ min halfword { the null pointer }

⟨Global variables 13 ⟩ +≡
temp ptr : pointer ; { a pointer variable for occasional emergency use }

138. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo mem max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5–19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi mem min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.
Locations of mem between mem bot and mem top may be dumped as part of preloaded format files, by

the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem min and mem bot are always used for variable-size nodes, and
locations between mem top and mem max are always used for single-word nodes.
The key pointers that govern mem allocation have a prescribed order:

null ≤mem min ≤mem bot < lo mem max < hi mem min <mem top ≤mem end ≤mem max .

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

⟨Global variables 13 ⟩ +≡
mem : array [mem min . . mem max] of memory word ; { the big dynamic storage area }
lo mem max : pointer ; { the largest location of variable-size memory in use }
hi mem min : pointer ; { the smallest location of one-word memory in use }

139. In order to study the memory requirements of particular applications, it is possible to prepare a
version of TEX that keeps track of current and maximum memory usage. When code between the delimiters
stat . . . tats is not “commented out,” TEX will run a bit slower but it will report these statistics when
tracing stats is sufficiently large.

⟨Global variables 13 ⟩ +≡
var used , dyn used : integer ; { how much memory is in use }

58 PART 9: DYNAMIC MEMORY ALLOCATION X ETEX §140

140. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable mem end
holds the highest-numbered location of mem that has ever been used. The free locations of mem that occur
between hi mem min and mem end , inclusive, are of type two halves , and we write info(p) and link (p) for
the lh and rh fields of mem [p] when it is of this type. The single-word free locations form a linked list

avail , link (avail), link (link (avail)), . . .

terminated by null .

define link (#) ≡ mem [#].hh .rh { the link field of a memory word }
define info(#) ≡ mem [#].hh .lh { the info field of a memory word }

⟨Global variables 13 ⟩ +≡
avail : pointer ; { head of the list of available one-word nodes }
mem end : pointer ; { the last one-word node used in mem }

141. If memory is exhausted, it might mean that the user has forgotten a right brace. We will define some
procedures later that try to help pinpoint the trouble.

⟨Declare the procedure called show token list 322 ⟩
⟨Declare the procedure called runaway 336 ⟩

142. The function get avail returns a pointer to a new one-word node whose link field is null. However,
TEX will halt if there is no more room left.
If the available-space list is empty, i.e., if avail = null , we try first to increase mem end . If that cannot

be done, i.e., if mem end = mem max , we try to decrease hi mem min . If that cannot be done, i.e., if
hi mem min = lo mem max + 1, we have to quit.

function get avail : pointer ; { single-word node allocation }
var p: pointer ; { the new node being got }
begin p← avail ; { get top location in the avail stack }
if p ̸= null then avail ← link (avail) { and pop it off }
else if mem end < mem max then { or go into virgin territory }

begin incr (mem end); p← mem end ;
end

else begin decr (hi mem min); p← hi mem min ;
if hi mem min ≤ lo mem max then

begin runaway ; { if memory is exhausted, display possible runaway text }
overflow ("main␣memory␣size",mem max +1−mem min); { quit; all one-word nodes are busy }
end;

end;
link (p)← null ; { provide an oft-desired initialization of the new node }
stat incr (dyn used); tats {maintain statistics }
get avail ← p;
end;

143. Conversely, a one-word node is recycled by calling free avail . This routine is part of TEX’s “inner
loop,” so we want it to be fast.

define free avail (#) ≡ { single-word node liberation }
begin link (#)← avail ; avail ← #;
stat decr (dyn used); tats
end

§144 X ETEX PART 9: DYNAMIC MEMORY ALLOCATION 59

144. There’s also a fast get avail routine, which saves the procedure-call overhead at the expense of extra
programming. This routine is used in the places that would otherwise account for the most calls of get avail .

define fast get avail (#) ≡
begin #← avail ; { avoid get avail if possible, to save time }
if # = null then #← get avail
else begin avail ← link (#); link (#)← null ;
stat incr (dyn used); tats
end;

end

145. The procedure flush list (p) frees an entire linked list of one-word nodes that starts at position p.

procedure flush list (p : pointer); {makes list of single-word nodes available }
var q, r: pointer ; { list traversers }
begin if p ̸= null then
begin r ← p;
repeat q ← r; r ← link (r);

stat decr (dyn used); tats
until r = null ; { now q is the last node on the list }
link (q)← avail ; avail ← p;
end;

end;

146. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover .

Each empty node has size 2 or more; the first word contains the special value max halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.
Each nonempty node also has size 2 or more. Its first word is of type two halves, and its link field is never

equal to max halfword . Otherwise there is complete flexibility with respect to the contents of its other fields
and its other words.
(We require mem max < max halfword because terrible things can happen when max halfword appears

in the link field of a nonempty node.)

define empty flag ≡ max halfword { the link of an empty variable-size node }
define is empty (#) ≡ (link (#) = empty flag) { tests for empty node }
define node size ≡ info { the size field in empty variable-size nodes }
define llink (#) ≡ info(#+ 1) { left link in doubly-linked list of empty nodes }
define rlink (#) ≡ link (#+ 1) { right link in doubly-linked list of empty nodes }

⟨Global variables 13 ⟩ +≡
rover : pointer ; { points to some node in the list of empties }

60 PART 9: DYNAMIC MEMORY ALLOCATION X ETEX §147

147. A call to get node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If get node is called with s = 230, it simply merges adjacent free areas and returns the value max halfword .

function get node (s : integer): pointer ; { variable-size node allocation }
label found , exit , restart ;
var p: pointer ; { the node currently under inspection }
q: pointer ; { the node physically after node p }
r: integer ; { the newly allocated node, or a candidate for this honor }
t: integer ; { temporary register }

begin restart : p← rover ; { start at some free node in the ring }
repeat ⟨Try to allocate within node p and its physical successors, and goto found if allocation was

possible 149 ⟩;
p← rlink (p); {move to the next node in the ring }

until p = rover ; { repeat until the whole list has been traversed }
if s = 1́0000000000 then
begin get node ← max halfword ; return;
end;

if lo mem max + 2 < hi mem min then
if lo mem max + 2 ≤ mem bot +max halfword then
⟨Grow more variable-size memory and goto restart 148 ⟩;

overflow ("main␣memory␣size",mem max + 1−mem min); { sorry, nothing satisfactory is left }
found : link (r)← null ; { this node is now nonempty }
stat var used ← var used + s; {maintain usage statistics }
tats
get node ← r;

exit : end;

148. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when TEX is implemented on “virtual memory” systems.

⟨Grow more variable-size memory and goto restart 148 ⟩ ≡
begin if hi mem min − lo mem max ≥ 1998 then t← lo mem max + 1000
else t← lo mem max +1+ (hi mem min − lo mem max)div 2; { lo mem max +2 ≤ t < hi mem min }
p← llink (rover); q ← lo mem max ; rlink (p)← q; llink (rover)← q;
if t > mem bot +max halfword then t← mem bot +max halfword ;
rlink (q)← rover ; llink (q)← p; link (q)← empty flag ; node size (q)← t− lo mem max ;
lo mem max ← t; link (lo mem max)← null ; info(lo mem max)← null ; rover ← q; goto restart ;
end

This code is used in section 147.

§149 X ETEX PART 9: DYNAMIC MEMORY ALLOCATION 61

149. Empirical tests show that the routine in this section performs a node-merging operation about 0.75
times per allocation, on the average, after which it finds that r > p+ 1 about 95% of the time.

⟨Try to allocate within node p and its physical successors, and goto found if allocation was possible 149 ⟩ ≡
q ← p+ node size (p); { find the physical successor }
while is empty (q) do {merge node p with node q }
begin t← rlink (q);
if q = rover then rover ← t;
llink (t)← llink (q); rlink (llink (q))← t;
q ← q + node size (q);
end;

r ← q − s;
if r > p+ 1 then ⟨Allocate from the top of node p and goto found 150 ⟩;
if r = p then
if rlink (p) ̸= p then ⟨Allocate entire node p and goto found 151 ⟩;

node size (p)← q − p { reset the size in case it grew }
This code is used in section 147.

150. ⟨Allocate from the top of node p and goto found 150 ⟩ ≡
begin node size (p)← r − p; { store the remaining size }
rover ← p; { start searching here next time }
goto found ;
end

This code is used in section 149.

151. Here we delete node p from the ring, and let rover rove around.

⟨Allocate entire node p and goto found 151 ⟩ ≡
begin rover ← rlink (p); t← llink (p); llink (rover)← t; rlink (t)← rover ; goto found ;
end

This code is used in section 149.

152. Conversely, when some variable-size node p of size s is no longer needed, the operation free node (p, s)
will make its words available, by inserting p as a new empty node just before where rover now points.

procedure free node (p : pointer ; s : halfword); { variable-size node liberation }
var q: pointer ; { llink (rover) }
begin node size (p)← s; link (p)← empty flag ; q ← llink (rover); llink (p)← q; rlink (p)← rover ;
{ set both links }

llink (rover)← p; rlink (q)← p; { insert p into the ring }
stat var used ← var used − s; tats {maintain statistics }
end;

62 PART 9: DYNAMIC MEMORY ALLOCATION X ETEX §153

153. Just before INITEX writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover , the next-smallest by rlink (rover), etc.

init procedure sort avail ; { sorts the available variable-size nodes by location }
var p, q, r: pointer ; { indices into mem }
old rover : pointer ; { initial rover setting }

begin p← get node (1́0000000000); {merge adjacent free areas }
p← rlink (rover); rlink (rover)← max halfword ; old rover ← rover ;
while p ̸= old rover do ⟨ Sort p into the list starting at rover and advance p to rlink (p) 154 ⟩;
p← rover ;
while rlink (p) ̸= max halfword do
begin llink (rlink (p))← p; p← rlink (p);
end;

rlink (p)← rover ; llink (rover)← p;
end;
tini

154. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
max halfword during the sorting procedure.

⟨ Sort p into the list starting at rover and advance p to rlink (p) 154 ⟩ ≡
if p < rover then
begin q ← p; p← rlink (q); rlink (q)← rover ; rover ← q;
end

else begin q ← rover ;
while rlink (q) < p do q ← rlink (q);
r ← rlink (p); rlink (p)← rlink (q); rlink (q)← p; p← r;
end

This code is used in section 153.

§155 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 63

155. Data structures for boxes and their friends. From the computer’s standpoint, TEX’s chief
mission is to create horizontal and vertical lists. We shall now investigate how the elements of these lists are
represented internally as nodes in the dynamic memory.
A horizontal or vertical list is linked together by link fields in the first word of each node. Individual

nodes represent boxes, glue, penalties, or special things like discretionary hyphens; because of this variety,
some nodes are longer than others, and we must distinguish different kinds of nodes. We do this by putting
a ‘type ’ field in the first word, together with the link and an optional ‘subtype ’.

define type (#) ≡ mem [#].hh .b0 { identifies what kind of node this is }
define subtype (#) ≡ mem [#].hh .b1 { secondary identification in some cases }

156. A char node , which represents a single character, is the most important kind of node because it
accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure that a char node
does not take up much memory space. Every such node is one word long, and in fact it is identifiable by this
property, since other kinds of nodes have at least two words, and they appear in mem locations less than
hi mem min . This makes it possible to omit the type field in a char node , leaving us room for two bytes
that identify a font and a character within that font.
Note that the format of a char node allows for up to 256 different fonts and up to 256 characters per font;

but most implementations will probably limit the total number of fonts to fewer than 75 per job, and most
fonts will stick to characters whose codes are less than 128 (since higher codes are more difficult to access
on most keyboards).
Extensions of TEX intended for oriental languages will need even more than 256× 256 possible characters,

when we consider different sizes and styles of type. It is suggested that Chinese and Japanese fonts be handled
by representing such characters in two consecutive char node entries: The first of these has font = font base ,
and its link points to the second; the second identifies the font and the character dimensions. The saving
feature about oriental characters is that most of them have the same box dimensions. The character field of
the first char node is a “charext” that distinguishes between graphic symbols whose dimensions are identical
for typesetting purposes. (See the METAFONT manual.) Such an extension of TEX would not be difficult;
further details are left to the reader.
In order to make sure that the character code fits in a quarterword, TEX adds the quantitymin quarterword

to the actual code.
Character nodes appear only in horizontal lists, never in vertical lists.

define is char node (#) ≡ (# ≥ hi mem min) { does the argument point to a char node? }
define font ≡ type { the font code in a char node }
define character ≡ subtype { the character code in a char node }

64 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS X ETEX §157

157. An hlist node stands for a box that was made from a horizontal list. Each hlist node is seven words
long, and contains the following fields (in addition to the mandatory type and link , which we shall not
mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list ptr field, which points to the beginning of the list
from which this box was fabricated; if list ptr is null , the box is empty. Finally, there are three fields that
represent the setting of the glue: glue set (p) is a word of type glue ratio that represents the proportionality
constant for glue setting; glue sign (p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue order (p) specifies the order of infinity to which glue
setting applies (normal , fil , fill , or filll). The subtype field is not used in TEX. In ε-TEX the subtype field
records the box direction mode box lr .

define hlist node = 0 { type of hlist nodes }
define box node size = 7 { number of words to allocate for a box node }
define width offset = 1 { position of width field in a box node }
define depth offset = 2 { position of depth field in a box node }
define height offset = 3 { position of height field in a box node }
define width (#) ≡ mem [#+ width offset].sc {width of the box, in sp }
define depth (#) ≡ mem [#+ depth offset].sc { depth of the box, in sp }
define height (#) ≡ mem [#+ height offset].sc { height of the box, in sp }
define shift amount (#) ≡ mem [#+ 4].sc { repositioning distance, in sp }
define list offset = 5 { position of list ptr field in a box node }
define list ptr (#) ≡ link (#+ list offset) { beginning of the list inside the box }
define glue order (#) ≡ subtype (#+ list offset) { applicable order of infinity }
define glue sign (#) ≡ type (#+ list offset) { stretching or shrinking }
define normal = 0 { the most common case when several cases are named }
define stretching = 1 { glue setting applies to the stretch components }
define shrinking = 2 { glue setting applies to the shrink components }
define glue offset = 6 { position of glue set in a box node }
define glue set (#) ≡ mem [#+ glue offset].gr { a word of type glue ratio for glue setting }

158. The new null box function returns a pointer to an hlist node in which all subfields have the values
corresponding to ‘\hbox{}’. (The subtype field is set to min quarterword , for historic reasons that are no
longer relevant.)

function new null box : pointer ; { creates a new box node }
var p: pointer ; { the new node }
begin p← get node (box node size); type (p)← hlist node ; subtype (p)← min quarterword ;
width (p)← 0; depth (p)← 0; height (p)← 0; shift amount (p)← 0; list ptr (p)← null ;
glue sign (p)← normal ; glue order (p)← normal ; set glue ratio zero(glue set (p)); new null box ← p;
end;

159. A vlist node is like an hlist node in all respects except that it contains a vertical list.

define vlist node = 1 { type of vlist nodes }

§160 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 65

160. A rule node stands for a solid black rectangle; it has width , depth , and height fields just as in an
hlist node . However, if any of these dimensions is −230, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

define rule node = 2 { type of rule nodes }
define rule node size = 4 { number of words to allocate for a rule node }
define null flag ≡ − 1́0000000000 {−230, signifies a missing item }
define is running (#) ≡ (# = null flag) { tests for a running dimension }

161. A new rule node is delivered by the new rule function. It makes all the dimensions “running,” so you
have to change the ones that are not allowed to run.

function new rule : pointer ;
var p: pointer ; { the new node }
begin p← get node (rule node size); type (p)← rule node ; subtype (p)← 0; { the subtype is not used }
width (p)← null flag ; depth (p)← null flag ; height (p)← null flag ; new rule ← p;
end;

162. Insertions are represented by ins node records, where the subtype indicates the corresponding box
number. For example, ‘\insert 250’ leads to an ins node whose subtype is 250 + min quarterword . The
height field of an ins node is slightly misnamed; it actually holds the natural height plus depth of the vertical
list being inserted. The depth field holds the split max depth to be used in case this insertion is split, and
the split top ptr points to the corresponding split top skip . The float cost field holds the floating penalty
that will be used if this insertion floats to a subsequent page after a split insertion of the same class. There
is one more field, the ins ptr , which points to the beginning of the vlist for the insertion.

define ins node = 3 { type of insertion nodes }
define ins node size = 5 { number of words to allocate for an insertion }
define float cost (#) ≡ mem [#+ 1].int { the floating penalty to be used }
define ins ptr (#) ≡ info(#+ 4) { the vertical list to be inserted }
define split top ptr (#) ≡ link (#+ 4) { the split top skip to be used }

163. A mark node has a mark ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark class field that contains the mark class.

define mark node = 4 { type of a mark node }
define small node size = 2 { number of words to allocate for most node types }
define mark ptr (#) ≡ link (#+ 1) { head of the token list for a mark }
define mark class (#) ≡ info(#+ 1) { the mark class }

164. An adjust node , which occurs only in horizontal lists, specifies material that will be moved out into
the surrounding vertical list; i.e., it is used to implement TEX’s ‘\vadjust’ operation. The adjust ptr field
points to the vlist containing this material.

define adjust node = 5 { type of an adjust node }
define adjust pre ≡ subtype { if subtype ̸= 0 it is pre-adjustment }

{ append list is used to append a list to tail }
define append list (#) ≡

begin link (tail)← link (#); append list end
define append list end (#) ≡ tail ← #;

end
define adjust ptr (#) ≡ mem [#+ 1].int { vertical list to be moved out of horizontal list }

66 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS X ETEX §165

165. A ligature node , which occurs only in horizontal lists, specifies a character that was fabricated from
the interaction of two or more actual characters. The second word of the node, which is called the lig char
word, contains font and character fields just as in a char node . The characters that generated the ligature
have not been forgotten, since they are needed for diagnostic messages and for hyphenation; the lig ptr field
points to a linked list of character nodes for all original characters that have been deleted. (This list might
be empty if the characters that generated the ligature were retained in other nodes.)
The subtype field is 0, plus 2 and/or 1 if the original source of the ligature included implicit left and/or

right boundaries.

define ligature node = 6 { type of a ligature node }
define lig char (#) ≡ #+ 1 { the word where the ligature is to be found }
define lig ptr (#) ≡ link (lig char (#)) { the list of characters }

166. The new ligature function creates a ligature node having given contents of the font , character , and
lig ptr fields. We also have a new lig item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

function new ligature (f, c : quarterword ; q : pointer): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← ligature node ; font (lig char (p))← f ;
character (lig char (p))← c; lig ptr (p)← q; subtype (p)← 0; new ligature ← p;
end;

function new lig item (c : quarterword): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); character (p)← c; lig ptr (p)← null ; new lig item ← p;
end;

167. A disc node , which occurs only in horizontal lists, specifies a “discretionary” line break. If such a
break occurs at node p, the text that starts at pre break (p) will precede the break, the text that starts at
post break (p) will follow the break, and text that appears in the next replace count (p) nodes will be ignored.
For example, an ordinary discretionary hyphen, indicated by ‘\−’, yields a disc node with pre break pointing
to a char node containing a hyphen, post break = null , and replace count = 0. All three of the discretionary
texts must be lists that consist entirely of character, kern, box, rule, and ligature nodes.
If pre break (p) = null , the ex hyphen penalty will be charged for this break. Otherwise the hyphen penalty

will be charged. The texts will actually be substituted into the list by the line-breaking algorithm if it decides
to make the break, and the discretionary node will disappear at that time; thus, the output routine sees only
discretionaries that were not chosen.

define disc node = 7 { type of a discretionary node }
define replace count ≡ subtype { how many subsequent nodes to replace }
define pre break ≡ llink { text that precedes a discretionary break }
define post break ≡ rlink { text that follows a discretionary break }

function new disc : pointer ; { creates an empty disc node }
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← disc node ; replace count (p)← 0; pre break (p)← null ;
post break (p)← null ; new disc ← p;
end;

§168 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 67

168. A whatsit node is a wild card reserved for extensions to TEX. The subtype field in its first word says
what ‘whatsit ’ it is, and implicitly determines the node size (which must be 2 or more) and the format of the
remaining words. When a whatsit node is encountered in a list, special actions are invoked; knowledgeable
people who are careful not to mess up the rest of TEX are able to make TEX do new things by adding code
at the end of the program. For example, there might be a ‘TEXnicolor’ extension to specify different colors
of ink, and the whatsit node might contain the desired parameters.
The present implementation of TEX treats the features associated with ‘\write’ and ‘\special’ as if they

were extensions, in order to illustrate how such routines might be coded. We shall defer further discussion
of extensions until the end of this program.

define whatsit node = 8 { type of special extension nodes }

68 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS X ETEX §169

169. To support “native” fonts, we build native word node s, which are variable size whatsits. These have
the same width , depth , and height fields as a box node , at offsets 1-3, and then a word containing a size field
for the node, a font number, a length, and a glyph count. Then there is a field containing a C pointer to a
glyph info array; this and the glyph count are set by set native metrics . Copying and freeing of these nodes
needs to take account of this! This is followed by 2 ∗ length bytes, for the actual characters of the string (in
UTF-16).
So native node size , which does not include any space for the actual text, is 6.
0-3 whatsits subtypes are used for open, write, close, special; 4 is language; pdfTEX uses up through

30-something, so we use subtypes starting from 40.
There are also glyph node s; these are like native word node s in having width , depth , and height fields, but

then they contain a glyph ID rather than size and length fields, and there’s no subsidiary C pointer.

define native word node = 40 { subtype of whatsits that hold native font words }
define native word node AT = 41 { a native word node that should output ActualText }
define is native word subtype (#) ≡ ((subtype (#) ≥ native word node) ∧ (subtype (#) ≤

native word node AT))
define glyph node = 42 { subtype in whatsits that hold glyph numbers }
define native node size = 6 { size of a native word node (plus the actual chars) – see also xetex.h }
define glyph node size = 5
define native size (#) ≡ mem [#+ 4].qqqq .b0
define native font (#) ≡ mem [#+ 4].qqqq .b1
define native length (#) ≡ mem [#+ 4].qqqq .b2
define native glyph count (#) ≡ mem [#+ 4].qqqq .b3
define native glyph info ptr (#) ≡ mem [#+ 5].ptr
define native glyph info size = 10

{ number of bytes of info per glyph: 16-bit glyph ID, 32-bit x and y coords }
define native glyph ≡ native length { in glyph node s, we store the glyph number here }
define free native glyph info(#) ≡

begin if native glyph info ptr (#) ̸= null ptr then
begin libc free (native glyph info ptr (#)); native glyph info ptr (#)← null ptr ;
native glyph count (#)← 0;
end

end

procedure copy native glyph info(src : pointer ; dest : pointer);
var glyph count : integer ;
begin if native glyph info ptr (src) ̸= null ptr then
begin glyph count ← native glyph count (src);
native glyph info ptr (dest)← xmalloc array (char , glyph count ∗ native glyph info size);
memcpy (native glyph info ptr (dest),native glyph info ptr (src), glyph count ∗ native glyph info size);
native glyph count (dest)← glyph count ;
end

end;

§170 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 69

170. Picture files are handled with nodes that include fields for the transform associated with the picture,
and a pathname for the picture file itself. They also have the width , depth , and height fields of a box node
at offsets 1-3. (depth will always be zero, as it happens.)
So pic node size , which does not include any space for the picture file pathname, is 7.
A pdf node is just like pic node , but generate a different XDV file code.

define pic node = 43 { subtype in whatsits that hold picture file references }
define pdf node = 44 { subtype in whatsits that hold PDF page references }
define pic node size = 9 {must sync with xetex.h }
define pic path length (#) ≡ mem [#+ 4].hh .b0
define pic page (#) ≡ mem [#+ 4].hh .b1
define pic transform1 (#) ≡ mem [#+ 5].hh .lh
define pic transform2 (#) ≡ mem [#+ 5].hh .rh
define pic transform3 (#) ≡ mem [#+ 6].hh .lh
define pic transform4 (#) ≡ mem [#+ 6].hh .rh
define pic transform5 (#) ≡ mem [#+ 7].hh .lh
define pic transform6 (#) ≡ mem [#+ 7].hh .rh
define pic pdf box (#) ≡ mem [#+ 8].hh .b0

171. A math node , which occurs only in horizontal lists, appears before and after mathematical formulas.
The subtype field is before before the formula and after after it. There is a width field, which represents the
amount of surrounding space inserted by \mathsurround.

In addition amath node with subtype > after and width = 0 will be (ab)used to record a regular math node
reinserted after being discarded at a line break or one of the text direction primitives (\beginL, \endL,
\beginR, and \endR).

define math node = 9 { type of a math node }
define before = 0 { subtype for math node that introduces a formula }
define after = 1 { subtype for math node that winds up a formula }
define M code = 2
define begin M code = M code + before { subtype for \beginM node }
define end M code = M code + after { subtype for \endM node }
define L code = 4
define begin L code = L code + begin M code { subtype for \beginL node }
define end L code = L code + end M code { subtype for \endL node }
define R code = L code + L code
define begin R code = R code + begin M code { subtype for \beginR node }
define end R code = R code + end M code { subtype for \endR node }
define end LR(#) ≡ odd (subtype (#))
define end LR type (#) ≡ (L code ∗ (subtype (#) div L code) + end M code)
define begin LR type (#) ≡ (#− after + before)

function new math (w : scaled ; s : small number): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← math node ; subtype (p)← s; width (p)← w;
new math ← p;
end;

70 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS X ETEX §172

172. TEX makes use of the fact that hlist node , vlist node , rule node , ins node , mark node , adjust node ,
ligature node , disc node , whatsit node , and math node are at the low end of the type codes, by permitting
a break at glue in a list if and only if the type of the previous node is less than math node . Furthermore, a
node is discarded after a break if its type is math node or more.

define precedes break (#) ≡ (type (#) < math node)
define non discardable (#) ≡ (type (#) < math node)

173. A glue node represents glue in a list. However, it is really only a pointer to a separate glue
specification, since TEX makes use of the fact that many essentially identical nodes of glue are usually
present. If p points to a glue node , glue ptr (p) points to another packet of words that specify the stretch
and shrink components, etc.
Glue nodes also serve to represent leaders; the subtype is used to distinguish between ordinary glue (which

is called normal) and the three kinds of leaders (which are called a leaders , c leaders , and x leaders). The
leader ptr field points to a rule node or to a box node containing the leaders; it is set to null in ordinary
glue nodes.
Many kinds of glue are computed from TEX’s “skip” parameters, and it is helpful to know which parameter

has led to a particular glue node. Therefore the subtype is set to indicate the source of glue, whenever it
originated as a parameter. We will be defining symbolic names for the parameter numbers later (e.g.,
line skip code = 0, baseline skip code = 1, etc.); it suffices for now to say that the subtype of parametric glue
will be the same as the parameter number, plus one.
In math formulas there are two more possibilities for the subtype in a glue node: mu glue denotes an

\mskip (where the units are scaled mu instead of scaled pt); and cond math glue denotes the ‘\nonscript’
feature that cancels the glue node immediately following if it appears in a subscript.

define glue node = 10 { type of node that points to a glue specification }
define cond math glue = 98 { special subtype to suppress glue in the next node }
define mu glue = 99 { subtype for math glue }
define a leaders = 100 { subtype for aligned leaders }
define c leaders = 101 { subtype for centered leaders }
define x leaders = 102 { subtype for expanded leaders }
define glue ptr ≡ llink { pointer to a glue specification }
define leader ptr ≡ rlink { pointer to box or rule node for leaders }

174. A glue specification has a halfword reference count in its first word, representing null plus the number
of glue nodes that point to it (less one). Note that the reference count appears in the same position as the
link field in list nodes; this is the field that is initialized to null when a node is allocated, and it is also the
field that is flagged by empty flag in empty nodes.
Glue specifications also contain three scaled fields, for the width , stretch , and shrink dimensions. Finally,

there are two one-byte fields called stretch order and shrink order ; these contain the orders of infinity
(normal , fil , fill , or filll) corresponding to the stretch and shrink values.

define glue spec size = 4 { number of words to allocate for a glue specification }
define glue ref count (#) ≡ link (#) { reference count of a glue specification }
define stretch (#) ≡ mem [#+ 2].sc { the stretchability of this glob of glue }
define shrink (#) ≡ mem [#+ 3].sc { the shrinkability of this glob of glue }
define stretch order ≡ type { order of infinity for stretching }
define shrink order ≡ subtype { order of infinity for shrinking }
define fil = 1 { first-order infinity }
define fill = 2 { second-order infinity }
define filll = 3 { third-order infinity }

⟨Types in the outer block 18 ⟩ +≡
glue ord = normal . . filll ; { infinity to the 0, 1, 2, or 3 power }

§175 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 71

175. Here is a function that returns a pointer to a copy of a glue spec. The reference count in the copy is
null , because there is assumed to be exactly one reference to the new specification.

function new spec(p : pointer): pointer ; { duplicates a glue specification }
var q: pointer ; { the new spec }
begin q ← get node (glue spec size);
mem [q]← mem [p]; glue ref count (q)← null ;
width (q)← width (p); stretch (q)← stretch (p); shrink (q)← shrink (p); new spec ← q;
end;

176. And here’s a function that creates a glue node for a given parameter identified by its code number;
for example, new param glue (line skip code) returns a pointer to a glue node for the current \lineskip.

function new param glue (n : small number): pointer ;
var p: pointer ; { the new node }
q: pointer ; { the glue specification }

begin p← get node (small node size); type (p)← glue node ; subtype (p)← n+ 1; leader ptr (p)← null ;
q ← ⟨Current mem equivalent of glue parameter number n 250 ⟩; glue ptr (p)← q;
incr (glue ref count (q)); new param glue ← p;
end;

177. Glue nodes that are more or less anonymous are created by new glue , whose argument points to a
glue specification.

function new glue (q : pointer): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← glue node ; subtype (p)← normal ;
leader ptr (p)← null ; glue ptr (p)← q; incr (glue ref count (q)); new glue ← p;
end;

178. Still another subroutine is needed: This one is sort of a combination of new param glue and new glue .
It creates a glue node for one of the current glue parameters, but it makes a fresh copy of the glue specification,
since that specification will probably be subject to change, while the parameter will stay put. The global
variable temp ptr is set to the address of the new spec.

function new skip param (n : small number): pointer ;
var p: pointer ; { the new node }
begin temp ptr ← new spec(⟨Current mem equivalent of glue parameter number n 250 ⟩);
p← new glue (temp ptr); glue ref count (temp ptr)← null ; subtype (p)← n+ 1; new skip param ← p;
end;

72 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS X ETEX §179

179. A kern node has a width field to specify a (normally negative) amount of spacing. This spacing
correction appears in horizontal lists between letters like A and V when the font designer said that it looks
better to move them closer together or further apart. A kern node can also appear in a vertical list, when
its ‘width ’ denotes additional spacing in the vertical direction. The subtype is either normal (for kerns
inserted from font information or math mode calculations) or explicit (for kerns inserted from \kern and
\/ commands) or acc kern (for kerns inserted from non-math accents) or mu glue (for kerns inserted from
\mkern specifications in math formulas).

define kern node = 11 { type of a kern node }
define explicit = 1 { subtype of kern nodes from \kern and \/ }
define acc kern = 2 { subtype of kern nodes from accents }
define space adjustment = 3

{ subtype of kern nodes from \XeTeXinterwordspaceshaping adjustment }
{memory structure for marginal kerns }

define margin kern node = 40
define margin kern node size = 3
define margin char (#) ≡ info(#+ 2) { unused for now; relevant for font expansion }

{ subtype of marginal kerns }
define left side ≡ 0
define right side ≡ 1

{ base for lp/rp codes starts from 2: 0 for hyphen char , 1 for skew char }
define lp code base ≡ 2
define rp code base ≡ 3
define max hlist stack = 512 {maximum fill level for hlist stack }

{maybe good if larger than 2 ∗max quarterword , so that box nesting level would overflow first }

180. The new kern function creates a kern node having a given width.

function new kern (w : scaled): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← kern node ; subtype (p)← normal ; width (p)← w;
new kern ← p;
end;

181. ⟨Global variables 13 ⟩ +≡
last leftmost char : pointer ;
last rightmost char : pointer ;
hlist stack : array [0 . . max hlist stack] of pointer ;

{ stack for find protchar left () and find protchar right () }
hlist stack level : 0 . . max hlist stack ; { fill level for hlist stack }
first p : pointer ; { to access the first node of the paragraph }
global prev p : pointer ;

{ to access prev p in line break ; should be kept in sync with prev p by update prev p }

182. A penalty node specifies the penalty associated with line or page breaking, in its penalty field. This
field is a fullword integer, but the full range of integer values is not used: Any penalty ≥ 10000 is treated
as infinity, and no break will be allowed for such high values. Similarly, any penalty ≤ −10000 is treated as
negative infinity, and a break will be forced.

define penalty node = 12 { type of a penalty node }
define inf penalty = inf bad { “infinite” penalty value }
define eject penalty = −inf penalty { “negatively infinite” penalty value }
define penalty (#) ≡ mem [#+ 1].int { the added cost of breaking a list here }

§183 X ETEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 73

183. Anyone who has been reading the last few sections of the program will be able to guess what comes
next.

function new penalty (m : integer): pointer ;
var p: pointer ; { the new node }
begin p← get node (small node size); type (p)← penalty node ; subtype (p)← 0;
{ the subtype is not used }

penalty (p)← m; new penalty ← p;
end;

184. You might think that we have introduced enough node types by now. Well, almost, but there is
one more: An unset node has nearly the same format as an hlist node or vlist node ; it is used for entries
in \halign or \valign that are not yet in their final form, since the box dimensions are their “natural”
sizes before any glue adjustment has been made. The glue set word is not present; instead, we have a
glue stretch field, which contains the total stretch of order glue order that is present in the hlist or vlist
being boxed. Similarly, the shift amount field is replaced by a glue shrink field, containing the total shrink
of order glue sign that is present. The subtype field is called span count ; an unset box typically contains
the data for qo(span count) + 1 columns. Unset nodes will be changed to box nodes when alignment is
completed.

define unset node = 13 { type for an unset node }
define glue stretch (#) ≡ mem [#+ glue offset].sc { total stretch in an unset node }
define glue shrink ≡ shift amount { total shrink in an unset node }
define span count ≡ subtype { indicates the number of spanned columns }

185. In fact, there are still more types coming. When we get to math formula processing we will see that
a style node has type = 14; and a number of larger type codes will also be defined, for use in math mode
only.

186. Warning: If any changes are made to these data structure layouts, such as changing any of the node
sizes or even reordering the words of nodes, the copy node list procedure and the memory initialization code
below may have to be changed. Such potentially dangerous parts of the program are listed in the index
under ‘data structure assumptions’. However, other references to the nodes are made symbolically in terms
of the WEB macro definitions above, so that format changes will leave TEX’s other algorithms intact.

74 PART 11: MEMORY LAYOUT X ETEX §187

187. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For example, locations mem bot
to mem bot + 3 are always used to store the specification for glue that is ‘0pt plus 0pt minus 0pt’. The
following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions.
Static variable-size nodes appear in locations mem bot through lo mem stat max , and static single-word
nodes appear in locations hi mem stat min through mem top , inclusive. It is harmless to let lig trick and
garbage share the same location of mem .

define zero glue ≡ mem bot { specification for 0pt plus 0pt minus 0pt }
define fil glue ≡ zero glue + glue spec size { 0pt plus 1fil minus 0pt }
define fill glue ≡ fil glue + glue spec size { 0pt plus 1fill minus 0pt }
define ss glue ≡ fill glue + glue spec size { 0pt plus 1fil minus 1fil }
define fil neg glue ≡ ss glue + glue spec size { 0pt plus −1fil minus 0pt }
define lo mem stat max ≡ fil neg glue + glue spec size − 1

{ largest statically allocated word in the variable-size mem }
define page ins head ≡ mem top { list of insertion data for current page }
define contrib head ≡ mem top − 1 { vlist of items not yet on current page }
define page head ≡ mem top − 2 { vlist for current page }
define temp head ≡ mem top − 3 { head of a temporary list of some kind }
define hold head ≡ mem top − 4 { head of a temporary list of another kind }
define adjust head ≡ mem top − 5 { head of adjustment list returned by hpack }
define active ≡ mem top − 7 { head of active list in line break , needs two words }
define align head ≡ mem top − 8 { head of preamble list for alignments }
define end span ≡ mem top − 9 { tail of spanned-width lists }
define omit template ≡ mem top − 10 { a constant token list }
define null list ≡ mem top − 11 { permanently empty list }
define lig trick ≡ mem top − 12 { a ligature masquerading as a char node }
define garbage ≡ mem top − 12 { used for scrap information }
define backup head ≡ mem top − 13 { head of token list built by scan keyword }
define pre adjust head ≡ mem top − 14 { head of pre-adjustment list returned by hpack }
define hi mem stat min ≡ mem top − 14 { smallest statically allocated word in the one-word mem }
define hi mem stat usage = 15 { the number of one-word nodes always present }

188. The following code gets mem off to a good start, when TEX is initializing itself the slow way.

⟨Local variables for initialization 19 ⟩ +≡
k: integer ; { index into mem , eqtb , etc. }

§189 X ETEX PART 11: MEMORY LAYOUT 75

189. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ ≡
for k ← mem bot + 1 to lo mem stat max do mem [k].sc ← 0; { all glue dimensions are zeroed }
k ← mem bot ; while k ≤ lo mem stat max do { set first words of glue specifications }
begin glue ref count (k)← null + 1; stretch order (k)← normal ; shrink order (k)← normal ;
k ← k + glue spec size ;
end;

stretch (fil glue)← unity ; stretch order (fil glue)← fil ;
stretch (fill glue)← unity ; stretch order (fill glue)← fill ;
stretch (ss glue)← unity ; stretch order (ss glue)← fil ;
shrink (ss glue)← unity ; shrink order (ss glue)← fil ;
stretch (fil neg glue)← −unity ; stretch order (fil neg glue)← fil ;
rover ← lo mem stat max + 1; link (rover)← empty flag ; { now initialize the dynamic memory }
node size (rover)← 1000; {which is a 1000-word available node }
llink (rover)← rover ; rlink (rover)← rover ;
lo mem max ← rover + 1000; link (lo mem max)← null ; info(lo mem max)← null ;
for k ← hi mem stat min to mem top do mem [k]← mem [lo mem max]; { clear list heads }
⟨ Initialize the special list heads and constant nodes 838 ⟩;
avail ← null ; mem end ← mem top ; hi mem min ← hi mem stat min ;
{ initialize the one-word memory }

var used ← lo mem stat max + 1−mem bot ; dyn used ← hi mem stat usage ; { initialize statistics }
See also sections 248, 254, 258, 266, 276, 285, 587, 1000, 1005, 1270, 1355, 1432, 1463, 1629, and 1665.

This code is used in section 8.

190. If TEX is extended improperly, the mem array might get screwed up. For example, some pointers
might be wrong, or some “dead” nodes might not have been freed when the last reference to them disappeared.
Procedures check mem and search mem are available to help diagnose such problems. These procedures
make use of two arrays called free and was free that are present only if TEX’s debugging routines have been
included. (You may want to decrease the size of mem while you are debugging.)

⟨Global variables 13 ⟩ +≡
debug free : packed array [mem min . . mem max] of boolean ; { free cells }
was free : packed array [mem min . . mem max] of boolean ; { previously free cells }
was mem end ,was lo max ,was hi min : pointer ; { previous mem end , lo mem max , and hi mem min }
panicking : boolean ; { do we want to check memory constantly? }
gubed

191. ⟨ Set initial values of key variables 23 ⟩ +≡
debug was mem end ← mem min ; { indicate that everything was previously free }
was lo max ← mem min ; was hi min ← mem max ; panicking ← false ;
gubed

76 PART 11: MEMORY LAYOUT X ETEX §192

192. Procedure check mem makes sure that the available space lists of mem are well formed, and it
optionally prints out all locations that are reserved now but were free the last time this procedure was
called.

debug procedure check mem (print locs : boolean);
label done1 , done2 ; { loop exits }
var p, q: pointer ; { current locations of interest in mem }
clobbered : boolean ; { is something amiss? }

begin for p← mem min to lo mem max do free [p]← false ; { you can probably do this faster }
for p← hi mem min to mem end do free [p]← false ; { ditto }
⟨Check single-word avail list 193 ⟩;
⟨Check variable-size avail list 194 ⟩;
⟨Check flags of unavailable nodes 195 ⟩;
if print locs then ⟨Print newly busy locations 196 ⟩;
for p← mem min to lo mem max do was free [p]← free [p];
for p← hi mem min to mem end do was free [p]← free [p]; {was free ← free might be faster }
was mem end ← mem end ; was lo max ← lo mem max ; was hi min ← hi mem min ;
end;
gubed

193. ⟨Check single-word avail list 193 ⟩ ≡
p← avail ; q ← null ; clobbered ← false ;
while p ̸= null do
begin if (p > mem end) ∨ (p < hi mem min) then clobbered ← true
else if free [p] then clobbered ← true ;
if clobbered then
begin print nl ("AVAIL␣list␣clobbered␣at␣"); print int (q); goto done1 ;
end;

free [p]← true ; q ← p; p← link (q);
end;

done1 :

This code is used in section 192.

194. ⟨Check variable-size avail list 194 ⟩ ≡
p← rover ; q ← null ; clobbered ← false ;
repeat if (p ≥ lo mem max) ∨ (p < mem min) then clobbered ← true
else if (rlink (p) ≥ lo mem max) ∨ (rlink (p) < mem min) then clobbered ← true

else if ¬(is empty (p)) ∨ (node size (p) < 2) ∨ (p+ node size (p) > lo mem max) ∨
(llink (rlink (p)) ̸= p) then clobbered ← true ;

if clobbered then
begin print nl ("Double−AVAIL␣list␣clobbered␣at␣"); print int (q); goto done2 ;
end;

for q ← p to p+ node size (p)− 1 do {mark all locations free }
begin if free [q] then
begin print nl ("Doubly␣free␣location␣at␣"); print int (q); goto done2 ;
end;

free [q]← true ;
end;

q ← p; p← rlink (p);
until p = rover ;

done2 :

This code is used in section 192.

§195 X ETEX PART 11: MEMORY LAYOUT 77

195. ⟨Check flags of unavailable nodes 195 ⟩ ≡
p← mem min ;
while p ≤ lo mem max do { node p should not be empty }
begin if is empty (p) then

begin print nl ("Bad␣flag␣at␣"); print int (p);
end;

while (p ≤ lo mem max) ∧ ¬free [p] do incr (p);
while (p ≤ lo mem max) ∧ free [p] do incr (p);
end

This code is used in section 192.

196. ⟨Print newly busy locations 196 ⟩ ≡
begin print nl ("New␣busy␣locs:");
for p← mem min to lo mem max do
if ¬free [p] ∧ ((p > was lo max) ∨ was free [p]) then
begin print char ("␣"); print int (p);
end;

for p← hi mem min to mem end do
if ¬free [p] ∧ ((p < was hi min) ∨ (p > was mem end) ∨ was free [p]) then

begin print char ("␣"); print int (p);
end;

end

This code is used in section 192.

197. The search mem procedure attempts to answer the question “Who points to node p?” In doing so, it
fetches link and info fields of mem that might not be of type two halves . Strictly speaking, this is undefined
in Pascal, and it can lead to “false drops” (words that seem to point to p purely by coincidence). But for
debugging purposes, we want to rule out the places that do not point to p, so a few false drops are tolerable.

debug procedure search mem (p : pointer); { look for pointers to p }
var q: integer ; { current position being searched }
begin for q ← mem min to lo mem max do
begin if link (q) = p then
begin print nl ("LINK("); print int (q); print char (")");
end;

if info(q) = p then
begin print nl ("INFO("); print int (q); print char (")");
end;

end;
for q ← hi mem min to mem end do
begin if link (q) = p then
begin print nl ("LINK("); print int (q); print char (")");
end;

if info(q) = p then
begin print nl ("INFO("); print int (q); print char (")");
end;

end;
⟨ Search eqtb for equivalents equal to p 281 ⟩;
⟨ Search save stack for equivalents that point to p 315 ⟩;
⟨ Search hyph list for pointers to p 987 ⟩;
end;
gubed

78 PART 11: MEMORY LAYOUT X ETEX §198

198. Some stuff for character protrusion.

procedure pdf error (t, p : str number);
begin normalize selector ; print err ("Error");
if t ̸= 0 then
begin print ("␣("); print (t); print (")");
end;

print (":␣"); print (p); succumb ;
end;

function prev rightmost (s, e : pointer): pointer ;
{ finds the node preceding the rightmost node e; s is some node before e }

var p: pointer ;
begin prev rightmost ← null ; p← s;
if p = null then return;
while link (p) ̸= e do
begin p← link (p);
if p = null then return;
end;

prev rightmost ← p;
end;

function round xn over d (x : scaled ; n, d : integer): scaled ;
var positive : boolean ; {was x ≥ 0? }
t, u, v: nonnegative integer ; { intermediate quantities }

begin if x ≥ 0 then positive ← true
else begin negate (x); positive ← false ;
end;

t← (xmod 1́00000) ∗ n; u← (x div 1́00000) ∗ n+ (t div 1́00000);
v ← (umod d) ∗ 1́00000 + (tmod 1́00000);
if u div d ≥ 1́00000 then arith error ← true
else u← 1́00000 ∗ (u div d) + (v div d);
v ← v mod d;
if 2 ∗ v ≥ d then incr (u);
if positive then round xn over d ← u
else round xn over d ← −u;
end; ⟨Declare procedures that need to be declared forward for pdfTEX 1411 ⟩

§199 X ETEX PART 12: DISPLAYING BOXES 79

199. Displaying boxes. We can reinforce our knowledge of the data structures just introduced by
considering two procedures that display a list in symbolic form. The first of these, called short display , is
used in “overfull box” messages to give the top-level description of a list. The other one, called show node list ,
prints a detailed description of exactly what is in the data structure.
The philosophy of short display is to ignore the fine points about exactly what is inside boxes, except that

ligatures and discretionary breaks are expanded. As a result, short display is a recursive procedure, but the
recursion is never more than one level deep.
A global variable font in short display keeps track of the font code that is assumed to be present when

short display begins; deviations from this font will be printed.

⟨Global variables 13 ⟩ +≡
font in short display : integer ; { an internal font number }

200. Boxes, rules, inserts, whatsits, marks, and things in general that are sort of “complicated” are
indicated only by printing ‘[]’.

procedure short display (p : integer); { prints highlights of list p }
var n: integer ; { for replacement counts }
begin while p > mem min do
begin if is char node (p) then

begin if p ≤ mem end then
begin if font (p) ̸= font in short display then
begin if (font (p) < font base) ∨ (font (p) > font max) then print char ("*")
else ⟨Print the font identifier for font (p) 297 ⟩;
print char ("␣"); font in short display ← font (p);
end;

print ASCII (qo(character (p)));
end;

end
else ⟨Print a short indication of the contents of node p 201 ⟩;
p← link (p);
end;

end;

80 PART 12: DISPLAYING BOXES X ETEX §201

201. ⟨Print a short indication of the contents of node p 201 ⟩ ≡
case type (p) of
hlist node , vlist node , ins node ,mark node , adjust node , unset node : print ("[]");
whatsit node : case subtype (p) of
native word node ,native word node AT : begin if native font (p) ̸= font in short display then

begin print esc(font id text (native font (p))); print char ("␣");
font in short display ← native font (p);
end;

print native word (p);
end;

othercases print ("[]")
endcases;

rule node : print char ("|");
glue node : if glue ptr (p) ̸= zero glue then print char ("␣");
math node : if subtype (p) ≥ L code then print ("[]")
else print char ("$");

ligature node : short display (lig ptr (p));
disc node : begin short display (pre break (p)); short display (post break (p));
n← replace count (p);
while n > 0 do

begin if link (p) ̸= null then p← link (p);
decr (n);
end;

end;
othercases do nothing
endcases

This code is used in section 200.

202. The show node list routine requires some auxiliary subroutines: one to print a font-and-character
combination, one to print a token list without its reference count, and one to print a rule dimension.

procedure print font and char (p : integer); { prints char node data }
begin if p > mem end then print esc("CLOBBERED.")
else begin if (font (p) < font base) ∨ (font (p) > font max) then print char ("*")
else ⟨Print the font identifier for font (p) 297 ⟩;
print char ("␣"); print ASCII (qo(character (p)));
end;

end;

procedure print mark (p : integer); { prints token list data in braces }
begin print char ("{");
if (p < hi mem min) ∨ (p > mem end) then print esc("CLOBBERED.")
else show token list (link (p),null ,max print line − 10);
print char ("}");
end;

procedure print rule dimen (d : scaled); { prints dimension in rule node }
begin if is running (d) then print char ("*")
else print scaled (d);
end;

§203 X ETEX PART 12: DISPLAYING BOXES 81

203. Then there is a subroutine that prints glue stretch and shrink, possibly followed by the name of finite
units:

procedure print glue (d : scaled ; order : integer ; s : str number); { prints a glue component }
begin print scaled (d);
if (order < normal) ∨ (order > filll) then print ("foul")
else if order > normal then

begin print ("fil");
while order > fil do
begin print char ("l"); decr (order);
end;

end
else if s ̸= 0 then print (s);

end;

204. The next subroutine prints a whole glue specification.

procedure print spec(p : integer ; s : str number); { prints a glue specification }
begin if (p < mem min) ∨ (p ≥ lo mem max) then print char ("*")
else begin print scaled (width (p));
if s ̸= 0 then print (s);
if stretch (p) ̸= 0 then

begin print ("␣plus␣"); print glue (stretch (p), stretch order (p), s);
end;

if shrink (p) ̸= 0 then
begin print ("␣minus␣"); print glue (shrink (p), shrink order (p), s);
end;

end;
end;

205. We also need to declare some procedures that appear later in this documentation.

⟨Declare procedures needed for displaying the elements of mlists 733 ⟩
⟨Declare the procedure called print skip param 251 ⟩

206. Since boxes can be inside of boxes, show node list is inherently recursive, up to a given maximum
number of levels. The history of nesting is indicated by the current string, which will be printed at the
beginning of each line; the length of this string, namely cur length , is the depth of nesting.

Recursive calls on show node list therefore use the following pattern:

define node list display (#) ≡
begin append char ("."); show node list (#); flush char ;
end { str room need not be checked; see show box below }

207. A global variable called depth threshold is used to record the maximum depth of nesting for which
show node list will show information. If we have depth threshold = 0, for example, only the top level
information will be given and no sublists will be traversed. Another global variable, called breadth max , tells
the maximum number of items to show at each level; breadth max had better be positive, or you won’t see
anything.

⟨Global variables 13 ⟩ +≡
depth threshold : integer ; {maximum nesting depth in box displays }
breadth max : integer ; {maximum number of items shown at the same list level }

82 PART 12: DISPLAYING BOXES X ETEX §208

208. Now we are ready for show node list itself. This procedure has been written to be “extra robust” in
the sense that it should not crash or get into a loop even if the data structures have been messed up by bugs
in the rest of the program. You can safely call its parent routine show box (p) for arbitrary values of p when
you are debugging TEX. However, in the presence of bad data, the procedure may fetch a memory word
whose variant is different from the way it was stored; for example, it might try to read mem [p].hh when
mem [p] contains a scaled integer, if p is a pointer that has been clobbered or chosen at random.

procedure show node list (p : integer); { prints a node list symbolically }
label exit ;
var n: integer ; { the number of items already printed at this level }
i: integer ; { temp index for printing chars of picfile paths }
g: real ; { a glue ratio, as a floating point number }

begin if cur length > depth threshold then
begin if p > null then print ("␣[]"); { indicate that there’s been some truncation }
return;
end;

n← 0;
while p > mem min do
begin print ln ; print current string ; { display the nesting history }
if p > mem end then { pointer out of range }
begin print ("Bad␣link,␣display␣aborted."); return;
end;

incr (n);
if n > breadth max then { time to stop }
begin print ("etc."); return;
end;

⟨Display node p 209 ⟩;
p← link (p);
end;

exit : end;

§209 X ETEX PART 12: DISPLAYING BOXES 83

209. ⟨Display node p 209 ⟩ ≡
if is char node (p) then print font and char (p)
else case type (p) of
hlist node , vlist node , unset node : ⟨Display box p 210 ⟩;
rule node : ⟨Display rule p 213 ⟩;
ins node : ⟨Display insertion p 214 ⟩;
whatsit node : ⟨Display the whatsit node p 1416 ⟩;
glue node : ⟨Display glue p 215 ⟩;
kern node : ⟨Display kern p 217 ⟩;
margin kern node : begin print esc("kern"); print scaled (width (p));
if subtype (p) = left side then print ("␣(left␣margin)")
else print ("␣(right␣margin)");
end;

math node : ⟨Display math node p 218 ⟩;
ligature node : ⟨Display ligature p 219 ⟩;
penalty node : ⟨Display penalty p 220 ⟩;
disc node : ⟨Display discretionary p 221 ⟩;
mark node : ⟨Display mark p 222 ⟩;
adjust node : ⟨Display adjustment p 223 ⟩;
⟨Cases of show node list that arise in mlists only 732 ⟩
othercases print ("Unknown␣node␣type!")
endcases

This code is used in section 208.

210. ⟨Display box p 210 ⟩ ≡
begin if type (p) = hlist node then print esc("h")
else if type (p) = vlist node then print esc("v")
else print esc("unset");

print ("box("); print scaled (height (p)); print char ("+"); print scaled (depth (p)); print (")x");
print scaled (width (p));
if type (p) = unset node then ⟨Display special fields of the unset node p 211 ⟩
else begin ⟨Display the value of glue set (p) 212 ⟩;
if shift amount (p) ̸= 0 then
begin print (",␣shifted␣"); print scaled (shift amount (p));
end;

if eTeX ex then ⟨Display if this box is never to be reversed 1514 ⟩;
end;

node list display (list ptr (p)); { recursive call }
end

This code is used in section 209.

84 PART 12: DISPLAYING BOXES X ETEX §211

211. ⟨Display special fields of the unset node p 211 ⟩ ≡
begin if span count (p) ̸= min quarterword then
begin print ("␣("); print int (qo(span count (p)) + 1); print ("␣columns)");
end;

if glue stretch (p) ̸= 0 then
begin print (",␣stretch␣"); print glue (glue stretch (p), glue order (p), 0);
end;

if glue shrink (p) ̸= 0 then
begin print (",␣shrink␣"); print glue (glue shrink (p), glue sign (p), 0);
end;

end

This code is used in section 210.

212. The code will have to change in this place if glue ratio is a structured type instead of an ordinary real .
Note that this routine should avoid arithmetic errors even if the glue set field holds an arbitrary random
value. The following code assumes that a properly formed nonzero real number has absolute value 220 or
more when it is regarded as an integer; this precaution was adequate to prevent floating point underflow on
the author’s computer.

⟨Display the value of glue set (p) 212 ⟩ ≡
g ← float (glue set (p));
if (g ̸= float constant (0)) ∧ (glue sign (p) ̸= normal) then
begin print (",␣glue␣set␣");
if glue sign (p) = shrinking then print ("−␣");
if abs (mem [p+ glue offset].int) < 4́000000 then print ("?.?")
else if abs (g) > float constant (20000) then

begin if g > float constant (0) then print char (">")
else print ("<␣−");
print glue (20000 ∗ unity , glue order (p), 0);
end

else print glue (round (unity ∗ g), glue order (p), 0);
end

This code is used in section 210.

213. ⟨Display rule p 213 ⟩ ≡
begin print esc("rule("); print rule dimen (height (p)); print char ("+"); print rule dimen (depth (p));
print (")x"); print rule dimen (width (p));
end

This code is used in section 209.

214. ⟨Display insertion p 214 ⟩ ≡
begin print esc("insert"); print int (qo(subtype (p))); print (",␣natural␣size␣");
print scaled (height (p)); print (";␣split("); print spec(split top ptr (p), 0); print char (",");
print scaled (depth (p)); print (");␣float␣cost␣"); print int (float cost (p)); node list display (ins ptr (p));

{ recursive call }
end

This code is used in section 209.

§215 X ETEX PART 12: DISPLAYING BOXES 85

215. ⟨Display glue p 215 ⟩ ≡
if subtype (p) ≥ a leaders then ⟨Display leaders p 216 ⟩
else begin print esc("glue");
if subtype (p) ̸= normal then
begin print char ("(");
if subtype (p) < cond math glue then print skip param (subtype (p)− 1)
else if subtype (p) = cond math glue then print esc("nonscript")
else print esc("mskip");

print char (")");
end;

if subtype (p) ̸= cond math glue then
begin print char ("␣");
if subtype (p) < cond math glue then print spec(glue ptr (p), 0)
else print spec(glue ptr (p), "mu");
end;

end

This code is used in section 209.

216. ⟨Display leaders p 216 ⟩ ≡
begin print esc("");
if subtype (p) = c leaders then print char ("c")
else if subtype (p) = x leaders then print char ("x");
print ("leaders␣"); print spec(glue ptr (p), 0); node list display (leader ptr (p)); { recursive call }
end

This code is used in section 215.

217. An “explicit” kern value is indicated implicitly by an explicit space.

⟨Display kern p 217 ⟩ ≡
if subtype (p) ̸= mu glue then
begin print esc("kern");
if subtype (p) ̸= normal then print char ("␣");
print scaled (width (p));
if subtype (p) = acc kern then print ("␣(for␣accent)")
else if subtype (p) = space adjustment then print ("␣(space␣adjustment)");
end

else begin print esc("mkern"); print scaled (width (p)); print ("mu");
end

This code is used in section 209.

86 PART 12: DISPLAYING BOXES X ETEX §218

218. ⟨Display math node p 218 ⟩ ≡
if subtype (p) > after then
begin if end LR(p) then print esc("end")
else print esc("begin");
if subtype (p) > R code then print char ("R")
else if subtype (p) > L code then print char ("L")
else print char ("M");

end
else begin print esc("math");
if subtype (p) = before then print ("on")
else print ("off");
if width (p) ̸= 0 then
begin print (",␣surrounded␣"); print scaled (width (p));
end;

end

This code is used in section 209.

219. ⟨Display ligature p 219 ⟩ ≡
begin print font and char (lig char (p)); print ("␣(ligature␣");
if subtype (p) > 1 then print char ("|");
font in short display ← font (lig char (p)); short display (lig ptr (p));
if odd (subtype (p)) then print char ("|");
print char (")");
end

This code is used in section 209.

220. ⟨Display penalty p 220 ⟩ ≡
begin print esc("penalty␣"); print int (penalty (p));
end

This code is used in section 209.

221. The post break list of a discretionary node is indicated by a prefixed ‘|’ instead of the ‘.’ before the
pre break list.

⟨Display discretionary p 221 ⟩ ≡
begin print esc("discretionary");
if replace count (p) > 0 then
begin print ("␣replacing␣"); print int (replace count (p));
end;

node list display (pre break (p)); { recursive call }
append char ("|"); show node list (post break (p)); flush char ; { recursive call }
end

This code is used in section 209.

222. ⟨Display mark p 222 ⟩ ≡
begin print esc("mark");
if mark class (p) ̸= 0 then
begin print char ("s"); print int (mark class (p));
end;

print mark (mark ptr (p));
end

This code is used in section 209.

§223 X ETEX PART 12: DISPLAYING BOXES 87

223. ⟨Display adjustment p 223 ⟩ ≡
begin print esc("vadjust");
if adjust pre (p) ̸= 0 then print ("␣pre␣");
node list display (adjust ptr (p)); { recursive call }
end

This code is used in section 209.

224. The recursive machinery is started by calling show box .

procedure show box (p : pointer);
begin ⟨Assign the values depth threshold ← show box depth and breadth max ← show box breadth 262 ⟩;
if breadth max ≤ 0 then breadth max ← 5;
if pool ptr + depth threshold ≥ pool size then depth threshold ← pool size − pool ptr − 1;

{ now there’s enough room for prefix string }
show node list (p); { the show starts at p }
print ln ;
end;

procedure short display n (p,m : integer); { prints highlights of list p }
begin breadth max ← m; depth threshold ← pool size − pool ptr − 1; show node list (p);
{ the show starts at p }

end;

88 PART 13: DESTROYING BOXES X ETEX §225

225. Destroying boxes. When we are done with a node list, we are obliged to return it to free storage,
including all of its sublists. The recursive procedure flush node list does this for us.

226. First, however, we shall consider two non-recursive procedures that do simpler tasks. The first of
these, delete token ref , is called when a pointer to a token list’s reference count is being removed. This
means that the token list should disappear if the reference count was null , otherwise the count should be
decreased by one.

define token ref count (#) ≡ info(#) { reference count preceding a token list }
procedure delete token ref (p : pointer);

{ p points to the reference count of a token list that is losing one reference }
begin if token ref count (p) = null then flush list (p)
else decr (token ref count (p));
end;

227. Similarly, delete glue ref is called when a pointer to a glue specification is being withdrawn.

define fast delete glue ref (#) ≡
begin if glue ref count (#) = null then free node (#, glue spec size)
else decr (glue ref count (#));
end

procedure delete glue ref (p : pointer); { p points to a glue specification }
fast delete glue ref (p);

§228 X ETEX PART 13: DESTROYING BOXES 89

228. Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usually
charnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.

procedure flush node list (p : pointer); { erase list of nodes starting at p }
label done ; { go here when node p has been freed }
var q: pointer ; { successor to node p }
begin while p ̸= null do
begin q ← link (p);
if is char node (p) then free avail (p)
else begin case type (p) of

hlist node , vlist node , unset node : begin flush node list (list ptr (p)); free node (p, box node size);
goto done ;
end;

rule node : begin free node (p, rule node size); goto done ;
end;

ins node : begin flush node list (ins ptr (p)); delete glue ref (split top ptr (p));
free node (p, ins node size); goto done ;
end;

whatsit node : ⟨Wipe out the whatsit node p and goto done 1418 ⟩;
glue node : begin fast delete glue ref (glue ptr (p));

if leader ptr (p) ̸= null then flush node list (leader ptr (p));
end;

kern node ,math node , penalty node : do nothing ;
margin kern node : begin free node (p,margin kern node size); goto done ;
end;

ligature node : flush node list (lig ptr (p));
mark node : delete token ref (mark ptr (p));
disc node : begin flush node list (pre break (p)); flush node list (post break (p));

end;
adjust node : flush node list (adjust ptr (p));
⟨Cases of flush node list that arise in mlists only 740 ⟩
othercases confusion ("flushing")
endcases;
free node (p, small node size);

done : end;
p← q;
end;

end;

90 PART 14: COPYING BOXES X ETEX §229

229. Copying boxes. Another recursive operation that acts on boxes is sometimes needed: The proce-
dure copy node list returns a pointer to another node list that has the same structure and meaning as the
original. Note that since glue specifications and token lists have reference counts, we need not make copies
of them. Reference counts can never get too large to fit in a halfword, since each pointer to a node is in a
different memory address, and the total number of memory addresses fits in a halfword.
(Well, there actually are also references from outside mem ; if the save stack is made arbitrarily large, it

would theoretically be possible to break TEX by overflowing a reference count. But who would want to do
that?)

define add token ref (#) ≡ incr (token ref count (#)) { new reference to a token list }
define add glue ref (#) ≡ incr (glue ref count (#)) { new reference to a glue spec }

230. The copying procedure copies words en masse without bothering to look at their individual fields. If
the node format changes—for example, if the size is altered, or if some link field is moved to another relative
position—then this code may need to be changed too.

function copy node list (p : pointer): pointer ;
{makes a duplicate of the node list that starts at p and returns a pointer to the new list }

var h: pointer ; { temporary head of copied list }
q: pointer ; { previous position in new list }
r: pointer ; { current node being fabricated for new list }
words : 0 . . 5; { number of words remaining to be copied }

begin h← get avail ; q ← h;
while p ̸= null do
begin ⟨Make a copy of node p in node r 231 ⟩;
link (q)← r; q ← r; p← link (p);
end;

link (q)← null ; q ← link (h); free avail (h); copy node list ← q;
end;

231. ⟨Make a copy of node p in node r 231 ⟩ ≡
words ← 1; { this setting occurs in more branches than any other }
if is char node (p) then r ← get avail
else ⟨Case statement to copy different types and set words to the number of initial words not yet

copied 232 ⟩;
while words > 0 do
begin decr (words); mem [r + words]← mem [p+ words];
end

This code is used in section 230.

§232 X ETEX PART 14: COPYING BOXES 91

232. ⟨Case statement to copy different types and set words to the number of initial words not yet
copied 232 ⟩ ≡

case type (p) of
hlist node , vlist node , unset node : begin r ← get node (box node size); mem [r + 6]← mem [p+ 6];
mem [r + 5]← mem [p+ 5]; { copy the last two words }
list ptr (r)← copy node list (list ptr (p)); { this affects mem [r + 5] }
words ← 5;
end;

rule node : begin r ← get node (rule node size); words ← rule node size ;
end;

ins node : begin r ← get node (ins node size); mem [r + 4]← mem [p+ 4]; add glue ref (split top ptr (p));
ins ptr (r)← copy node list (ins ptr (p)); { this affects mem [r + 4] }
words ← ins node size − 1;
end;

whatsit node : ⟨Make a partial copy of the whatsit node p and make r point to it; set words to the
number of initial words not yet copied 1417 ⟩;

glue node : begin r ← get node (small node size); add glue ref (glue ptr (p)); glue ptr (r)← glue ptr (p);
leader ptr (r)← copy node list (leader ptr (p));
end;

kern node ,math node , penalty node : begin r ← get node (small node size); words ← small node size ;
end;

margin kern node : begin r ← get node (margin kern node size); words ← margin kern node size ;
end;

ligature node : begin r ← get node (small node size); mem [lig char (r)]← mem [lig char (p)];
{ copy font and character }

lig ptr (r)← copy node list (lig ptr (p));
end;

disc node : begin r ← get node (small node size); pre break (r)← copy node list (pre break (p));
post break (r)← copy node list (post break (p));
end;

mark node : begin r ← get node (small node size); add token ref (mark ptr (p));
words ← small node size ;
end;

adjust node : begin r ← get node (small node size); adjust ptr (r)← copy node list (adjust ptr (p));
end; {words = 1 = small node size − 1 }

othercases confusion ("copying")
endcases

This code is used in section 231.

92 PART 15: THE COMMAND CODES X ETEX §233

233. The command codes. Before we can go any further, we need to define symbolic names for the
internal code numbers that represent the various commands obeyed by TEX. These codes are somewhat
arbitrary, but not completely so. For example, the command codes for character types are fixed by the
language, since a user says, e.g., ‘\catcode `\$ = 3’ to make $ a math delimiter, and the command code
math shift is equal to 3. Some other codes have been made adjacent so that case statements in the program
need not consider cases that are widely spaced, or so that case statements can be replaced by if statements.
At any rate, here is the list, for future reference. First come the “catcode” commands, several of which

share their numeric codes with ordinary commands when the catcode cannot emerge from TEX’s scanning
routine.

define escape = 0 { escape delimiter (called \ in The TEXbook) }
define relax = 0 { do nothing (\relax) }
define left brace = 1 { beginning of a group ({) }
define right brace = 2 { ending of a group (}) }
define math shift = 3 {mathematics shift character ($) }
define tab mark = 4 { alignment delimiter (&, \span) }
define car ret = 5 { end of line (carriage return , \cr, \crcr) }
define out param = 5 { output a macro parameter }
define mac param = 6 {macro parameter symbol (#) }
define sup mark = 7 { superscript (^) }
define sub mark = 8 { subscript (_) }
define ignore = 9 { characters to ignore (^^@) }
define endv = 9 { end of ⟨vj⟩ list in alignment template }
define spacer = 10 { characters equivalent to blank space (␣) }
define letter = 11 { characters regarded as letters (A..Z, a..z) }
define other char = 12 { none of the special character types }
define active char = 13 { characters that invoke macros (~) }
define par end = 13 { end of paragraph (\par) }
define match = 13 {match a macro parameter }
define comment = 14 { characters that introduce comments (%) }
define end match = 14 { end of parameters to macro }
define stop = 14 { end of job (\end, \dump) }
define invalid char = 15 { characters that shouldn’t appear (^^?) }
define delim num = 15 { specify delimiter numerically (\delimiter) }
define max char code = 15 { largest catcode for individual characters }

§234 X ETEX PART 15: THE COMMAND CODES 93

234. Next are the ordinary run-of-the-mill command codes. Codes that are min internal or more represent
internal quantities that might be expanded by ‘\the’.

define char num = 16 { character specified numerically (\char) }
define math char num = 17 { explicit math code (\mathchar) }
define mark = 18 {mark definition (\mark) }
define xray = 19 { peek inside of TEX (\show, \showbox, etc.) }
define make box = 20 {make a box (\box, \copy, \hbox, etc.) }
define hmove = 21 { horizontal motion (\moveleft, \moveright) }
define vmove = 22 { vertical motion (\raise, \lower) }
define un hbox = 23 { unglue a box (\unhbox, \unhcopy) }
define un vbox = 24 { unglue a box (\unvbox, \unvcopy) }

{ (or \pagediscards, \splitdiscards) }
define remove item = 25 { nullify last item (\unpenalty, \unkern, \unskip) }
define hskip = 26 { horizontal glue (\hskip, \hfil, etc.) }
define vskip = 27 { vertical glue (\vskip, \vfil, etc.) }
define mskip = 28 {math glue (\mskip) }
define kern = 29 { fixed space (\kern) }
define mkern = 30 {math kern (\mkern) }
define leader ship = 31 { use a box (\shipout, \leaders, etc.) }
define halign = 32 { horizontal table alignment (\halign) }
define valign = 33 { vertical table alignment (\valign) }

{ or text direction directives (\beginL, etc.) }
define no align = 34 { temporary escape from alignment (\noalign) }
define vrule = 35 { vertical rule (\vrule) }
define hrule = 36 { horizontal rule (\hrule) }
define insert = 37 { vlist inserted in box (\insert) }
define vadjust = 38 { vlist inserted in enclosing paragraph (\vadjust) }
define ignore spaces = 39 { gobble spacer tokens (\ignorespaces) }
define after assignment = 40 { save till assignment is done (\afterassignment) }
define after group = 41 { save till group is done (\aftergroup) }
define break penalty = 42 { additional badness (\penalty) }
define start par = 43 { begin paragraph (\indent, \noindent) }
define ital corr = 44 { italic correction (\/) }
define accent = 45 { attach accent in text (\accent) }
define math accent = 46 { attach accent in math (\mathaccent) }
define discretionary = 47 { discretionary texts (\−, \discretionary) }
define eq no = 48 { equation number (\eqno, \leqno) }
define left right = 49 { variable delimiter (\left, \right) }

{ (or \middle) }
define math comp = 50 { component of formula (\mathbin, etc.) }
define limit switch = 51 { diddle limit conventions (\displaylimits, etc.) }
define above = 52 { generalized fraction (\above, \atop, etc.) }
define math style = 53 { style specification (\displaystyle, etc.) }
define math choice = 54 { choice specification (\mathchoice) }
define non script = 55 { conditional math glue (\nonscript) }
define vcenter = 56 { vertically center a vbox (\vcenter) }
define case shift = 57 { force specific case (\lowercase, \uppercase) }
define message = 58 { send to user (\message, \errmessage) }
define extension = 59 { extensions to TEX (\write, \special, etc.) }
define in stream = 60 { files for reading (\openin, \closein) }
define begin group = 61 { begin local grouping (\begingroup) }
define end group = 62 { end local grouping (\endgroup) }

94 PART 15: THE COMMAND CODES X ETEX §234

define omit = 63 { omit alignment template (\omit) }
define ex space = 64 { explicit space (\␣) }
define no boundary = 65 { suppress boundary ligatures (\noboundary) }
define radical = 66 { square root and similar signs (\radical) }
define end cs name = 67 { end control sequence (\endcsname) }
define min internal = 68 { the smallest code that can follow \the }
define char given = 68 { character code defined by \chardef }
define math given = 69 {math code defined by \mathchardef }
define XeTeX math given = 70 { extended math code defined by \Umathchardef }
define last item = 71 {most recent item (\lastpenalty, \lastkern, \lastskip) }
define max non prefixed command = 71 { largest command code that can’t be \global }

235. The next codes are special; they all relate to mode-independent assignment of values to TEX’s internal
registers or tables. Codes that are max internal or less represent internal quantities that might be expanded
by ‘\the’.

define toks register = 72 { token list register (\toks) }
define assign toks = 73 { special token list (\output, \everypar, etc.) }
define assign int = 74 { user-defined integer (\tolerance, \day, etc.) }
define assign dimen = 75 { user-defined length (\hsize, etc.) }
define assign glue = 76 { user-defined glue (\baselineskip, etc.) }
define assign mu glue = 77 { user-defined muglue (\thinmuskip, etc.) }
define assign font dimen = 78 { user-defined font dimension (\fontdimen) }
define assign font int = 79 { user-defined font integer (\hyphenchar, \skewchar) }
define set aux = 80 { specify state info (\spacefactor, \prevdepth) }
define set prev graf = 81 { specify state info (\prevgraf) }
define set page dimen = 82 { specify state info (\pagegoal, etc.) }
define set page int = 83 { specify state info (\deadcycles, \insertpenalties) }

{ (or \interactionmode) }
define set box dimen = 84 { change dimension of box (\wd, \ht, \dp) }
define set shape = 85 { specify fancy paragraph shape (\parshape) }

{ (or \interlinepenalties, etc.) }
define def code = 86 { define a character code (\catcode, etc.) }
define XeTeX def code = 87 { \Umathcode, \Udelcode }
define def family = 88 { declare math fonts (\textfont, etc.) }
define set font = 89 { set current font (font identifiers) }
define def font = 90 { define a font file (\font) }
define register = 91 { internal register (\count, \dimen, etc.) }
define max internal = 91 { the largest code that can follow \the }
define advance = 92 { advance a register or parameter (\advance) }
define multiply = 93 {multiply a register or parameter (\multiply) }
define divide = 94 { divide a register or parameter (\divide) }
define prefix = 95 { qualify a definition (\global, \long, \outer) }

{ (or \protected) }
define let = 96 { assign a command code (\let, \futurelet) }
define shorthand def = 97 { code definition (\chardef, \countdef, etc.) }
define read to cs = 98 { read into a control sequence (\read) }

{ (or \readline) }
define def = 99 {macro definition (\def, \gdef, \xdef, \edef) }
define set box = 100 { set a box (\setbox) }
define hyph data = 101 { hyphenation data (\hyphenation, \patterns) }
define set interaction = 102 { define level of interaction (\batchmode, etc.) }
define max command = 102 { the largest command code seen at big switch }

§236 X ETEX PART 15: THE COMMAND CODES 95

236. The remaining command codes are extra special, since they cannot get through TEX’s scanner to the
main control routine. They have been given values higher than max command so that their special nature
is easily discernible. The “expandable” commands come first.

define undefined cs = max command + 1 { initial state of most eq type fields }
define expand after = max command + 2 { special expansion (\expandafter) }
define no expand = max command + 3 { special nonexpansion (\noexpand) }
define input = max command + 4 { input a source file (\input, \endinput) }

{ (or \scantokens) }
define if test = max command + 5 { conditional text (\if, \ifcase, etc.) }
define fi or else = max command + 6 { delimiters for conditionals (\else, etc.) }
define cs name = max command + 7 {make a control sequence from tokens (\csname) }
define convert = max command + 8 { convert to text (\number, \string, etc.) }
define the = max command + 9 { expand an internal quantity (\the) }

{ (or \unexpanded, \detokenize) }
define top bot mark = max command + 10 { inserted mark (\topmark, etc.) }
define call = max command + 11 { non-long, non-outer control sequence }
define long call = max command + 12 { long, non-outer control sequence }
define outer call = max command + 13 { non-long, outer control sequence }
define long outer call = max command + 14 { long, outer control sequence }
define end template = max command + 15 { end of an alignment template }
define dont expand = max command + 16 { the following token was marked by \noexpand }
define glue ref = max command + 17 { the equivalent points to a glue specification }
define shape ref = max command + 18 { the equivalent points to a parshape specification }
define box ref = max command + 19 { the equivalent points to a box node, or is null }
define data = max command + 20 { the equivalent is simply a halfword number }

96 PART 16: THE SEMANTIC NEST X ETEX §237

237. The semantic nest. TEX is typically in the midst of building many lists at once. For example,
when a math formula is being processed, TEX is in math mode and working on an mlist; this formula has
temporarily interrupted TEX from being in horizontal mode and building the hlist of a paragraph; and this
paragraph has temporarily interrupted TEX from being in vertical mode and building the vlist for the next
page of a document. Similarly, when a \vbox occurs inside of an \hbox, TEX is temporarily interrupted from
working in restricted horizontal mode, and it enters internal vertical mode. The “semantic nest” is a stack
that keeps track of what lists and modes are currently suspended.
At each level of processing we are in one of six modes:

vmode stands for vertical mode (the page builder);
hmode stands for horizontal mode (the paragraph builder);
mmode stands for displayed formula mode;
−vmode stands for internal vertical mode (e.g., in a \vbox);
−hmode stands for restricted horizontal mode (e.g., in an \hbox);
−mmode stands for math formula mode (not displayed).

The mode is temporarily set to zero while processing \write texts.
Numeric values are assigned to vmode , hmode , and mmode so that TEX’s “big semantic switch” can select

the appropriate thing to do by computing the value abs (mode) + cur cmd , where mode is the current mode
and cur cmd is the current command code.

define vmode = 1 { vertical mode }
define hmode = vmode +max command + 1 { horizontal mode }
define mmode = hmode +max command + 1 {math mode }

procedure print mode (m : integer); { prints the mode represented by m }
begin if m > 0 then
case m div (max command + 1) of
0: print ("vertical");
1: print ("horizontal");
2: print ("display␣math");
end

else if m = 0 then print ("no")
else case (−m) div (max command + 1) of

0: print ("internal␣vertical");
1: print ("restricted␣horizontal");
2: print ("math");
end;

print ("␣mode");
end;

§238 X ETEX PART 16: THE SEMANTIC NEST 97

238. The state of affairs at any semantic level can be represented by five values:

mode is the number representing the semantic mode, as just explained.

head is a pointer to a list head for the list being built; link (head) therefore points to the first element of the
list, or to null if the list is empty.

tail is a pointer to the final node of the list being built; thus, tail = head if and only if the list is empty.

prev graf is the number of lines of the current paragraph that have already been put into the present vertical
list.

aux is an auxiliary memory word that gives further information that is needed to characterize the situation.

In vertical mode, aux is also known as prev depth ; it is the scaled value representing the depth of the previous
box, for use in baseline calculations, or it is ≤ −1000pt if the next box on the vertical list is to be exempt from
baseline calculations. In horizontal mode, aux is also known as space factor and clang ; it holds the current
space factor used in spacing calculations, and the current language used for hyphenation. (The value of clang
is undefined in restricted horizontal mode.) In math mode, aux is also known as incompleat noad ; if not
null , it points to a record that represents the numerator of a generalized fraction for which the denominator
is currently being formed in the current list.
There is also a sixth quantity, mode line , which correlates the semantic nest with the user’s input;

mode line contains the source line number at which the current level of nesting was entered. The negative
of this line number is the mode line at the level of the user’s output routine.
A seventh quantity, eTeX aux , is used by the extended features ε-TEX. In vertical modes it is known as

LR save and holds the LR stack when a paragraph is interrupted by a displayed formula. In display math
mode it is known as LR box and holds a pointer to a prototype box for the display. In math mode it is
known as delim ptr and points to the most recent left noad or middle noad of a math left group .
In horizontal mode, the prev graf field is used for initial language data.
The semantic nest is an array called nest that holds the mode , head , tail , prev graf , aux , and mode line

values for all semantic levels below the currently active one. Information about the currently active level is
kept in the global quantities mode , head , tail , prev graf , aux , and mode line , which live in a Pascal record
that is ready to be pushed onto nest if necessary.

define ignore depth ≡ −65536000 { prev depth value that is ignored }
⟨Types in the outer block 18 ⟩ +≡
list state record = record mode field : −mmode . . mmode ; head field , tail field : pointer ;
eTeX aux field : pointer ;
pg field ,ml field : integer ; aux field : memory word ;
end;

98 PART 16: THE SEMANTIC NEST X ETEX §239

239. define mode ≡ cur list .mode field { current mode }
define head ≡ cur list .head field { header node of current list }
define tail ≡ cur list .tail field { final node on current list }
define eTeX aux ≡ cur list .eTeX aux field { auxiliary data for ε-TEX }
define LR save ≡ eTeX aux {LR stack when a paragraph is interrupted }
define LR box ≡ eTeX aux { prototype box for display }
define delim ptr ≡ eTeX aux {most recent left or right noad of a math left group }
define prev graf ≡ cur list .pg field { number of paragraph lines accumulated }
define aux ≡ cur list .aux field { auxiliary data about the current list }
define prev depth ≡ aux .sc { the name of aux in vertical mode }
define space factor ≡ aux .hh .lh { part of aux in horizontal mode }
define clang ≡ aux .hh .rh { the other part of aux in horizontal mode }
define incompleat noad ≡ aux .int { the name of aux in math mode }
define mode line ≡ cur list .ml field { source file line number at beginning of list }

⟨Global variables 13 ⟩ +≡
nest : array [0 . . nest size] of list state record ;
nest ptr : 0 . . nest size ; { first unused location of nest }
max nest stack : 0 . . nest size ; {maximum of nest ptr when pushing }
cur list : list state record ; { the “top” semantic state }
shown mode : −mmode . . mmode ; {most recent mode shown by \tracingcommands }

240. Here is a common way to make the current list grow:

define tail append (#) ≡
begin link (tail)← #; tail ← link (tail);
end

241. We will see later that the vertical list at the bottom semantic level is split into two parts; the “current
page” runs from page head to page tail , and the “contribution list” runs from contrib head to tail of semantic
level zero. The idea is that contributions are first formed in vertical mode, then “contributed” to the current
page (during which time the page-breaking decisions are made). For now, we don’t need to know any more
details about the page-building process.

⟨ Set initial values of key variables 23 ⟩ +≡
nest ptr ← 0; max nest stack ← 0; mode ← vmode ; head ← contrib head ; tail ← contrib head ;
eTeX aux ← null ; prev depth ← ignore depth ; mode line ← 0; prev graf ← 0; shown mode ← 0;
⟨ Start a new current page 1045 ⟩;

242. When TEX’s work on one level is interrupted, the state is saved by calling push nest . This routine
changes head and tail so that a new (empty) list is begun; it does not change mode or aux .

procedure push nest ; { enter a new semantic level, save the old }
begin if nest ptr > max nest stack then
begin max nest stack ← nest ptr ;
if nest ptr = nest size then overflow ("semantic␣nest␣size",nest size);
end;

nest [nest ptr]← cur list ; { stack the record }
incr (nest ptr); head ← get avail ; tail ← head ; prev graf ← 0; mode line ← line ; eTeX aux ← null ;
end;

§243 X ETEX PART 16: THE SEMANTIC NEST 99

243. Conversely, when TEX is finished on the current level, the former state is restored by calling pop nest .
This routine will never be called at the lowest semantic level, nor will it be called unless head is a node that
should be returned to free memory.

procedure pop nest ; { leave a semantic level, re-enter the old }
begin free avail (head); decr (nest ptr); cur list ← nest [nest ptr];
end;

244. Here is a procedure that displays what TEX is working on, at all levels.

procedure print totals ; forward ;
procedure show activities ;

var p: 0 . . nest size ; { index into nest }
m: −mmode . . mmode ; {mode }
a: memory word ; { auxiliary }
q, r: pointer ; { for showing the current page }
t: integer ; { ditto }

begin nest [nest ptr]← cur list ; { put the top level into the array }
print nl (""); print ln ;
for p← nest ptr downto 0 do
begin m← nest [p].mode field ; a← nest [p].aux field ; print nl ("###␣"); print mode (m);
print ("␣entered␣at␣line␣"); print int (abs (nest [p].ml field));
if m = hmode then

if nest [p].pg field ̸= 4́0600000 then
begin print ("␣(language"); print int (nest [p].pg field mod 2́00000); print (":hyphenmin");
print int (nest [p].pg field div 2́0000000); print char (",");
print int ((nest [p].pg field div 2́00000)mod 1́00); print char (")");
end;

if nest [p].ml field < 0 then print ("␣(\output␣routine)");
if p = 0 then
begin ⟨ Show the status of the current page 1040 ⟩;
if link (contrib head) ̸= null then print nl ("###␣recent␣contributions:");
end;

show box (link (nest [p].head field)); ⟨ Show the auxiliary field, a 245 ⟩;
end;

end;

100 PART 16: THE SEMANTIC NEST X ETEX §245

245. ⟨ Show the auxiliary field, a 245 ⟩ ≡
case abs (m) div (max command + 1) of
0: begin print nl ("prevdepth␣");
if a.sc ≤ ignore depth then print ("ignored")
else print scaled (a.sc);
if nest [p].pg field ̸= 0 then

begin print (",␣prevgraf␣"); print int (nest [p].pg field); print ("␣line");
if nest [p].pg field ̸= 1 then print char ("s");
end;

end;
1: begin print nl ("spacefactor␣"); print int (a.hh .lh);
if m > 0 then if a.hh .rh > 0 then

begin print (",␣current␣language␣"); print int (a.hh .rh); end;
end;

2: if a.int ̸= null then
begin print ("this␣will␣begin␣denominator␣of:"); show box (a.int); end;

end { there are no other cases }
This code is used in section 244.

§246 X ETEX PART 17: THE TABLE OF EQUIVALENTS 101

246. The table of equivalents. Now that we have studied the data structures for TEX’s semantic
routines, we ought to consider the data structures used by its syntactic routines. In other words, our next
concern will be the tables that TEX looks at when it is scanning what the user has written.
The biggest and most important such table is called eqtb . It holds the current “equivalents” of things;

i.e., it explains what things mean or what their current values are, for all quantities that are subject to the
nesting structure provided by TEX’s grouping mechanism. There are six parts to eqtb :

1) eqtb [active base . . (hash base − 1)] holds the current equivalents of single-character control sequences.

2) eqtb [hash base . . (glue base − 1)] holds the current equivalents of multiletter control sequences.

3) eqtb [glue base . . (local base − 1)] holds the current equivalents of glue parameters like the current
baselineskip.

4) eqtb [local base . . (int base − 1)] holds the current equivalents of local halfword quantities like the current
box registers, the current “catcodes,” the current font, and a pointer to the current paragraph shape.

5) eqtb [int base . . (dimen base − 1)] holds the current equivalents of fullword integer parameters like the
current hyphenation penalty.

6) eqtb [dimen base . . eqtb size] holds the current equivalents of fullword dimension parameters like the
current hsize or amount of hanging indentation.

Note that, for example, the current amount of baselineskip glue is determined by the setting of a particular
location in region 3 of eqtb , while the current meaning of the control sequence ‘\baselineskip’ (which might
have been changed by \def or \let) appears in region 2.

247. Each entry in eqtb is a memory word . Most of these words are of type two halves , and subdivided
into three fields:

1) The eq level (a quarterword) is the level of grouping at which this equivalent was defined. If the level
is level zero , the equivalent has never been defined; level one refers to the outer level (outside of all
groups), and this level is also used for global definitions that never go away. Higher levels are for
equivalents that will disappear at the end of their group.

2) The eq type (another quarterword) specifies what kind of entry this is. There are many types, since each
TEX primitive like \hbox, \def, etc., has its own special code. The list of command codes above
includes all possible settings of the eq type field.

3) The equiv (a halfword) is the current equivalent value. This may be a font number, a pointer into mem ,
or a variety of other things.

define eq level field (#) ≡ #.hh .b1
define eq type field (#) ≡ #.hh .b0
define equiv field (#) ≡ #.hh .rh
define eq level (#) ≡ eq level field (eqtb [#]) { level of definition }
define eq type (#) ≡ eq type field (eqtb [#]) { command code for equivalent }
define equiv (#) ≡ equiv field (eqtb [#]) { equivalent value }
define level zero = min quarterword { level for undefined quantities }
define level one = level zero + 1 { outermost level for defined quantities }

102 PART 17: THE TABLE OF EQUIVALENTS X ETEX §248

248. Many locations in eqtb have symbolic names. The purpose of the next paragraphs is to define these
names, and to set up the initial values of the equivalents.
In the first region we have number usvs equivalents for “active characters” that act as control sequences,

followed by number usvs equivalents for single-character control sequences.
Then comes region 2, which corresponds to the hash table that we will define later. The maximum address

in this region is used for a dummy control sequence that is perpetually undefined. There also are several
locations for control sequences that are perpetually defined (since they are used in error recovery).

define active base = 1 { beginning of region 1, for active character equivalents }
define single base = active base + number usvs { equivalents of one-character control sequences }
define null cs = single base + number usvs { equivalent of \csname\endcsname }
define hash base = null cs + 1 { beginning of region 2, for the hash table }
define frozen control sequence = hash base + hash size { for error recovery }
define frozen protection = frozen control sequence { inaccessible but definable }
define frozen cr = frozen control sequence + 1 { permanent ‘\cr’ }
define frozen end group = frozen control sequence + 2 { permanent ‘\endgroup’ }
define frozen right = frozen control sequence + 3 { permanent ‘\right’ }
define frozen fi = frozen control sequence + 4 { permanent ‘\fi’ }
define frozen end template = frozen control sequence + 5 { permanent ‘\endtemplate’ }
define frozen endv = frozen control sequence + 6 { second permanent ‘\endtemplate’ }
define frozen relax = frozen control sequence + 7 { permanent ‘\relax’ }
define end write = frozen control sequence + 8 { permanent ‘\endwrite’ }
define frozen dont expand = frozen control sequence + 9 { permanent ‘\notexpanded:’ }
define prim size = 2100 {maximum number of primitives }
define frozen null font = frozen control sequence + 10 { permanent ‘\nullfont’ }
define frozen primitive = frozen control sequence + 11 { permanent ‘\pdfprimitive’ }
define prim eqtb base = frozen primitive + 1
define font id base = frozen null font − font base { begins table of 257 permanent font identifiers }
define undefined control sequence = frozen null font + 257 { dummy location }
define glue base = undefined control sequence + 1 { beginning of region 3 }

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
eq type (undefined control sequence)← undefined cs ; equiv (undefined control sequence)← null ;
eq level (undefined control sequence)← level zero ;
for k ← active base to undefined control sequence − 1 do eqtb [k]← eqtb [undefined control sequence];

249. Here is a routine that displays the current meaning of an eqtb entry in region 1 or 2. (Similar routines
for the other regions will appear below.)

⟨ Show equivalent n, in region 1 or 2 249 ⟩ ≡
begin sprint cs (n); print char ("="); print cmd chr (eq type (n), equiv (n));
if eq type (n) ≥ call then
begin print char (":"); show token list (link (equiv (n)),null , 32);
end;

end

This code is used in section 278.

§250 X ETEX PART 17: THE TABLE OF EQUIVALENTS 103

250. Region 3 of eqtb contains the number regs \skip registers, as well as the glue parameters defined
here. It is important that the “muskip” parameters have larger numbers than the others.

define line skip code = 0 { interline glue if baseline skip is infeasible }
define baseline skip code = 1 { desired glue between baselines }
define par skip code = 2 { extra glue just above a paragraph }
define above display skip code = 3 { extra glue just above displayed math }
define below display skip code = 4 { extra glue just below displayed math }
define above display short skip code = 5 { glue above displayed math following short lines }
define below display short skip code = 6 { glue below displayed math following short lines }
define left skip code = 7 { glue at left of justified lines }
define right skip code = 8 { glue at right of justified lines }
define top skip code = 9 { glue at top of main pages }
define split top skip code = 10 { glue at top of split pages }
define tab skip code = 11 { glue between aligned entries }
define space skip code = 12 { glue between words (if not zero glue) }
define xspace skip code = 13 { glue after sentences (if not zero glue) }
define par fill skip code = 14 { glue on last line of paragraph }
define XeTeX linebreak skip code = 15 { glue introduced at potential linebreak location }
define thin mu skip code = 16 { thin space in math formula }
define med mu skip code = 17 {medium space in math formula }
define thick mu skip code = 18 { thick space in math formula }
define glue pars = 19 { total number of glue parameters }
define skip base = glue base + glue pars { table of number regs “skip” registers }
define mu skip base = skip base + number regs { table of number regs “muskip” registers }
define local base = mu skip base + number regs { beginning of region 4 }
define skip(#) ≡ equiv (skip base + #) {mem location of glue specification }
define mu skip(#) ≡ equiv (mu skip base + #) {mem location of math glue spec }
define glue par (#) ≡ equiv (glue base + #) {mem location of glue specification }
define line skip ≡ glue par (line skip code)
define baseline skip ≡ glue par (baseline skip code)
define par skip ≡ glue par (par skip code)
define above display skip ≡ glue par (above display skip code)
define below display skip ≡ glue par (below display skip code)
define above display short skip ≡ glue par (above display short skip code)
define below display short skip ≡ glue par (below display short skip code)
define left skip ≡ glue par (left skip code)
define right skip ≡ glue par (right skip code)
define top skip ≡ glue par (top skip code)
define split top skip ≡ glue par (split top skip code)
define tab skip ≡ glue par (tab skip code)
define space skip ≡ glue par (space skip code)
define xspace skip ≡ glue par (xspace skip code)
define par fill skip ≡ glue par (par fill skip code)
define XeTeX linebreak skip ≡ glue par (XeTeX linebreak skip code)
define thin mu skip ≡ glue par (thin mu skip code)
define med mu skip ≡ glue par (med mu skip code)
define thick mu skip ≡ glue par (thick mu skip code)

⟨Current mem equivalent of glue parameter number n 250 ⟩ ≡
glue par (n)

This code is used in sections 176 and 178.

104 PART 17: THE TABLE OF EQUIVALENTS X ETEX §251

251. Sometimes we need to convert TEX’s internal code numbers into symbolic form. The print skip param
routine gives the symbolic name of a glue parameter.

⟨Declare the procedure called print skip param 251 ⟩ ≡
procedure print skip param (n : integer);
begin case n of
line skip code : print esc("lineskip");
baseline skip code : print esc("baselineskip");
par skip code : print esc("parskip");
above display skip code : print esc("abovedisplayskip");
below display skip code : print esc("belowdisplayskip");
above display short skip code : print esc("abovedisplayshortskip");
below display short skip code : print esc("belowdisplayshortskip");
left skip code : print esc("leftskip");
right skip code : print esc("rightskip");
top skip code : print esc("topskip");
split top skip code : print esc("splittopskip");
tab skip code : print esc("tabskip");
space skip code : print esc("spaceskip");
xspace skip code : print esc("xspaceskip");
par fill skip code : print esc("parfillskip");
XeTeX linebreak skip code : print esc("XeTeXlinebreakskip");
thin mu skip code : print esc("thinmuskip");
med mu skip code : print esc("medmuskip");
thick mu skip code : print esc("thickmuskip");
othercases print ("[unknown␣glue␣parameter!]")
endcases;
end;

This code is used in section 205.

§252 X ETEX PART 17: THE TABLE OF EQUIVALENTS 105

252. The symbolic names for glue parameters are put into TEX’s hash table by using the routine called
primitive , defined below. Let us enter them now, so that we don’t have to list all those parameter names
anywhere else.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ ≡
primitive ("lineskip", assign glue , glue base + line skip code);
primitive ("baselineskip", assign glue , glue base + baseline skip code);
primitive ("parskip", assign glue , glue base + par skip code);
primitive ("abovedisplayskip", assign glue , glue base + above display skip code);
primitive ("belowdisplayskip", assign glue , glue base + below display skip code);
primitive ("abovedisplayshortskip", assign glue , glue base + above display short skip code);
primitive ("belowdisplayshortskip", assign glue , glue base + below display short skip code);
primitive ("leftskip", assign glue , glue base + left skip code);
primitive ("rightskip", assign glue , glue base + right skip code);
primitive ("topskip", assign glue , glue base + top skip code);
primitive ("splittopskip", assign glue , glue base + split top skip code);
primitive ("tabskip", assign glue , glue base + tab skip code);
primitive ("spaceskip", assign glue , glue base + space skip code);
primitive ("xspaceskip", assign glue , glue base + xspace skip code);
primitive ("parfillskip", assign glue , glue base + par fill skip code);
primitive ("XeTeXlinebreakskip", assign glue , glue base + XeTeX linebreak skip code);
primitive ("thinmuskip", assign mu glue , glue base + thin mu skip code);
primitive ("medmuskip", assign mu glue , glue base +med mu skip code);
primitive ("thickmuskip", assign mu glue , glue base + thick mu skip code);

See also sections 256, 264, 274, 295, 364, 410, 418, 445, 450, 503, 522, 526, 588, 828, 1037, 1106, 1112, 1125, 1142, 1161, 1168,
1195, 1210, 1223, 1232, 1242, 1262, 1273, 1276, 1284, 1304, 1308, 1316, 1326, 1331, 1340, 1345, and 1398.

This code is used in section 1390.

253. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ ≡
assign glue , assign mu glue : if chr code < skip base then print skip param (chr code − glue base)

else if chr code < mu skip base then
begin print esc("skip"); print int (chr code − skip base);
end

else begin print esc("muskip"); print int (chr code −mu skip base);
end;

See also sections 257, 265, 275, 296, 365, 411, 419, 446, 451, 504, 523, 527, 829, 1038, 1107, 1113, 1126, 1143, 1162, 1169, 1197,
1211, 1224, 1233, 1243, 1263, 1274, 1277, 1285, 1305, 1309, 1315, 1317, 1327, 1332, 1341, 1346, 1349, and 1401.

This code is used in section 328.

254. All glue parameters and registers are initially ‘0pt plus0pt minus0pt’.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
equiv (glue base)← zero glue ; eq level (glue base)← level one ; eq type (glue base)← glue ref ;
for k ← glue base + 1 to local base − 1 do eqtb [k]← eqtb [glue base];
glue ref count (zero glue)← glue ref count (zero glue) + local base − glue base ;

106 PART 17: THE TABLE OF EQUIVALENTS X ETEX §255

255. ⟨ Show equivalent n, in region 3 255 ⟩ ≡
if n < skip base then
begin print skip param (n− glue base); print char ("=");
if n < glue base + thin mu skip code then print spec(equiv (n), "pt")
else print spec(equiv (n), "mu");
end

else if n < mu skip base then
begin print esc("skip"); print int (n− skip base); print char ("="); print spec(equiv (n), "pt");
end

else begin print esc("muskip"); print int (n−mu skip base); print char ("=");
print spec(equiv (n), "mu");
end

This code is used in section 278.

§256 X ETEX PART 17: THE TABLE OF EQUIVALENTS 107

256. Region 4 of eqtb contains the local quantities defined here. The bulk of this region is taken up by
five tables that are indexed by eight-bit characters; these tables are important to both the syntactic and
semantic portions of TEX. There are also a bunch of special things like font and token parameters, as well
as the tables of \toks and \box registers.

define par shape loc = local base { specifies paragraph shape }
define output routine loc = local base + 1 { points to token list for \output }
define every par loc = local base + 2 { points to token list for \everypar }
define every math loc = local base + 3 { points to token list for \everymath }
define every display loc = local base + 4 { points to token list for \everydisplay }
define every hbox loc = local base + 5 { points to token list for \everyhbox }
define every vbox loc = local base + 6 { points to token list for \everyvbox }
define every job loc = local base + 7 { points to token list for \everyjob }
define every cr loc = local base + 8 { points to token list for \everycr }
define err help loc = local base + 9 { points to token list for \errhelp }
define tex toks = local base + 10 { end of TEX’s token list parameters }
define etex toks base = tex toks { base for ε-TEX’s token list parameters }
define every eof loc = etex toks base { points to token list for \everyeof }
define XeTeX inter char loc = every eof loc + 1 { not really used, but serves as a flag }
define etex toks = XeTeX inter char loc + 1 { end of ε-TEX’s token list parameters }
define toks base = etex toks { table of number regs token list registers }
define etex pen base = toks base + number regs { start of table of ε-TEX’s penalties }
define inter line penalties loc = etex pen base { additional penalties between lines }
define club penalties loc = etex pen base + 1 { penalties for creating club lines }
define widow penalties loc = etex pen base + 2 { penalties for creating widow lines }
define display widow penalties loc = etex pen base + 3 { ditto, just before a display }
define etex pens = etex pen base + 4 { end of table of ε-TEX’s penalties }
define box base = etex pens { table of number regs box registers }
define cur font loc = box base + number regs { internal font number outside math mode }
define math font base = cur font loc + 1 { table of number math fonts math font numbers }
define cat code base = math font base + number math fonts

{ table of number usvs command codes (the “catcodes”) }
define lc code base = cat code base + number usvs { table of number usvs lowercase mappings }
define uc code base = lc code base + number usvs { table of number usvs uppercase mappings }
define sf code base = uc code base + number usvs { table of number usvs spacefactor mappings }
define math code base = sf code base + number usvs { table of number usvs math mode mappings }
define int base = math code base + number usvs { beginning of region 5 }
define par shape ptr ≡ equiv (par shape loc)
define output routine ≡ equiv (output routine loc)
define every par ≡ equiv (every par loc)
define every math ≡ equiv (every math loc)
define every display ≡ equiv (every display loc)
define every hbox ≡ equiv (every hbox loc)
define every vbox ≡ equiv (every vbox loc)
define every job ≡ equiv (every job loc)
define every cr ≡ equiv (every cr loc)
define err help ≡ equiv (err help loc)
define toks (#) ≡ equiv (toks base + #)
define box (#) ≡ equiv (box base + #)
define cur font ≡ equiv (cur font loc)
define fam fnt (#) ≡ equiv (math font base + #)
define cat code (#) ≡ equiv (cat code base + #)

108 PART 17: THE TABLE OF EQUIVALENTS X ETEX §256

define lc code (#) ≡ equiv (lc code base + #)
define uc code (#) ≡ equiv (uc code base + #)
define sf code (#) ≡ equiv (sf code base + #)
define math code (#) ≡ equiv (math code base + #)

{Note: math code (c) is the true math code plus min halfword }
⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("output", assign toks , output routine loc); primitive ("everypar", assign toks , every par loc);
primitive ("everymath", assign toks , every math loc);
primitive ("everydisplay", assign toks , every display loc);
primitive ("everyhbox", assign toks , every hbox loc); primitive ("everyvbox", assign toks , every vbox loc);
primitive ("everyjob", assign toks , every job loc); primitive ("everycr", assign toks , every cr loc);
primitive ("errhelp", assign toks , err help loc);

257. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
assign toks : if chr code ≥ toks base then

begin print esc("toks"); print int (chr code − toks base);
end

else case chr code of
output routine loc : print esc("output");
every par loc : print esc("everypar");
every math loc : print esc("everymath");
every display loc : print esc("everydisplay");
every hbox loc : print esc("everyhbox");
every vbox loc : print esc("everyvbox");
every job loc : print esc("everyjob");
every cr loc : print esc("everycr");
⟨Cases of assign toks for print cmd chr 1468 ⟩

othercases print esc("errhelp")
endcases;

§258 X ETEX PART 17: THE TABLE OF EQUIVALENTS 109

258. We initialize most things to null or undefined values. An undefined font is represented by the internal
code font base .
However, the character code tables are given initial values based on the conventional interpretation of

ASCII code. These initial values should not be changed when TEX is adapted for use with non-English
languages; all changes to the initialization conventions should be made in format packages, not in TEX itself,
so that global interchange of formats is possible.

define null font ≡ font base
define var fam class = 7
define active math char = ˝1FFFFF
define is active math char (#) ≡ math char field (#) = active math char
define is var family (#) ≡ math class field (#) = 7

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
par shape ptr ← null ; eq type (par shape loc)← shape ref ; eq level (par shape loc)← level one ;
for k ← etex pen base to etex pens − 1 do eqtb [k]← eqtb [par shape loc];
for k ← output routine loc to toks base + number regs − 1 do eqtb [k]← eqtb [undefined control sequence];
box (0)← null ; eq type (box base)← box ref ; eq level (box base)← level one ;
for k ← box base + 1 to box base + number regs − 1 do eqtb [k]← eqtb [box base];
cur font ← null font ; eq type (cur font loc)← data ; eq level (cur font loc)← level one ;
for k ← math font base to math font base + number math fonts − 1 do eqtb [k]← eqtb [cur font loc];
equiv (cat code base)← 0; eq type (cat code base)← data ; eq level (cat code base)← level one ;
for k ← cat code base + 1 to int base − 1 do eqtb [k]← eqtb [cat code base];
for k ← 0 to number usvs − 1 do
begin cat code (k)← other char ; math code (k)← hi (k); sf code (k)← 1000;
end;

cat code (carriage return)← car ret ; cat code ("␣")← spacer ; cat code ("\")← escape ;
cat code ("%")← comment ; cat code (invalid code)← invalid char ; cat code (null code)← ignore ;
for k ← "0" to "9" do math code (k)← hi (k + set class field (var fam class));
for k ← "A" to "Z" do
begin cat code (k)← letter ; cat code (k + "a"− "A")← letter ;
math code (k)← hi (k + set family field (1) + set class field (var fam class));
math code (k + "a"− "A")← hi (k + "a"− "A"+ set family field (1) + set class field (var fam class));
lc code (k)← k + "a"− "A"; lc code (k + "a"− "A")← k + "a"− "A";
uc code (k)← k; uc code (k + "a"− "A")← k;
sf code (k)← 999;
end;

110 PART 17: THE TABLE OF EQUIVALENTS X ETEX §259

259. ⟨ Show equivalent n, in region 4 259 ⟩ ≡
if (n = par shape loc) ∨ ((n ≥ etex pen base) ∧ (n < etex pens)) then
begin print cmd chr (set shape , n); print char ("=");
if equiv (n) = null then print char ("0")
else if n > par shape loc then

begin print int (penalty (equiv (n))); print char ("␣"); print int (penalty (equiv (n) + 1));
if penalty (equiv (n)) > 1 then print esc("ETC.");
end

else print int (info(par shape ptr));
end

else if n < toks base then
begin print cmd chr (assign toks , n); print char ("=");
if equiv (n) ̸= null then show token list (link (equiv (n)),null , 32);
end

else if n < box base then
begin print esc("toks"); print int (n− toks base); print char ("=");
if equiv (n) ̸= null then show token list (link (equiv (n)),null , 32);
end

else if n < cur font loc then
begin print esc("box"); print int (n− box base); print char ("=");
if equiv (n) = null then print ("void")
else begin depth threshold ← 0; breadth max ← 1; show node list (equiv (n));
end;

end
else if n < cat code base then ⟨ Show the font identifier in eqtb [n] 260 ⟩
else ⟨ Show the halfword code in eqtb [n] 261 ⟩

This code is used in section 278.

260. ⟨ Show the font identifier in eqtb [n] 260 ⟩ ≡
begin if n = cur font loc then print ("current␣font")
else if n < math font base + script size then

begin print esc("textfont"); print int (n−math font base);
end

else if n < math font base + script script size then
begin print esc("scriptfont"); print int (n−math font base − script size);
end

else begin print esc("scriptscriptfont"); print int (n−math font base − script script size);
end;

print char ("=");
print esc(hash [font id base + equiv (n)].rh); { that’s font id text (equiv (n)) }
end

This code is used in section 259.

§261 X ETEX PART 17: THE TABLE OF EQUIVALENTS 111

261. ⟨ Show the halfword code in eqtb [n] 261 ⟩ ≡
if n < math code base then
begin if n < lc code base then
begin print esc("catcode"); print int (n− cat code base);
end

else if n < uc code base then
begin print esc("lccode"); print int (n− lc code base);
end

else if n < sf code base then
begin print esc("uccode"); print int (n− uc code base);
end

else begin print esc("sfcode"); print int (n− sf code base);
end;

print char ("="); print int (equiv (n));
end

else begin print esc("mathcode"); print int (n−math code base); print char ("=");
print int (ho(equiv (n)));
end

This code is used in section 259.

112 PART 17: THE TABLE OF EQUIVALENTS X ETEX §262

262. Region 5 of eqtb contains the integer parameters and registers defined here, as well as the del code
table. The latter table differs from the cat code . . math code tables that precede it, since delimiter codes
are fullword integers while the other kinds of codes occupy at most a halfword. This is what makes region 5
different from region 4. We will store the eq level information in an auxiliary array of quarterwords that will
be defined later.

define pretolerance code = 0 { badness tolerance before hyphenation }
define tolerance code = 1 { badness tolerance after hyphenation }
define line penalty code = 2 { added to the badness of every line }
define hyphen penalty code = 3 { penalty for break after discretionary hyphen }
define ex hyphen penalty code = 4 { penalty for break after explicit hyphen }
define club penalty code = 5 { penalty for creating a club line }
define widow penalty code = 6 { penalty for creating a widow line }
define display widow penalty code = 7 { ditto, just before a display }
define broken penalty code = 8 { penalty for breaking a page at a broken line }
define bin op penalty code = 9 { penalty for breaking after a binary operation }
define rel penalty code = 10 { penalty for breaking after a relation }
define pre display penalty code = 11 { penalty for breaking just before a displayed formula }
define post display penalty code = 12 { penalty for breaking just after a displayed formula }
define inter line penalty code = 13 { additional penalty between lines }
define double hyphen demerits code = 14 { demerits for double hyphen break }
define final hyphen demerits code = 15 { demerits for final hyphen break }
define adj demerits code = 16 { demerits for adjacent incompatible lines }
define mag code = 17 {magnification ratio }
define delimiter factor code = 18 { ratio for variable-size delimiters }
define looseness code = 19 { change in number of lines for a paragraph }
define time code = 20 { current time of day }
define day code = 21 { current day of the month }
define month code = 22 { current month of the year }
define year code = 23 { current year of our Lord }
define show box breadth code = 24 { nodes per level in show box }
define show box depth code = 25 {maximum level in show box }
define hbadness code = 26 { hboxes exceeding this badness will be shown by hpack }
define vbadness code = 27 { vboxes exceeding this badness will be shown by vpack }
define pausing code = 28 { pause after each line is read from a file }
define tracing online code = 29 { show diagnostic output on terminal }
define tracing macros code = 30 { show macros as they are being expanded }
define tracing stats code = 31 { show memory usage if TEX knows it }
define tracing paragraphs code = 32 { show line-break calculations }
define tracing pages code = 33 { show page-break calculations }
define tracing output code = 34 { show boxes when they are shipped out }
define tracing lost chars code = 35 { show characters that aren’t in the font }
define tracing commands code = 36 { show command codes at big switch }
define tracing restores code = 37 { show equivalents when they are restored }
define uc hyph code = 38 { hyphenate words beginning with a capital letter }
define output penalty code = 39 { penalty found at current page break }
define max dead cycles code = 40 { bound on consecutive dead cycles of output }
define hang after code = 41 { hanging indentation changes after this many lines }
define floating penalty code = 42 { penalty for insertions held over after a split }
define global defs code = 43 { override \global specifications }
define cur fam code = 44 { current family }
define escape char code = 45 { escape character for token output }
define default hyphen char code = 46 { value of \hyphenchar when a font is loaded }

§262 X ETEX PART 17: THE TABLE OF EQUIVALENTS 113

define default skew char code = 47 { value of \skewchar when a font is loaded }
define end line char code = 48 { character placed at the right end of the buffer }
define new line char code = 49 { character that prints as print ln }
define language code = 50 { current hyphenation table }
define left hyphen min code = 51 {minimum left hyphenation fragment size }
define right hyphen min code = 52 {minimum right hyphenation fragment size }
define holding inserts code = 53 { do not remove insertion nodes from \box255 }
define error context lines code = 54 {maximum intermediate line pairs shown }
define tex int pars = 55 { total number of TEX’s integer parameters }
define etex int base = tex int pars { base for ε-TEX’s integer parameters }
define tracing assigns code = etex int base { show assignments }
define tracing groups code = etex int base + 1 { show save/restore groups }
define tracing ifs code = etex int base + 2 { show conditionals }
define tracing scan tokens code = etex int base + 3 { show pseudo file open and close }
define tracing nesting code = etex int base + 4 { show incomplete groups and ifs within files }
define pre display direction code = etex int base + 5 { text direction preceding a display }
define last line fit code = etex int base + 6 { adjustment for last line of paragraph }
define saving vdiscards code = etex int base + 7 { save items discarded from vlists }
define saving hyph codes code = etex int base + 8 { save hyphenation codes for languages }
define suppress fontnotfound error code = etex int base + 9 { suppress errors for missing fonts }
define XeTeX linebreak locale code = etex int base + 10

{ string number of locale to use for linebreak locations }
define XeTeX linebreak penalty code = etex int base + 11

{ penalty to use at locale-dependent linebreak locations }
define XeTeX protrude chars code = etex int base + 12

{ protrude chars at left/right edge of paragraphs }
define eTeX state code = etex int base + 13 { ε-TEX state variables }
define etex int pars = eTeX state code + eTeX states { total number of ε-TEX’s integer parameters }
define int pars = etex int pars { total number of integer parameters }
define count base = int base + int pars {number regs user \count registers }
define del code base = count base + number regs {number usvs delimiter code mappings }
define dimen base = del code base + number usvs { beginning of region 6 }
define del code (#) ≡ eqtb [del code base + #].int
define count (#) ≡ eqtb [count base + #].int
define int par (#) ≡ eqtb [int base + #].int { an integer parameter }
define pretolerance ≡ int par (pretolerance code)
define tolerance ≡ int par (tolerance code)
define line penalty ≡ int par (line penalty code)
define hyphen penalty ≡ int par (hyphen penalty code)
define ex hyphen penalty ≡ int par (ex hyphen penalty code)
define club penalty ≡ int par (club penalty code)
define widow penalty ≡ int par (widow penalty code)
define display widow penalty ≡ int par (display widow penalty code)
define broken penalty ≡ int par (broken penalty code)
define bin op penalty ≡ int par (bin op penalty code)
define rel penalty ≡ int par (rel penalty code)
define pre display penalty ≡ int par (pre display penalty code)
define post display penalty ≡ int par (post display penalty code)
define inter line penalty ≡ int par (inter line penalty code)
define double hyphen demerits ≡ int par (double hyphen demerits code)
define final hyphen demerits ≡ int par (final hyphen demerits code)
define adj demerits ≡ int par (adj demerits code)

114 PART 17: THE TABLE OF EQUIVALENTS X ETEX §262

define mag ≡ int par (mag code)
define delimiter factor ≡ int par (delimiter factor code)
define looseness ≡ int par (looseness code)
define time ≡ int par (time code)
define day ≡ int par (day code)
define month ≡ int par (month code)
define year ≡ int par (year code)
define show box breadth ≡ int par (show box breadth code)
define show box depth ≡ int par (show box depth code)
define hbadness ≡ int par (hbadness code)
define vbadness ≡ int par (vbadness code)
define pausing ≡ int par (pausing code)
define tracing online ≡ int par (tracing online code)
define tracing macros ≡ int par (tracing macros code)
define tracing stats ≡ int par (tracing stats code)
define tracing paragraphs ≡ int par (tracing paragraphs code)
define tracing pages ≡ int par (tracing pages code)
define tracing output ≡ int par (tracing output code)
define tracing lost chars ≡ int par (tracing lost chars code)
define tracing commands ≡ int par (tracing commands code)
define tracing restores ≡ int par (tracing restores code)
define uc hyph ≡ int par (uc hyph code)
define output penalty ≡ int par (output penalty code)
define max dead cycles ≡ int par (max dead cycles code)
define hang after ≡ int par (hang after code)
define floating penalty ≡ int par (floating penalty code)
define global defs ≡ int par (global defs code)
define cur fam ≡ int par (cur fam code)
define escape char ≡ int par (escape char code)
define default hyphen char ≡ int par (default hyphen char code)
define default skew char ≡ int par (default skew char code)
define end line char ≡ int par (end line char code)
define new line char ≡ int par (new line char code)
define language ≡ int par (language code)
define left hyphen min ≡ int par (left hyphen min code)
define right hyphen min ≡ int par (right hyphen min code)
define holding inserts ≡ int par (holding inserts code)
define error context lines ≡ int par (error context lines code)

define tracing assigns ≡ int par (tracing assigns code)
define tracing groups ≡ int par (tracing groups code)
define tracing ifs ≡ int par (tracing ifs code)
define tracing scan tokens ≡ int par (tracing scan tokens code)
define tracing nesting ≡ int par (tracing nesting code)
define pre display direction ≡ int par (pre display direction code)
define last line fit ≡ int par (last line fit code)
define saving vdiscards ≡ int par (saving vdiscards code)
define saving hyph codes ≡ int par (saving hyph codes code)
define suppress fontnotfound error ≡ int par (suppress fontnotfound error code)
define XeTeX linebreak locale ≡ int par (XeTeX linebreak locale code)
define XeTeX linebreak penalty ≡ int par (XeTeX linebreak penalty code)
define XeTeX protrude chars ≡ int par (XeTeX protrude chars code)

⟨Assign the values depth threshold ← show box depth and breadth max ← show box breadth 262 ⟩ ≡

§262 X ETEX PART 17: THE TABLE OF EQUIVALENTS 115

depth threshold ← show box depth ; breadth max ← show box breadth

This code is used in section 224.

116 PART 17: THE TABLE OF EQUIVALENTS X ETEX §263

263. We can print the symbolic name of an integer parameter as follows.

procedure print param (n : integer);
begin case n of
pretolerance code : print esc("pretolerance");
tolerance code : print esc("tolerance");
line penalty code : print esc("linepenalty");
hyphen penalty code : print esc("hyphenpenalty");
ex hyphen penalty code : print esc("exhyphenpenalty");
club penalty code : print esc("clubpenalty");
widow penalty code : print esc("widowpenalty");
display widow penalty code : print esc("displaywidowpenalty");
broken penalty code : print esc("brokenpenalty");
bin op penalty code : print esc("binoppenalty");
rel penalty code : print esc("relpenalty");
pre display penalty code : print esc("predisplaypenalty");
post display penalty code : print esc("postdisplaypenalty");
inter line penalty code : print esc("interlinepenalty");
double hyphen demerits code : print esc("doublehyphendemerits");
final hyphen demerits code : print esc("finalhyphendemerits");
adj demerits code : print esc("adjdemerits");
mag code : print esc("mag");
delimiter factor code : print esc("delimiterfactor");
looseness code : print esc("looseness");
time code : print esc("time");
day code : print esc("day");
month code : print esc("month");
year code : print esc("year");
show box breadth code : print esc("showboxbreadth");
show box depth code : print esc("showboxdepth");
hbadness code : print esc("hbadness");
vbadness code : print esc("vbadness");
pausing code : print esc("pausing");
tracing online code : print esc("tracingonline");
tracing macros code : print esc("tracingmacros");
tracing stats code : print esc("tracingstats");
tracing paragraphs code : print esc("tracingparagraphs");
tracing pages code : print esc("tracingpages");
tracing output code : print esc("tracingoutput");
tracing lost chars code : print esc("tracinglostchars");
tracing commands code : print esc("tracingcommands");
tracing restores code : print esc("tracingrestores");
uc hyph code : print esc("uchyph");
output penalty code : print esc("outputpenalty");
max dead cycles code : print esc("maxdeadcycles");
hang after code : print esc("hangafter");
floating penalty code : print esc("floatingpenalty");
global defs code : print esc("globaldefs");
cur fam code : print esc("fam");
escape char code : print esc("escapechar");
default hyphen char code : print esc("defaulthyphenchar");
default skew char code : print esc("defaultskewchar");
end line char code : print esc("endlinechar");

§263 X ETEX PART 17: THE TABLE OF EQUIVALENTS 117

new line char code : print esc("newlinechar");
language code : print esc("language");
left hyphen min code : print esc("lefthyphenmin");
right hyphen min code : print esc("righthyphenmin");
holding inserts code : print esc("holdinginserts");
error context lines code : print esc("errorcontextlines");
XeTeX linebreak penalty code : print esc("XeTeXlinebreakpenalty");
XeTeX protrude chars code : print esc("XeTeXprotrudechars");
⟨Cases for print param 1469 ⟩

othercases print ("[unknown␣integer␣parameter!]")
endcases;
end;

118 PART 17: THE TABLE OF EQUIVALENTS X ETEX §264

264. The integer parameter names must be entered into the hash table.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("pretolerance", assign int , int base + pretolerance code);
primitive ("tolerance", assign int , int base + tolerance code);
primitive ("linepenalty", assign int , int base + line penalty code);
primitive ("hyphenpenalty", assign int , int base + hyphen penalty code);
primitive ("exhyphenpenalty", assign int , int base + ex hyphen penalty code);
primitive ("clubpenalty", assign int , int base + club penalty code);
primitive ("widowpenalty", assign int , int base + widow penalty code);
primitive ("displaywidowpenalty", assign int , int base + display widow penalty code);
primitive ("brokenpenalty", assign int , int base + broken penalty code);
primitive ("binoppenalty", assign int , int base + bin op penalty code);
primitive ("relpenalty", assign int , int base + rel penalty code);
primitive ("predisplaypenalty", assign int , int base + pre display penalty code);
primitive ("postdisplaypenalty", assign int , int base + post display penalty code);
primitive ("interlinepenalty", assign int , int base + inter line penalty code);
primitive ("doublehyphendemerits", assign int , int base + double hyphen demerits code);
primitive ("finalhyphendemerits", assign int , int base + final hyphen demerits code);
primitive ("adjdemerits", assign int , int base + adj demerits code);
primitive ("mag", assign int , int base +mag code);
primitive ("delimiterfactor", assign int , int base + delimiter factor code);
primitive ("looseness", assign int , int base + looseness code);
primitive ("time", assign int , int base + time code);
primitive ("day", assign int , int base + day code);
primitive ("month", assign int , int base +month code);
primitive ("year", assign int , int base + year code);
primitive ("showboxbreadth", assign int , int base + show box breadth code);
primitive ("showboxdepth", assign int , int base + show box depth code);
primitive ("hbadness", assign int , int base + hbadness code);
primitive ("vbadness", assign int , int base + vbadness code);
primitive ("pausing", assign int , int base + pausing code);
primitive ("tracingonline", assign int , int base + tracing online code);
primitive ("tracingmacros", assign int , int base + tracing macros code);
primitive ("tracingstats", assign int , int base + tracing stats code);
primitive ("tracingparagraphs", assign int , int base + tracing paragraphs code);
primitive ("tracingpages", assign int , int base + tracing pages code);
primitive ("tracingoutput", assign int , int base + tracing output code);
primitive ("tracinglostchars", assign int , int base + tracing lost chars code);
primitive ("tracingcommands", assign int , int base + tracing commands code);
primitive ("tracingrestores", assign int , int base + tracing restores code);
primitive ("uchyph", assign int , int base + uc hyph code);
primitive ("outputpenalty", assign int , int base + output penalty code);
primitive ("maxdeadcycles", assign int , int base +max dead cycles code);
primitive ("hangafter", assign int , int base + hang after code);
primitive ("floatingpenalty", assign int , int base + floating penalty code);
primitive ("globaldefs", assign int , int base + global defs code);
primitive ("fam", assign int , int base + cur fam code);
primitive ("escapechar", assign int , int base + escape char code);
primitive ("defaulthyphenchar", assign int , int base + default hyphen char code);
primitive ("defaultskewchar", assign int , int base + default skew char code);
primitive ("endlinechar", assign int , int base + end line char code);
primitive ("newlinechar", assign int , int base + new line char code);

§264 X ETEX PART 17: THE TABLE OF EQUIVALENTS 119

primitive ("language", assign int , int base + language code);
primitive ("lefthyphenmin", assign int , int base + left hyphen min code);
primitive ("righthyphenmin", assign int , int base + right hyphen min code);
primitive ("holdinginserts", assign int , int base + holding inserts code);
primitive ("errorcontextlines", assign int , int base + error context lines code);
primitive ("XeTeXlinebreakpenalty", assign int , int base + XeTeX linebreak penalty code);
primitive ("XeTeXprotrudechars", assign int , int base + XeTeX protrude chars code);

265. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
assign int : if chr code < count base then print param (chr code − int base)

else begin print esc("count"); print int (chr code − count base);
end;

266. The integer parameters should really be initialized by a macro package; the following initialization
does the minimum to keep TEX from complete failure.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
for k ← int base to del code base − 1 do eqtb [k].int ← 0;
mag ← 1000; tolerance ← 10000; hang after ← 1; max dead cycles ← 25; escape char ← "\";
end line char ← carriage return ;
for k ← 0 to number usvs − 1 do del code (k)← −1;
del code (".")← 0; { this null delimiter is used in error recovery }

267. The following procedure, which is called just before TEX initializes its input and output, establishes
the initial values of the date and time. Since standard Pascal cannot provide such information, something
special is needed. The program here simply assumes that suitable values appear in the global variables
sys time , sys day , sys month , and sys year (which are initialized to noon on 4 July 1776, in case the
implementor is careless).

procedure fix date and time ;
begin sys time ← 12 ∗ 60; sys day ← 4; sys month ← 7; sys year ← 1776; { self-evident truths }
time ← sys time ; {minutes since midnight }
day ← sys day ; { day of the month }
month ← sys month ; {month of the year }
year ← sys year ; {Anno Domini }
end;

268. ⟨ Show equivalent n, in region 5 268 ⟩ ≡
begin if n < count base then print param (n− int base)
else if n < del code base then

begin print esc("count"); print int (n− count base);
end

else begin print esc("delcode"); print int (n− del code base);
end;

print char ("="); print int (eqtb [n].int);
end

This code is used in section 278.

269. ⟨ Set variable c to the current escape character 269 ⟩ ≡
c← escape char

This code is used in section 67.

120 PART 17: THE TABLE OF EQUIVALENTS X ETEX §270

270. ⟨Character s is the current new-line character 270 ⟩ ≡
s = new line char

This code is used in sections 59 and 63.

271. TEX is occasionally supposed to print diagnostic information that goes only into the transcript file,
unless tracing online is positive. Here are two routines that adjust the destination of print commands:

procedure begin diagnostic ; { prepare to do some tracing }
begin old setting ← selector ;
if (tracing online ≤ 0) ∧ (selector = term and log) then
begin decr (selector);
if history = spotless then history ← warning issued ;
end;

end;

procedure end diagnostic(blank line : boolean); { restore proper conditions after tracing }
begin print nl ("");
if blank line then print ln ;
selector ← old setting ;
end;

272. Of course we had better declare a few more global variables, if the previous routines are going to
work.

⟨Global variables 13 ⟩ +≡
old setting : 0 . . max selector ;
sys time , sys day , sys month , sys year : integer ; { date and time supplied by external system }

§273 X ETEX PART 17: THE TABLE OF EQUIVALENTS 121

273. The final region of eqtb contains the dimension parameters defined here, and the number regs \dimen

registers.

define par indent code = 0 { indentation of paragraphs }
define math surround code = 1 { space around math in text }
define line skip limit code = 2 { threshold for line skip instead of baseline skip }
define hsize code = 3 { line width in horizontal mode }
define vsize code = 4 { page height in vertical mode }
define max depth code = 5 {maximum depth of boxes on main pages }
define split max depth code = 6 {maximum depth of boxes on split pages }
define box max depth code = 7 {maximum depth of explicit vboxes }
define hfuzz code = 8 { tolerance for overfull hbox messages }
define vfuzz code = 9 { tolerance for overfull vbox messages }
define delimiter shortfall code = 10 {maximum amount uncovered by variable delimiters }
define null delimiter space code = 11 { blank space in null delimiters }
define script space code = 12 { extra space after subscript or superscript }
define pre display size code = 13 { length of text preceding a display }
define display width code = 14 { length of line for displayed equation }
define display indent code = 15 { indentation of line for displayed equation }
define overfull rule code = 16 {width of rule that identifies overfull hboxes }
define hang indent code = 17 { amount of hanging indentation }
define h offset code = 18 { amount of horizontal offset when shipping pages out }
define v offset code = 19 { amount of vertical offset when shipping pages out }
define emergency stretch code = 20 { reduces badnesses on final pass of line-breaking }
define pdf page width code = 21 { page width of the PDF output }
define pdf page height code = 22 { page height of the PDF output }
define dimen pars = 23 { total number of dimension parameters }
define scaled base = dimen base + dimen pars { table of number regs user-defined \dimen registers }
define eqtb size = scaled base + biggest reg { largest subscript of eqtb }
define dimen (#) ≡ eqtb [scaled base + #].sc
define dimen par (#) ≡ eqtb [dimen base + #].sc { a scaled quantity }
define par indent ≡ dimen par (par indent code)
define math surround ≡ dimen par (math surround code)
define line skip limit ≡ dimen par (line skip limit code)
define hsize ≡ dimen par (hsize code)
define vsize ≡ dimen par (vsize code)
define max depth ≡ dimen par (max depth code)
define split max depth ≡ dimen par (split max depth code)
define box max depth ≡ dimen par (box max depth code)
define hfuzz ≡ dimen par (hfuzz code)
define vfuzz ≡ dimen par (vfuzz code)
define delimiter shortfall ≡ dimen par (delimiter shortfall code)
define null delimiter space ≡ dimen par (null delimiter space code)
define script space ≡ dimen par (script space code)
define pre display size ≡ dimen par (pre display size code)
define display width ≡ dimen par (display width code)
define display indent ≡ dimen par (display indent code)
define overfull rule ≡ dimen par (overfull rule code)
define hang indent ≡ dimen par (hang indent code)
define h offset ≡ dimen par (h offset code)
define v offset ≡ dimen par (v offset code)
define emergency stretch ≡ dimen par (emergency stretch code)
define pdf page width ≡ dimen par (pdf page width code)

122 PART 17: THE TABLE OF EQUIVALENTS X ETEX §273

define pdf page height ≡ dimen par (pdf page height code)

procedure print length param (n : integer);
begin case n of
par indent code : print esc("parindent");
math surround code : print esc("mathsurround");
line skip limit code : print esc("lineskiplimit");
hsize code : print esc("hsize");
vsize code : print esc("vsize");
max depth code : print esc("maxdepth");
split max depth code : print esc("splitmaxdepth");
box max depth code : print esc("boxmaxdepth");
hfuzz code : print esc("hfuzz");
vfuzz code : print esc("vfuzz");
delimiter shortfall code : print esc("delimitershortfall");
null delimiter space code : print esc("nulldelimiterspace");
script space code : print esc("scriptspace");
pre display size code : print esc("predisplaysize");
display width code : print esc("displaywidth");
display indent code : print esc("displayindent");
overfull rule code : print esc("overfullrule");
hang indent code : print esc("hangindent");
h offset code : print esc("hoffset");
v offset code : print esc("voffset");
emergency stretch code : print esc("emergencystretch");
pdf page width code : print esc("pdfpagewidth");
pdf page height code : print esc("pdfpageheight");
othercases print ("[unknown␣dimen␣parameter!]")
endcases;
end;

§274 X ETEX PART 17: THE TABLE OF EQUIVALENTS 123

274. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("parindent", assign dimen , dimen base + par indent code);
primitive ("mathsurround", assign dimen , dimen base +math surround code);
primitive ("lineskiplimit", assign dimen , dimen base + line skip limit code);
primitive ("hsize", assign dimen , dimen base + hsize code);
primitive ("vsize", assign dimen , dimen base + vsize code);
primitive ("maxdepth", assign dimen , dimen base +max depth code);
primitive ("splitmaxdepth", assign dimen , dimen base + split max depth code);
primitive ("boxmaxdepth", assign dimen , dimen base + box max depth code);
primitive ("hfuzz", assign dimen , dimen base + hfuzz code);
primitive ("vfuzz", assign dimen , dimen base + vfuzz code);
primitive ("delimitershortfall", assign dimen , dimen base + delimiter shortfall code);
primitive ("nulldelimiterspace", assign dimen , dimen base + null delimiter space code);
primitive ("scriptspace", assign dimen , dimen base + script space code);
primitive ("predisplaysize", assign dimen , dimen base + pre display size code);
primitive ("displaywidth", assign dimen , dimen base + display width code);
primitive ("displayindent", assign dimen , dimen base + display indent code);
primitive ("overfullrule", assign dimen , dimen base + overfull rule code);
primitive ("hangindent", assign dimen , dimen base + hang indent code);
primitive ("hoffset", assign dimen , dimen base + h offset code);
primitive ("voffset", assign dimen , dimen base + v offset code);
primitive ("emergencystretch", assign dimen , dimen base + emergency stretch code);
primitive ("pdfpagewidth", assign dimen , dimen base + pdf page width code);
primitive ("pdfpageheight", assign dimen , dimen base + pdf page height code);

275. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
assign dimen : if chr code < scaled base then print length param (chr code − dimen base)

else begin print esc("dimen"); print int (chr code − scaled base);
end;

276. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
for k ← dimen base to eqtb size do eqtb [k].sc ← 0;

277. ⟨ Show equivalent n, in region 6 277 ⟩ ≡
begin if n < scaled base then print length param (n− dimen base)
else begin print esc("dimen"); print int (n− scaled base);
end;

print char ("="); print scaled (eqtb [n].sc); print ("pt");
end

This code is used in section 278.

124 PART 17: THE TABLE OF EQUIVALENTS X ETEX §278

278. Here is a procedure that displays the contents of eqtb [n] symbolically.

⟨Declare the procedure called print cmd chr 328 ⟩
stat procedure show eqtb(n : pointer);
begin if n < active base then print char ("?") { this can’t happen }
else if n < glue base then ⟨ Show equivalent n, in region 1 or 2 249 ⟩
else if n < local base then ⟨ Show equivalent n, in region 3 255 ⟩

else if n < int base then ⟨ Show equivalent n, in region 4 259 ⟩
else if n < dimen base then ⟨ Show equivalent n, in region 5 268 ⟩
else if n ≤ eqtb size then ⟨ Show equivalent n, in region 6 277 ⟩

else print char ("?"); { this can’t happen either }
end;
tats

279. The last two regions of eqtb have fullword values instead of the three fields eq level , eq type , and
equiv . An eq type is unnecessary, but TEX needs to store the eq level information in another array called
xeq level .

⟨Global variables 13 ⟩ +≡
eqtb : array [active base . . eqtb size] of memory word ;
xeq level : array [int base . . eqtb size] of quarterword ;

280. ⟨ Set initial values of key variables 23 ⟩ +≡
for k ← int base to eqtb size do xeq level [k]← level one ;

281. When the debugging routine search mem is looking for pointers having a given value, it is interested
only in regions 1 to 3 of eqtb , and in the first part of region 4.

⟨ Search eqtb for equivalents equal to p 281 ⟩ ≡
for q ← active base to box base + biggest reg do
begin if equiv (q) = p then

begin print nl ("EQUIV("); print int (q); print char (")");
end;

end

This code is used in section 197.

§282 X ETEX PART 18: THE HASH TABLE 125

282. The hash table. Control sequences are stored and retrieved by means of a fairly standard hash
table algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Pro-
gramming). Once a control sequence enters the table, it is never removed, because there are complicated
situations involving \gdef where the removal of a control sequence at the end of a group would be a mistake
preventable only by the introduction of a complicated reference-count mechanism.
The actual sequence of letters forming a control sequence identifier is stored in the str pool array together

with all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The
first of these, called next (p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text (p), points to the str start entry for p’s identifier. If position p
of the hash table is empty, we have text (p) = 0; if position p is either empty or the end of a coalesced hash
list, we have next (p) = 0. An auxiliary pointer variable called hash used is maintained in such a way that
all locations p ≥ hash used are nonempty. The global variable cs count tells how many multiletter control
sequences have been defined, if statistics are being kept.
A global boolean variable called no new control sequence is set to true during the time that new hash

table entries are forbidden.

define next (#) ≡ hash [#].lh { link for coalesced lists }
define text (#) ≡ hash [#].rh { string number for control sequence name }
define hash is full ≡ (hash used = hash base) { test if all positions are occupied }
define font id text (#) ≡ text (font id base + #) { a frozen font identifier’s name }

⟨Global variables 13 ⟩ +≡
hash : array [hash base . . undefined control sequence − 1] of two halves ; { the hash table }
hash used : pointer ; { allocation pointer for hash }
no new control sequence : boolean ; { are new identifiers legal? }
cs count : integer ; { total number of known identifiers }

283. Primitive support needs a few extra variables and definitions

define prim prime = 1777 { about 85% of primitive size }
define prim base = 1
define prim next (#) ≡ prim [#].lh { link for coalesced lists }
define prim text (#) ≡ prim [#].rh { string number for control sequence name, plus one }
define prim is full ≡ (prim used = prim base) { test if all positions are occupied }
define prim eq level field (#) ≡ #.hh .b1
define prim eq type field (#) ≡ #.hh .b0
define prim equiv field (#) ≡ #.hh .rh
define prim eq level (#) ≡ prim eq level field (eqtb [prim eqtb base + #]) { level of definition }
define prim eq type (#) ≡ prim eq type field (eqtb [prim eqtb base + #]) { command code for equivalent }
define prim equiv (#) ≡ prim equiv field (eqtb [prim eqtb base + #]) { equivalent value }
define undefined primitive = 0

⟨Global variables 13 ⟩ +≡
prim : array [0 . . prim size] of two halves ; { the primitives table }
prim used : pointer ; { allocation pointer for prim }

284. ⟨ Set initial values of key variables 23 ⟩ +≡
no new control sequence ← true ; { new identifiers are usually forbidden }
prim next (0)← 0; prim text (0)← 0;
for k ← 1 to prim size do prim [k]← prim [0];
next (hash base)← 0; text (hash base)← 0;
for k ← hash base + 1 to undefined control sequence − 1 do hash [k]← hash [hash base];

126 PART 18: THE HASH TABLE X ETEX §285

285. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
prim used ← prim size ; { nothing is used }
hash used ← frozen control sequence ; { nothing is used }
cs count ← 0; eq type (frozen dont expand)← dont expand ;
text (frozen dont expand)← "notexpanded:"; eq type (frozen primitive)← ignore spaces ;
equiv (frozen primitive)← 1; eq level (frozen primitive)← level one ;
text (frozen primitive)← "primitive";

286. Here is the subroutine that searches the hash table for an identifier that matches a given string of
length l > 0 appearing in buffer [j . . (j + l − 1)]. If the identifier is found, the corresponding hash table
address is returned. Otherwise, if the global variable no new control sequence is true , the dummy address
undefined control sequence is returned. Otherwise the identifier is inserted into the hash table and its location
is returned.

function id lookup(j, l : integer): pointer ; { search the hash table }
label found ; { go here if you found it }
var h: integer ; { hash code }
d: integer ; { number of characters in incomplete current string }
p: pointer ; { index in hash array }
k: pointer ; { index in buffer array }
ll : integer ; { length in UTF16 code units }

begin ⟨Compute the hash code h 288 ⟩;
p← h+ hash base ; {we start searching here; note that 0 ≤ h < hash prime }
ll ← l;
for d← 0 to l − 1 do
if buffer [j + d] ≥ ˝10000 then incr (ll);

loop begin if text (p) > 0 then
if length (text (p)) = ll then

if str eq buf (text (p), j) then goto found ;
if next (p) = 0 then
begin if no new control sequence then p← undefined control sequence
else ⟨ Insert a new control sequence after p, then make p point to it 287 ⟩;
goto found ;
end;

p← next (p);
end;

found : id lookup ← p;
end;

§287 X ETEX PART 18: THE HASH TABLE 127

287. ⟨ Insert a new control sequence after p, then make p point to it 287 ⟩ ≡
begin if text (p) > 0 then
begin repeat if hash is full then overflow ("hash␣size", hash size);
decr (hash used);

until text (hash used) = 0; { search for an empty location in hash }
next (p)← hash used ; p← hash used ;
end;

str room (ll); d← cur length ;
while pool ptr > str start macro(str ptr) do
begin decr (pool ptr); str pool [pool ptr + l]← str pool [pool ptr];
end; {move current string up to make room for another }

for k ← j to j + l − 1 do
begin if buffer [k] < ˝10000 then append char (buffer [k])
else begin append char (˝D800+ (buffer [k]− ˝10000) div ˝400);

append char (˝DC00+ (buffer [k]− ˝10000)mod ˝400);
end

end;
text (p)← make string ; pool ptr ← pool ptr + d;
stat incr (cs count); tats
end

This code is used in section 286.

288. The value of hash prime should be roughly 85% of hash size , and it should be a prime number. The
theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful.
[See J. S. Vitter, Journal of the ACM 30 (1983), 231–258.]

⟨Compute the hash code h 288 ⟩ ≡
h← 0;
for k ← j to j + l − 1 do
begin h← h+ h+ buffer [k];
while h ≥ hash prime do h← h− hash prime ;
end

This code is used in section 286.

128 PART 18: THE HASH TABLE X ETEX §289

289. Here is the subroutine that searches the primitive table for an identifier

function prim lookup(s : str number): pointer ; { search the primitives table }
label found ; { go here if you found it }
var h: integer ; { hash code }
p: pointer ; { index in hash array }
k: pointer ; { index in string pool }
j, l: integer ;

begin if s ≤ biggest char then
begin if s < 0 then
begin p← undefined primitive ; goto found ;
end

else p← (smod prim prime) + prim base ; {we start searching here }
end

else begin j ← str start macro(s);
if s = str ptr then l← cur length
else l← length (s);
⟨Compute the primitive code h 291 ⟩;
p← h+ prim base ; {we start searching here; note that 0 ≤ h < prim prime }
end;

loop begin if prim text (p) > 1 + biggest char then { p points a multi-letter primitive }
begin if length (prim text (p)− 1) = l then
if str eq str (prim text (p)− 1, s) then goto found ;

end
else if prim text (p) = 1 + s then goto found ; { p points a single-letter primitive }
if prim next (p) = 0 then
begin if no new control sequence then p← undefined primitive
else ⟨ Insert a new primitive after p, then make p point to it 290 ⟩;
goto found ;
end;

p← prim next (p);
end;

found : prim lookup ← p;
end;

290. ⟨ Insert a new primitive after p, then make p point to it 290 ⟩ ≡
begin if prim text (p) > 0 then
begin repeat if prim is full then overflow ("primitive␣size", prim size);

decr (prim used);
until prim text (prim used) = 0; { search for an empty location in prim }
prim next (p)← prim used ; p← prim used ;
end;

prim text (p)← s+ 1;
end

This code is used in section 289.

§291 X ETEX PART 18: THE HASH TABLE 129

291. The value of prim prime should be roughly 85% of prim size , and it should be a prime number.

⟨Compute the primitive code h 291 ⟩ ≡
h← str pool [j];
for k ← j + 1 to j + l − 1 do
begin h← h+ h+ str pool [k];
while h ≥ prim prime do h← h− prim prime ;
end

This code is used in section 289.

292. Single-character control sequences do not need to be looked up in a hash table, since we can use
the character code itself as a direct address. The procedure print cs prints the name of a control sequence,
given a pointer to its address in eqtb . A space is printed after the name unless it is a single nonletter or an
active character. This procedure might be invoked with invalid data, so it is “extra robust.” The individual
characters must be printed one at a time using print , since they may be unprintable.

⟨Basic printing procedures 57 ⟩ +≡
procedure print cs (p : integer); { prints a purported control sequence }

begin if p < hash base then { single character }
if p ≥ single base then
if p = null cs then
begin print esc("csname"); print esc("endcsname"); print char ("␣");
end

else begin print esc(p− single base);
if cat code (p− single base) = letter then print char ("␣");
end

else if p < active base then print esc("IMPOSSIBLE.")
else print char (p− active base)

else if p ≥ undefined control sequence then print esc("IMPOSSIBLE.")
else if (text (p) < 0) ∨ (text (p) ≥ str ptr) then print esc("NONEXISTENT.")
else begin if (p ≥ prim eqtb base) ∧ (p < frozen null font) then

print esc(prim text (p− prim eqtb base)− 1)
else print esc(text (p));
print char ("␣");
end;

end;

293. Here is a similar procedure; it avoids the error checks, and it never prints a space after the control
sequence.

⟨Basic printing procedures 57 ⟩ +≡
procedure sprint cs (p : pointer); { prints a control sequence }

begin if p < hash base then
if p < single base then print char (p− active base)
else if p < null cs then print esc(p− single base)

else begin print esc("csname"); print esc("endcsname");
end

else if (p ≥ prim eqtb base) ∧ (p < frozen null font) then print esc(prim text (p− prim eqtb base)− 1)
else print esc(text (p));

end;

130 PART 18: THE HASH TABLE X ETEX §294

294. We need to put TEX’s “primitive” control sequences into the hash table, together with their command
code (which will be the eq type) and an operand (which will be the equiv). The primitive procedure does
this, in a way that no TEX user can. The global value cur val contains the new eqtb pointer after primitive
has acted.

init procedure primitive (s : str number ; c : quarterword ; o : halfword);
var k: pool pointer ; { index into str pool }
j: 0 . . buf size ; { index into buffer }
l: small number ; { length of the string }
prim val : integer ; { needed to fill prim eqtb }

begin if s < 256 then
begin cur val ← s+ single base ; prim val ← prim lookup(s);
end

else begin k ← str start macro(s); l← str start macro(s+ 1)− k;
{we will move s into the (possibly non-empty) buffer }

if first + l > buf size + 1 then overflow ("buffer␣size", buf size);
for j ← 0 to l − 1 do buffer [first + j]← so(str pool [k + j]);
cur val ← id lookup(first , l); {no new control sequence is false }
flush string ; text (cur val)← s; {we don’t want to have the string twice }
prim val ← prim lookup(s);
end;

eq level (cur val)← level one ; eq type (cur val)← c; equiv (cur val)← o;
prim eq level (prim val)← level one ; prim eq type (prim val)← c; prim equiv (prim val)← o;
end;
tini

§295 X ETEX PART 18: THE HASH TABLE 131

295. Many of TEX’s primitives need no equiv , since they are identifiable by their eq type alone. These
primitives are loaded into the hash table as follows:

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("␣", ex space , 0);
primitive ("/", ital corr , 0);
primitive ("accent", accent , 0);
primitive ("advance", advance , 0);
primitive ("afterassignment", after assignment , 0);
primitive ("aftergroup", after group , 0);
primitive ("begingroup", begin group , 0);
primitive ("char", char num , 0);
primitive ("csname", cs name , 0);
primitive ("delimiter", delim num , 0);
primitive ("XeTeXdelimiter", delim num , 1);
primitive ("Udelimiter", delim num , 1);
primitive ("divide", divide , 0);
primitive ("endcsname", end cs name , 0);
primitive ("endgroup", end group , 0); text (frozen end group)← "endgroup";
eqtb [frozen end group]← eqtb [cur val];
primitive ("expandafter", expand after , 0);
primitive ("font", def font , 0);
primitive ("fontdimen", assign font dimen , 0);
primitive ("halign", halign , 0);
primitive ("hrule", hrule , 0);
primitive ("ignorespaces", ignore spaces , 0);
primitive ("insert", insert , 0);
primitive ("mark",mark , 0);
primitive ("mathaccent",math accent , 0);
primitive ("XeTeXmathaccent",math accent , 1);
primitive ("Umathaccent",math accent , 1);
primitive ("mathchar",math char num , 0);
primitive ("XeTeXmathcharnum",math char num , 1);
primitive ("Umathcharnum",math char num , 1);
primitive ("XeTeXmathchar",math char num , 2);
primitive ("Umathchar",math char num , 2);
primitive ("mathchoice",math choice , 0);
primitive ("multiply",multiply , 0);
primitive ("noalign",no align , 0);
primitive ("noboundary",no boundary , 0);
primitive ("noexpand",no expand , 0);
primitive ("primitive",no expand , 1);
primitive ("nonscript",non script , 0);
primitive ("omit", omit , 0);
primitive ("parshape", set shape , par shape loc);
primitive ("penalty", break penalty , 0);
primitive ("prevgraf", set prev graf , 0);
primitive ("radical", radical , 0);
primitive ("XeTeXradical", radical , 1);
primitive ("Uradical", radical , 1);
primitive ("read", read to cs , 0);
primitive ("relax", relax , too big usv); { cf. scan file name }
text (frozen relax)← "relax"; eqtb [frozen relax]← eqtb [cur val];

132 PART 18: THE HASH TABLE X ETEX §295

primitive ("setbox", set box , 0);
primitive ("the", the , 0);
primitive ("toks", toks register ,mem bot);
primitive ("vadjust", vadjust , 0);
primitive ("valign", valign , 0);
primitive ("vcenter", vcenter , 0);
primitive ("vrule", vrule , 0);

§296 X ETEX PART 18: THE HASH TABLE 133

296. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print cmd chr routine below.

⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
accent : print esc("accent");
advance : print esc("advance");
after assignment : print esc("afterassignment");
after group : print esc("aftergroup");
assign font dimen : print esc("fontdimen");
begin group : print esc("begingroup");
break penalty : print esc("penalty");
char num : print esc("char");
cs name : print esc("csname");
def font : print esc("font");
delim num : if chr code = 1 then print esc("Udelimiter")

else print esc("delimiter");
divide : print esc("divide");
end cs name : print esc("endcsname");
end group : print esc("endgroup");
ex space : print esc("␣");
expand after : if chr code = 0 then print esc("expandafter")

⟨Cases of expandafter for print cmd chr 1574 ⟩;
halign : print esc("halign");
hrule : print esc("hrule");
ignore spaces : if chr code = 0 then print esc("ignorespaces")

else print esc("primitive");
insert : print esc("insert");
ital corr : print esc("/");
mark : begin print esc("mark");

if chr code > 0 then print char ("s");
end;

math accent : if chr code = 1 then print esc("Umathaccent")
else print esc("mathaccent");

math char num : if chr code = 2 then print esc("Umathchar")
else if chr code = 1 then print esc("Umathcharnum")
else print esc("mathchar");

math choice : print esc("mathchoice");
multiply : print esc("multiply");
no align : print esc("noalign");
no boundary : print esc("noboundary");
no expand : if chr code = 0 then print esc("noexpand")
else print esc("primitive");

non script : print esc("nonscript");
omit : print esc("omit");
radical : if chr code = 1 then print esc("Uradical")

else print esc("radical");
read to cs : if chr code = 0 then print esc("read") ⟨Cases of read for print cmd chr 1571 ⟩;
relax : print esc("relax");
set box : print esc("setbox");
set prev graf : print esc("prevgraf");
set shape : case chr code of
par shape loc : print esc("parshape");

134 PART 18: THE HASH TABLE X ETEX §296

⟨Cases of set shape for print cmd chr 1676 ⟩
end; { there are no other cases }

the : if chr code = 0 then print esc("the") ⟨Cases of the for print cmd chr 1497 ⟩;
toks register : ⟨Cases of toks register for print cmd chr 1644 ⟩;
vadjust : print esc("vadjust");
valign : if chr code = 0 then print esc("valign")
⟨Cases of valign for print cmd chr 1512 ⟩;

vcenter : print esc("vcenter");
vrule : print esc("vrule");

297. We will deal with the other primitives later, at some point in the program where their eq type and
equiv values are more meaningful. For example, the primitives for math mode will be loaded when we
consider the routines that deal with formulas. It is easy to find where each particular primitive was treated
by looking in the index at the end; for example, the section where "radical" entered eqtb is listed under
‘\radical primitive’. (Primitives consisting of a single nonalphabetic character, like ‘\/’, are listed under
‘Single-character primitives’.)
Meanwhile, this is a convenient place to catch up on something we were unable to do before the hash table

was defined:

⟨Print the font identifier for font (p) 297 ⟩ ≡
print esc(font id text (font (p)))

This code is used in sections 200 and 202.

§298 X ETEX PART 19: SAVING AND RESTORING EQUIVALENTS 135

298. Saving and restoring equivalents. The nested structure provided by ‘{ . . . }’ groups in TEX
means that eqtb entries valid in outer groups should be saved and restored later if they are overridden inside
the braces. When a new eqtb value is being assigned, the program therefore checks to see if the previous
entry belongs to an outer level. In such a case, the old value is placed on the save stack just before the new
value enters eqtb . At the end of a grouping level, i.e., when the right brace is sensed, the save stack is used
to restore the outer values, and the inner ones are destroyed.
Entries on the save stack are of type memory word . The top item on this stack is save stack [p], where

p = save ptr − 1; it contains three fields called save type , save level , and save index , and it is interpreted in
one of five ways:

1) If save type (p) = restore old value , then save index (p) is a location in eqtb whose current value should
be destroyed at the end of the current group and replaced by save stack [p − 1]. Furthermore if
save index (p) ≥ int base , then save level (p) should replace the corresponding entry in xeq level .

2) If save type (p) = restore zero , then save index (p) is a location in eqtb whose current value should
be destroyed at the end of the current group, when it should be replaced by the value of
eqtb [undefined control sequence].

3) If save type (p) = insert token , then save index (p) is a token that should be inserted into TEX’s input
when the current group ends.

4) If save type (p) = level boundary , then save level (p) is a code explaining what kind of group we were
previously in, and save index (p) points to the level boundary word at the bottom of the entries for
that group. Furthermore, in extended ε-TEX mode, save stack [p− 1] contains the source line number
at which the current level of grouping was entered.

5) If save type (p) = restore sa , then sa chain points to a chain of sparse array entries to be restored at the
end of the current group. Furthermore save index (p) and save level (p) should replace the values of
sa chain and sa level respectively.

define save type (#) ≡ save stack [#].hh .b0 { classifies a save stack entry }
define save level (#) ≡ save stack [#].hh .b1 { saved level for regions 5 and 6, or group code }
define save index (#) ≡ save stack [#].hh .rh { eqtb location or token or save stack location }
define restore old value = 0 { save type when a value should be restored later }
define restore zero = 1 { save type when an undefined entry should be restored }
define insert token = 2 { save type when a token is being saved for later use }
define level boundary = 3 { save type corresponding to beginning of group }
define restore sa = 4 { save type when sparse array entries should be restored }

⟨Declare ε-TEX procedures for tracing and input 314 ⟩

136 PART 19: SAVING AND RESTORING EQUIVALENTS X ETEX §299

299. Here are the group codes that are used to discriminate between different kinds of groups. They allow
TEX to decide what special actions, if any, should be performed when a group ends.
Some groups are not supposed to be ended by right braces. For example, the ‘$’ that begins a math

formula causes a math shift group to be started, and this should be terminated by a matching ‘$’. Similarly,
a group that starts with \left should end with \right, and one that starts with \begingroup should end
with \endgroup.

define bottom level = 0 { group code for the outside world }
define simple group = 1 { group code for local structure only }
define hbox group = 2 { code for ‘\hbox{...}’ }
define adjusted hbox group = 3 { code for ‘\hbox{...}’ in vertical mode }
define vbox group = 4 { code for ‘\vbox{...}’ }
define vtop group = 5 { code for ‘\vtop{...}’ }
define align group = 6 { code for ‘\halign{...}’, ‘\valign{...}’ }
define no align group = 7 { code for ‘\noalign{...}’ }
define output group = 8 { code for output routine }
define math group = 9 { code for, e.g., ‘^{...}’ }
define disc group = 10 { code for ‘\discretionary{...}{...}{...}’ }
define insert group = 11 { code for ‘\insert{...}’, ‘\vadjust{...}’ }
define vcenter group = 12 { code for ‘\vcenter{...}’ }
define math choice group = 13 { code for ‘\mathchoice{...}{...}{...}{...}’ }
define semi simple group = 14 { code for ‘\begingroup...\endgroup’ }
define math shift group = 15 { code for ‘$...$’ }
define math left group = 16 { code for ‘\left...\right’ }
define max group code = 16

⟨Types in the outer block 18 ⟩ +≡
group code = 0 . . max group code ; { save level for a level boundary }

300. The global variable cur group keeps track of what sort of group we are currently in. Another global
variable, cur boundary , points to the topmost level boundary word. And cur level is the current depth of
nesting. The routines are designed to preserve the condition that no entry in the save stack or in eqtb ever
has a level greater than cur level .

301. ⟨Global variables 13 ⟩ +≡
save stack : array [0 . . save size] of memory word ;
save ptr : 0 . . save size ; { first unused entry on save stack }
max save stack : 0 . . save size ; {maximum usage of save stack }
cur level : quarterword ; { current nesting level for groups }
cur group : group code ; { current group type }
cur boundary : 0 . . save size ; {where the current level begins }

302. At this time it might be a good idea for the reader to review the introduction to eqtb that was given
above just before the long lists of parameter names. Recall that the “outer level” of the program is level one ,
since undefined control sequences are assumed to be “defined” at level zero .

⟨ Set initial values of key variables 23 ⟩ +≡
save ptr ← 0; cur level ← level one ; cur group ← bottom level ; cur boundary ← 0; max save stack ← 0;

§303 X ETEX PART 19: SAVING AND RESTORING EQUIVALENTS 137

303. The following macro is used to test if there is room for up to seven more entries on save stack . By
making a conservative test like this, we can get by with testing for overflow in only a few places.

define check full save stack ≡
if save ptr > max save stack then
begin max save stack ← save ptr ;
if max save stack > save size − 7 then overflow ("save␣size", save size);
end

304. Procedure new save level is called when a group begins. The argument is a group identification code
like ‘hbox group ’. After calling this routine, it is safe to put five more entries on save stack .
In some cases integer-valued items are placed onto the save stack just below a level boundary word, because

this is a convenient place to keep information that is supposed to “pop up” just when the group has finished.
For example, when ‘\hbox to 100pt{...}’ is being treated, the 100pt dimension is stored on save stack
just before new save level is called.

We use the notation saved (k) to stand for an integer item that appears in location save ptr + k of the
save stack.

define saved (#) ≡ save stack [save ptr + #].int

procedure new save level (c : group code); { begin a new level of grouping }
begin check full save stack ;
if eTeX ex then
begin saved (0)← line ; incr (save ptr);
end;

save type (save ptr)← level boundary ; save level (save ptr)← cur group ;
save index (save ptr)← cur boundary ;
if cur level = max quarterword then
overflow ("grouping␣levels",max quarterword −min quarterword);

{ quit if (cur level + 1) is too big to be stored in eqtb }
cur boundary ← save ptr ; cur group ← c;
stat if tracing groups > 0 then group trace (false);
tats
incr (cur level); incr (save ptr);
end;

305. Just before an entry of eqtb is changed, the following procedure should be called to update the other
data structures properly. It is important to keep in mind that reference counts in mem include references
from within save stack , so these counts must be handled carefully.

procedure eq destroy (w : memory word); { gets ready to forget w }
var q: pointer ; { equiv field of w }
begin case eq type field (w) of
call , long call , outer call , long outer call : delete token ref (equiv field (w));
glue ref : delete glue ref (equiv field (w));
shape ref : begin q ← equiv field (w); {we need to free a \parshape block }
if q ̸= null then free node (q, info(q) + info(q) + 1);
end; { such a block is 2n+ 1 words long, where n = info(q) }

box ref : flush node list (equiv field (w));
⟨Cases for eq destroy 1645 ⟩

othercases do nothing
endcases;
end;

138 PART 19: SAVING AND RESTORING EQUIVALENTS X ETEX §306

306. To save a value of eqtb [p] that was established at level l, we can use the following subroutine.

procedure eq save (p : pointer ; l : quarterword); { saves eqtb [p] }
begin check full save stack ;
if l = level zero then save type (save ptr)← restore zero
else begin save stack [save ptr]← eqtb [p]; incr (save ptr); save type (save ptr)← restore old value ;
end;

save level (save ptr)← l; save index (save ptr)← p; incr (save ptr);
end;

307. The procedure eq define defines an eqtb entry having specified eq type and equiv fields, and saves the
former value if appropriate. This procedure is used only for entries in the first four regions of eqtb , i.e., only
for entries that have eq type and equiv fields. After calling this routine, it is safe to put four more entries
on save stack , provided that there was room for four more entries before the call, since eq save makes the
necessary test.

define assign trace (#) ≡
stat if tracing assigns > 0 then restore trace (#);
tats

procedure eq define (p : pointer ; t : quarterword ; e : halfword); { new data for eqtb }
label exit ;
begin if eTeX ex ∧ (eq type (p) = t) ∧ (equiv (p) = e) then
begin assign trace (p, "reassigning")
eq destroy (eqtb [p]); return;
end;

assign trace (p, "changing")
if eq level (p) = cur level then eq destroy (eqtb [p])
else if cur level > level one then eq save (p, eq level (p));
eq level (p)← cur level ; eq type (p)← t; equiv (p)← e; assign trace (p, "into")

exit : end;

308. The counterpart of eq define for the remaining (fullword) positions in eqtb is called eq word define .
Since xeq level [p] ≥ level one for all p, a ‘restore zero ’ will never be used in this case.

procedure eq word define (p : pointer ; w : integer);
label exit ;
begin if eTeX ex ∧ (eqtb [p].int = w) then
begin assign trace (p, "reassigning")
return;
end;

assign trace (p, "changing")
if xeq level [p] ̸= cur level then
begin eq save (p, xeq level [p]); xeq level [p]← cur level ;
end;

eqtb [p].int ← w; assign trace (p, "into")
exit : end;

§309 X ETEX PART 19: SAVING AND RESTORING EQUIVALENTS 139

309. The eq define and eq word define routines take care of local definitions. Global definitions are done in
almost the same way, but there is no need to save old values, and the new value is associated with level one .

procedure geq define (p : pointer ; t : quarterword ; e : halfword); { global eq define }
begin assign trace (p, "globally␣changing")
begin eq destroy (eqtb [p]); eq level (p)← level one ; eq type (p)← t; equiv (p)← e;
end; assign trace (p, "into")
end;

procedure geq word define (p : pointer ; w : integer); { global eq word define }
begin assign trace (p, "globally␣changing")
begin eqtb [p].int ← w; xeq level [p]← level one ;
end; assign trace (p, "into")
end;

310. Subroutine save for after puts a token on the stack for save-keeping.

procedure save for after (t : halfword);
begin if cur level > level one then
begin check full save stack ; save type (save ptr)← insert token ; save level (save ptr)← level zero ;
save index (save ptr)← t; incr (save ptr);
end;

end;

311. The unsave routine goes the other way, taking items off of save stack . This routine takes care of
restoration when a level ends; everything belonging to the topmost group is cleared off of the save stack.

procedure back input ; forward ;
procedure unsave ; { pops the top level off the save stack }

label done ;
var p: pointer ; { position to be restored }
l: quarterword ; { saved level, if in fullword regions of eqtb }
t: halfword ; { saved value of cur tok }
a: boolean ; { have we already processed an \aftergroup ? }

begin a← false ;
if cur level > level one then
begin decr (cur level); ⟨Clear off top level from save stack 312 ⟩;
end

else confusion ("curlevel"); { unsave is not used when cur group = bottom level }
end;

140 PART 19: SAVING AND RESTORING EQUIVALENTS X ETEX §312

312. ⟨Clear off top level from save stack 312 ⟩ ≡
loop begin decr (save ptr);
if save type (save ptr) = level boundary then goto done ;
p← save index (save ptr);
if save type (save ptr) = insert token then ⟨ Insert token p into TEX’s input 356 ⟩
else if save type (save ptr) = restore sa then

begin sa restore ; sa chain ← p; sa level ← save level (save ptr);
end

else begin if save type (save ptr) = restore old value then
begin l← save level (save ptr); decr (save ptr);
end

else save stack [save ptr]← eqtb [undefined control sequence];
⟨ Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 313 ⟩;
end;

end;
done : stat if tracing groups > 0 then group trace (true);

tats
if grp stack [in open] = cur boundary then group warning ;

{ groups possibly not properly nested with files }
cur group ← save level (save ptr); cur boundary ← save index (save ptr);
if eTeX ex then decr (save ptr)

This code is used in section 311.

313. A global definition, which sets the level to level one , will not be undone by unsave . If at least one
global definition of eqtb [p] has been carried out within the group that just ended, the last such definition
will therefore survive.

⟨ Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 313 ⟩ ≡
if p < int base then
if eq level (p) = level one then
begin eq destroy (save stack [save ptr]); { destroy the saved value }
stat if tracing restores > 0 then restore trace (p, "retaining");
tats
end

else begin eq destroy (eqtb [p]); { destroy the current value }
eqtb [p]← save stack [save ptr]; { restore the saved value }
stat if tracing restores > 0 then restore trace (p, "restoring");
tats
end

else if xeq level [p] ̸= level one then
begin eqtb [p]← save stack [save ptr]; xeq level [p]← l;
stat if tracing restores > 0 then restore trace (p, "restoring");
tats
end

else begin stat if tracing restores > 0 then restore trace (p, "retaining");
tats
end

This code is used in section 312.

§314 X ETEX PART 19: SAVING AND RESTORING EQUIVALENTS 141

314. ⟨Declare ε-TEX procedures for tracing and input 314 ⟩ ≡
stat procedure restore trace (p : pointer ; s : str number); { eqtb [p] has just been restored or retained }
begin begin diagnostic ; print char ("{"); print (s); print char ("␣"); show eqtb(p); print char ("}");
end diagnostic(false);
end;
tats

See also sections 1471, 1472, 1567, 1568, 1585, 1587, 1588, 1632, 1634, 1648, 1649, 1650, 1651, and 1652.

This code is used in section 298.

315. When looking for possible pointers to a memory location, it is helpful to look for references from eqtb
that might be waiting on the save stack. Of course, we might find spurious pointers too; but this routine is
merely an aid when debugging, and at such times we are grateful for any scraps of information, even if they
prove to be irrelevant.

⟨ Search save stack for equivalents that point to p 315 ⟩ ≡
if save ptr > 0 then
for q ← 0 to save ptr − 1 do
begin if equiv field (save stack [q]) = p then

begin print nl ("SAVE("); print int (q); print char (")");
end;

end

This code is used in section 197.

316. Most of the parameters kept in eqtb can be changed freely, but there’s an exception: The magnification
should not be used with two different values during any TEX job, since a single magnification is applied to
an entire run. The global variable mag set is set to the current magnification whenever it becomes necessary
to “freeze” it at a particular value.

⟨Global variables 13 ⟩ +≡
mag set : integer ; { if nonzero, this magnification should be used henceforth }

317. ⟨ Set initial values of key variables 23 ⟩ +≡
mag set ← 0;

318. The prepare mag subroutine is called whenever TEX wants to use mag for magnification.

procedure prepare mag ;
begin if (mag set > 0) ∧ (mag ̸= mag set) then
begin print err ("Incompatible␣magnification␣("); print int (mag); print (");");
print nl ("␣the␣previous␣value␣will␣be␣retained");
help2 ("I␣can␣handle␣only␣one␣magnification␣ratio␣per␣job.␣So␣I´ve")
("reverted␣to␣the␣magnification␣you␣used␣earlier␣on␣this␣run.");
int error (mag set); geq word define (int base +mag code ,mag set); {mag ← mag set }
end;

if (mag ≤ 0) ∨ (mag > 32768) then
begin print err ("Illegal␣magnification␣has␣been␣changed␣to␣1000");
help1 ("The␣magnification␣ratio␣must␣be␣between␣1␣and␣32768."); int error (mag);
geq word define (int base +mag code , 1000);
end;

mag set ← mag ;
end;

142 PART 20: TOKEN LISTS X ETEX §319

319. Token lists. A TEX token is either a character or a control sequence, and it is represented internally
in one of two ways: (1) A character whose ASCII code number is c and whose command code is m is
represented as the number 221m+ c; the command code is in the range 1 ≤ m ≤ 14. (2) A control sequence
whose eqtb address is p is represented as the number cs token flag +p. Here cs token flag = 225 − 1 is larger
than 221m+ c, yet it is small enough that cs token flag + p < max halfword ; thus, a token fits comfortably
in a halfword.
A token t represents a left brace command if and only if t < left brace limit ; it represents a right brace

command if and only if we have left brace limit ≤ t < right brace limit ; and it represents a match or
end match command if and only if match token ≤ t ≤ end match token . The following definitions take care
of these token-oriented constants and a few others.

define cs token flag = ˝1FFFFFF { amount added to the eqtb location in a token that stands for a
control sequence; is a multiple of ˝10000, less 1 }

define max char val = ˝200000 { to separate char and command code }
define left brace token = ˝200000 { 221 · left brace }
define left brace limit = ˝400000 { 221 · (left brace + 1) }
define right brace token = ˝400000 { 221 · right brace }
define right brace limit = ˝600000 { 221 · (right brace + 1) }
define math shift token = ˝600000 { 221 ·math shift }
define tab token = ˝800000 { 221 · tab mark }
define out param token = ˝A00000 { 221 · out param }
define space token = ˝1400020 { 221 · spacer + "␣" }
define letter token = ˝1600000 { 221 · letter }
define other token = ˝1800000 { 221 · other char }
define match token = ˝1A00000 { 221 ·match }
define end match token = ˝1C00000 { 221 · end match }
define protected token = end match token + 1 { 221 · end match + 1 }

320. ⟨Check the “constant” values for consistency 14 ⟩ +≡
if cs token flag + undefined control sequence > max halfword then bad ← 21;

§321 X ETEX PART 20: TOKEN LISTS 143

321. A token list is a singly linked list of one-word nodes in mem , where each word contains a token
and a link. Macro definitions, output-routine definitions, marks, \write texts, and a few other things are
remembered by TEX in the form of token lists, usually preceded by a node with a reference count in its
token ref count field. The token stored in location p is called info(p).
Three special commands appear in the token lists of macro definitions. When m = match , it means

that TEX should scan a parameter for the current macro; when m = end match , it means that parameter
matching should end and TEX should start reading the macro text; and when m = out param , it means that
TEX should insert parameter number c into the text at this point.
The enclosing { and } characters of a macro definition are omitted, but an output routine will be enclosed

in braces.
Here is an example macro definition that illustrates these conventions. After TEX processes the text

\def\mac a#1#2 \b {#1\−a ##1#2 #2}

the definition of \mac is represented as a token list containing

(reference count), letter a, match #, match #, spacer ␣, \b, end match ,
out param 1, \−, letter a, spacer ␣, mac param #, other char 1,

out param 2, spacer ␣, out param 2.

The procedure scan toks builds such token lists, and macro call does the parameter matching.
Examples such as

\def\m{\def\m{a}␣b}

explain why reference counts would be needed even if TEX had no \let operation: When the token list for
\m is being read, the redefinition of \m changes the eqtb entry before the token list has been fully consumed,
so we dare not simply destroy a token list when its control sequence is being redefined.
If the parameter-matching part of a definition ends with ‘#{’, the corresponding token list will have ‘{’

just before the ‘end match ’ and also at the very end. The first ‘{’ is used to delimit the parameter; the
second one keeps the first from disappearing.

144 PART 20: TOKEN LISTS X ETEX §322

322. The procedure show token list , which prints a symbolic form of the token list that starts at a given
node p, illustrates these conventions. The token list being displayed should not begin with a reference count.
However, the procedure is intended to be robust, so that if the memory links are awry or if p is not really a
pointer to a token list, nothing catastrophic will happen.
An additional parameter q is also given; this parameter is either null or it points to a node in the token

list where a certain magic computation takes place that will be explained later. (Basically, q is non-null
when we are printing the two-line context information at the time of an error message; q marks the place
corresponding to where the second line should begin.)
For example, if p points to the node containing the first a in the token list above, then show token list

will print the string
‘a#1#2␣\b␣−>#1\−a␣##1#2␣#2’;

and if q points to the node containing the second a, the magic computation will be performed just before
the second a is printed.
The generation will stop, and ‘\ETC.’ will be printed, if the length of printing exceeds a given limit l.

Anomalous entries are printed in the form of control sequences that are not followed by a blank space, e.g.,
‘\BAD.’; this cannot be confused with actual control sequences because a real control sequence named BAD

would come out ‘\BAD␣’.

⟨Declare the procedure called show token list 322 ⟩ ≡
procedure show token list (p, q : integer ; l : integer);
label exit ;
var m, c: integer ; { pieces of a token }
match chr : integer ; { character used in a ‘match ’ }
n: ASCII code ; { the highest parameter number, as an ASCII digit }

begin match chr ← "#"; n← "0"; tally ← 0;
while (p ̸= null) ∧ (tally < l) do
begin if p = q then ⟨Do magic computation 350 ⟩;
⟨Display token p, and return if there are problems 323 ⟩;
p← link (p);
end;

if p ̸= null then print esc("ETC.");
exit : end;

This code is used in section 141.

323. ⟨Display token p, and return if there are problems 323 ⟩ ≡
if (p < hi mem min) ∨ (p > mem end) then
begin print esc("CLOBBERED."); return;
end;

if info(p) ≥ cs token flag then print cs (info(p)− cs token flag)
else begin m← info(p) div max char val ; c← info(p)mod max char val ;
if info(p) < 0 then print esc("BAD.")
else ⟨Display the token (m, c) 324 ⟩;
end

This code is used in section 322.

§324 X ETEX PART 20: TOKEN LISTS 145

324. The procedure usually “learns” the character code used for macro parameters by seeing one in a
match command before it runs into any out param commands.

⟨Display the token (m, c) 324 ⟩ ≡
case m of
left brace , right brace ,math shift , tab mark , sup mark , sub mark , spacer , letter , other char : print char (c);
mac param : begin print char (c); print char (c);
end;

out param : begin print char (match chr);
if c ≤ 9 then print char (c+ "0")
else begin print char ("!"); return;
end;

end;
match : begin match chr ← c; print char (c); incr (n); print char (n);
if n > "9" then return;
end;

end match : if c = 0 then print ("−>");
othercases print esc("BAD.")

endcases

This code is used in section 323.

325. Here’s the way we sometimes want to display a token list, given a pointer to its reference count; the
pointer may be null.

procedure token show (p : pointer);
begin if p ̸= null then show token list (link (p),null , 10000000);
end;

326. The print meaning subroutine displays cur cmd and cur chr in symbolic form, including the expan-
sion of a macro or mark.

procedure print meaning ;
begin print cmd chr (cur cmd , cur chr);
if cur cmd ≥ call then
begin print char (":"); print ln ; token show (cur chr);
end

else if (cur cmd = top bot mark) ∧ (cur chr < marks code) then
begin print char (":"); print ln ; token show (cur mark [cur chr]);
end;

end;

146 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES X ETEX §327

327. Introduction to the syntactic routines. Let’s pause a moment now and try to look at the Big
Picture. The TEX program consists of three main parts: syntactic routines, semantic routines, and output
routines. The chief purpose of the syntactic routines is to deliver the user’s input to the semantic routines,
one token at a time. The semantic routines act as an interpreter responding to these tokens, which may be
regarded as commands. And the output routines are periodically called on to convert box-and-glue lists into
a compact set of instructions that will be sent to a typesetter. We have discussed the basic data structures
and utility routines of TEX, so we are good and ready to plunge into the real activity by considering the
syntactic routines.
Our current goal is to come to grips with the get next procedure, which is the keystone of TEX’s input

mechanism. Each call of get next sets the value of three variables cur cmd , cur chr , and cur cs , representing
the next input token.

cur cmd denotes a command code from the long list of codes given above;
cur chr denotes a character code or other modifier of the command code;
cur cs is the eqtb location of the current control sequence,

if the current token was a control sequence, otherwise it’s zero.

Underlying this external behavior of get next is all the machinery necessary to convert from character files
to tokens. At a given time we may be only partially finished with the reading of several files (for which
\input was specified), and partially finished with the expansion of some user-defined macros and/or some
macro parameters, and partially finished with the generation of some text in a template for \halign, and so
on. When reading a character file, special characters must be classified as math delimiters, etc.; comments
and extra blank spaces must be removed, paragraphs must be recognized, and control sequences must be
found in the hash table. Furthermore there are occasions in which the scanning routines have looked ahead
for a word like ‘plus’ but only part of that word was found, hence a few characters must be put back into
the input and scanned again.
To handle these situations, which might all be present simultaneously, TEX uses various stacks that

hold information about the incomplete activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly recursive process, but the get next
procedure is not recursive. Therefore it will not be difficult to translate these algorithms into low-level
languages that do not support recursion.

⟨Global variables 13 ⟩ +≡
cur cmd : eight bits ; { current command set by get next }
cur chr : halfword ; { operand of current command }
cur cs : pointer ; { control sequence found here, zero if none found }
cur tok : halfword ; { packed representative of cur cmd and cur chr }

§328 X ETEX PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES 147

328. The print cmd chr routine prints a symbolic interpretation of a command code and its modifier. This
is used in certain ‘You can´t’ error messages, and in the implementation of diagnostic routines like \show.

The body of print cmd chr is a rather tedious listing of print commands, and most of it is essentially an
inverse to the primitive routine that enters a TEX primitive into eqtb . Therefore much of this procedure
appears elsewhere in the program, together with the corresponding primitive calls.

define chr cmd (#) ≡
begin print (#);
if chr code < ˝10000 then print ASCII (chr code)
else print char (chr code); { non-Plane 0 Unicodes can’t be sent through print ASCII }
end

⟨Declare the procedure called print cmd chr 328 ⟩ ≡
procedure print cmd chr (cmd : quarterword ; chr code : halfword);

var n: integer ; { temp variable }
font name str : str number ; { local vars for \fontname quoting extension }
quote char : UTF16 code ;

begin case cmd of
left brace : chr cmd ("begin−group␣character␣");
right brace : chr cmd ("end−group␣character␣");
math shift : chr cmd ("math␣shift␣character␣");
mac param : chr cmd ("macro␣parameter␣character␣");
sup mark : chr cmd ("superscript␣character␣");
sub mark : chr cmd ("subscript␣character␣");
endv : print ("end␣of␣alignment␣template");
spacer : chr cmd ("blank␣space␣");
letter : chr cmd ("the␣letter␣");
other char : chr cmd ("the␣character␣");
⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩
othercases print ("[unknown␣command␣code!]")
endcases;
end;

See also section 1457.

This code is used in section 278.

148 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES X ETEX §329

329. Here is a procedure that displays the current command.

procedure show cur cmd chr ;
var n: integer ; { level of \if...\fi nesting }
l: integer ; { line where \if started }
p: pointer ;

begin begin diagnostic ; print nl ("{");
if mode ̸= shown mode then
begin print mode (mode); print (":␣"); shown mode ← mode ;
end;

print cmd chr (cur cmd , cur chr);
if tracing ifs > 0 then
if cur cmd ≥ if test then
if cur cmd ≤ fi or else then
begin print (":␣");
if cur cmd = fi or else then
begin print cmd chr (if test , cur if); print char ("␣"); n← 0; l← if line ;
end

else begin n← 1; l← line ;
end;

p← cond ptr ;
while p ̸= null do
begin incr (n); p← link (p);
end;

print ("(level␣"); print int (n); print char (")"); print if line (l);
end;

print char ("}"); end diagnostic(false);
end;

§330 X ETEX PART 22: INPUT STACKS AND STATES 149

330. Input stacks and states. This implementation of TEX uses two different conventions for repre-
senting sequential stacks.

1) If there is frequent access to the top entry, and if the stack is essentially never empty, then the top entry
is kept in a global variable (even better would be a machine register), and the other entries appear in
the array stack [0 . . (ptr − 1)]. For example, the semantic stack described above is handled this way,
and so is the input stack that we are about to study.

2) If there is infrequent top access, the entire stack contents are in the array stack [0 . . (ptr − 1)]. For
example, the save stack is treated this way, as we have seen.

The state of TEX’s input mechanism appears in the input stack, whose entries are records with six fields,
called state , index , start , loc , limit , and name . This stack is maintained with convention (1), so it is declared
in the following way:

⟨Types in the outer block 18 ⟩ +≡
in state record = record state field , index field : quarterword ;
start field , loc field , limit field ,name field : halfword ;
end;

331. ⟨Global variables 13 ⟩ +≡
input stack : array [0 . . stack size] of in state record ;
input ptr : 0 . . stack size ; { first unused location of input stack }
max in stack : 0 . . stack size ; { largest value of input ptr when pushing }
cur input : in state record ; { the “top” input state, according to convention (1) }

332. We’ve already defined the special variable loc ≡ cur input .loc field in our discussion of basic input-
output routines. The other components of cur input are defined in the same way:

define state ≡ cur input .state field { current scanner state }
define index ≡ cur input .index field { reference for buffer information }
define start ≡ cur input .start field { starting position in buffer }
define limit ≡ cur input .limit field { end of current line in buffer }
define name ≡ cur input .name field { name of the current file }

150 PART 22: INPUT STACKS AND STATES X ETEX §333

333. Let’s look more closely now at the control variables (state , index , start , loc , limit , name), assuming
that TEX is reading a line of characters that have been input from some file or from the user’s terminal.
There is an array called buffer that acts as a stack of all lines of characters that are currently being read
from files, including all lines on subsidiary levels of the input stack that are not yet completed. TEX will
return to the other lines when it is finished with the present input file.
(Incidentally, on a machine with byte-oriented addressing, it might be appropriate to combine buffer with

the str pool array, letting the buffer entries grow downward from the top of the string pool and checking
that these two tables don’t bump into each other.)
The line we are currently working on begins in position start of the buffer; the next character we are about

to read is buffer [loc]; and limit is the location of the last character present. If loc > limit , the line has been
completely read. Usually buffer [limit] is the end line char , denoting the end of a line, but this is not true
if the current line is an insertion that was entered on the user’s terminal in response to an error message.
The name variable is a string number that designates the name of the current file, if we are reading a

text file. It is zero if we are reading from the terminal; it is n + 1 if we are reading from input stream n,
where 0 ≤ n ≤ 16. (Input stream 16 stands for an invalid stream number; in such cases the input is actually
from the terminal, under control of the procedure read toks .) Finally 18 ≤ name ≤ 19 indicates that we are
reading a pseudo file created by the \scantokens command.

The state variable has one of three values, when we are scanning such files:

1) state = mid line is the normal state.

2) state = skip blanks is like mid line , but blanks are ignored.

3) state = new line is the state at the beginning of a line.

These state values are assigned numeric codes so that if we add the state code to the next character’s
command code, we get distinct values. For example, ‘mid line + spacer ’ stands for the case that a blank
space character occurs in the middle of a line when it is not being ignored; after this case is processed, the
next value of state will be skip blanks .

define mid line = 1 { state code when scanning a line of characters }
define skip blanks = 2 +max char code { state code when ignoring blanks }
define new line = 3 +max char code +max char code { state code at start of line }

§334 X ETEX PART 22: INPUT STACKS AND STATES 151

334. Additional information about the current line is available via the index variable, which counts how
many lines of characters are present in the buffer below the current level. We have index = 0 when reading
from the terminal and prompting the user for each line; then if the user types, e.g., ‘\input paper’, we will
have index = 1 while reading the file paper.tex. However, it does not follow that index is the same as the
input stack pointer, since many of the levels on the input stack may come from token lists. For example,
the instruction ‘\input paper’ might occur in a token list.

The global variable in open is equal to the index value of the highest non-token-list level. Thus, the
number of partially read lines in the buffer is in open + 1, and we have in open = index when we are not
reading a token list.
If we are not currently reading from the terminal, or from an input stream, we are reading from the file

variable input file [index]. We use the notation terminal input as a convenient abbreviation for name = 0,
and cur file as an abbreviation for input file [index].
The global variable line contains the line number in the topmost open file, for use in error messages. If

we are not reading from the terminal, line stack [index] holds the line number for the enclosing level, so that
line can be restored when the current file has been read. Line numbers should never be negative, since the
negative of the current line number is used to identify the user’s output routine in the mode line field of the
semantic nest entries.
If more information about the input state is needed, it can be included in small arrays like those shown

here. For example, the current page or segment number in the input file might be put into a variable
page , maintained for enclosing levels in ‘page stack : array [1 . . max in open] of integer ’ by analogy with
line stack .

define terminal input ≡ (name = 0) { are we reading from the terminal? }
define cur file ≡ input file [index] { the current alpha file variable }

⟨Global variables 13 ⟩ +≡
in open : 0 . . max in open ; { the number of lines in the buffer, less one }
open parens : 0 . . max in open ; { the number of open text files }
input file : array [1 . . max in open] of alpha file ;
line : integer ; { current line number in the current source file }
line stack : array [1 . . max in open] of integer ;

152 PART 22: INPUT STACKS AND STATES X ETEX §335

335. Users of TEX sometimes forget to balance left and right braces properly, and one of the ways TEX
tries to spot such errors is by considering an input file as broken into subfiles by control sequences that are
declared to be \outer.
A variable called scanner status tells TEX whether or not to complain when a subfile ends. This variable

has six possible values:

normal , means that a subfile can safely end here without incident.

skipping , means that a subfile can safely end here, but not a file, because we’re reading past some conditional
text that was not selected.

defining , means that a subfile shouldn’t end now because a macro is being defined.

matching , means that a subfile shouldn’t end now because a macro is being used and we are searching for
the end of its arguments.

aligning , means that a subfile shouldn’t end now because we are not finished with the preamble of an \halign

or \valign.

absorbing , means that a subfile shouldn’t end now because we are reading a balanced token list for \message,
\write, etc.

If the scanner status is not normal , the variable warning index points to the eqtb location for the relevant
control sequence name to print in an error message.

define skipping = 1 { scanner status when passing conditional text }
define defining = 2 { scanner status when reading a macro definition }
define matching = 3 { scanner status when reading macro arguments }
define aligning = 4 { scanner status when reading an alignment preamble }
define absorbing = 5 { scanner status when reading a balanced text }

⟨Global variables 13 ⟩ +≡
scanner status : normal . . absorbing ; { can a subfile end now? }
warning index : pointer ; { identifier relevant to non-normal scanner status }
def ref : pointer ; { reference count of token list being defined }

336. Here is a procedure that uses scanner status to print a warning message when a subfile has ended,
and at certain other crucial times:

⟨Declare the procedure called runaway 336 ⟩ ≡
procedure runaway ;

var p: pointer ; { head of runaway list }
begin if scanner status > skipping then
begin print nl ("Runaway␣");
case scanner status of
defining : begin print ("definition"); p← def ref ;

end;
matching : begin print ("argument"); p← temp head ;
end;

aligning : begin print ("preamble"); p← hold head ;
end;

absorbing : begin print ("text"); p← def ref ;
end;

end; { there are no other cases }
print char ("?"); print ln ; show token list (link (p),null , error line − 10);
end;

end;

This code is used in section 141.

§337 X ETEX PART 22: INPUT STACKS AND STATES 153

337. However, all this discussion about input state really applies only to the case that we are inputting
from a file. There is another important case, namely when we are currently getting input from a token list.
In this case state = token list , and the conventions about the other state variables are different:

loc is a pointer to the current node in the token list, i.e., the node that will be read next. If loc = null , the
token list has been fully read.

start points to the first node of the token list; this node may or may not contain a reference count, depending
on the type of token list involved.

token type , which takes the place of index in the discussion above, is a code number that explains what kind
of token list is being scanned.

name points to the eqtb address of the control sequence being expanded, if the current token list is a macro.

param start , which takes the place of limit , tells where the parameters of the current macro begin in the
param stack , if the current token list is a macro.

The token type can take several values, depending on where the current token list came from:

parameter , if a parameter is being scanned;
u template , if the ⟨uj⟩ part of an alignment template is being scanned;
v template , if the ⟨vj⟩ part of an alignment template is being scanned;
backed up , if the token list being scanned has been inserted as ‘to be read again’;
inserted , if the token list being scanned has been inserted as the text expansion of a \count or similar

variable;
macro , if a user-defined control sequence is being scanned;
output text , if an \output routine is being scanned;
every par text , if the text of \everypar is being scanned;
every math text , if the text of \everymath is being scanned;
every display text , if the text of \everydisplay is being scanned;
every hbox text , if the text of \everyhbox is being scanned;
every vbox text , if the text of \everyvbox is being scanned;
every job text , if the text of \everyjob is being scanned;
every cr text , if the text of \everycr is being scanned;
mark text , if the text of a \mark is being scanned;
write text , if the text of a \write is being scanned.

The codes for output text , every par text , etc., are equal to a constant plus the corresponding codes for token
list parameters output routine loc , every par loc , etc. The token list begins with a reference count if and
only if token type ≥ macro .

Since ε-TEX’s additional token list parameters precede toks base , the corresponding token types must
precede write text .

define token list = 0 { state code when scanning a token list }
define token type ≡ index { type of current token list }
define param start ≡ limit { base of macro parameters in param stack }
define parameter = 0 { token type code for parameter }
define u template = 1 { token type code for ⟨uj⟩ template }
define v template = 2 { token type code for ⟨vj⟩ template }
define backed up = 3 { token type code for text to be reread }
define backed up char = 4 { special code for backed-up char from X eTeXinterchartoks hook }
define inserted = 5 { token type code for inserted texts }
define macro = 6 { token type code for defined control sequences }
define output text = 7 { token type code for output routines }
define every par text = 8 { token type code for \everypar }
define every math text = 9 { token type code for \everymath }
define every display text = 10 { token type code for \everydisplay }
define every hbox text = 11 { token type code for \everyhbox }

154 PART 22: INPUT STACKS AND STATES X ETEX §337

define every vbox text = 12 { token type code for \everyvbox }
define every job text = 13 { token type code for \everyjob }
define every cr text = 14 { token type code for \everycr }
define mark text = 15 { token type code for \topmark, etc. }
define eTeX text offset = output routine loc − output text
define every eof text = every eof loc − eTeX text offset { token type code for \everyeof }
define inter char text = XeTeX inter char loc − eTeX text offset

{ token type code for \XeTeXinterchartoks }
define write text = toks base − eTeX text offset { token type code for \write }

338. The param stack is an auxiliary array used to hold pointers to the token lists for parameters at the
current level and subsidiary levels of input. This stack is maintained with convention (2), and it grows at a
different rate from the others.

⟨Global variables 13 ⟩ +≡
param stack : array [0 . . param size] of pointer ; { token list pointers for parameters }
param ptr : 0 . . param size ; { first unused entry in param stack }
max param stack : integer ; { largest value of param ptr , will be ≤ param size + 9 }

339. The input routines must also interact with the processing of \halign and \valign, since the appear-
ance of tab marks and \cr in certain places is supposed to trigger the beginning of special ⟨vj⟩ template text
in the scanner. This magic is accomplished by an align state variable that is increased by 1 when a ‘{’ is
scanned and decreased by 1 when a ‘}’ is scanned. The align state is nonzero during the ⟨uj⟩ template, after
which it is set to zero; the ⟨vj⟩ template begins when a tab mark or \cr occurs at a time that align state = 0.

⟨Global variables 13 ⟩ +≡
align state : integer ; { group level with respect to current alignment }

340. Thus, the “current input state” can be very complicated indeed; there can be many levels and each
level can arise in a variety of ways. The show context procedure, which is used by TEX’s error-reporting
routine to print out the current input state on all levels down to the most recent line of characters from an
input file, illustrates most of these conventions. The global variable base ptr contains the lowest level that
was displayed by this procedure.

⟨Global variables 13 ⟩ +≡
base ptr : 0 . . stack size ; { shallowest level shown by show context }

§341 X ETEX PART 22: INPUT STACKS AND STATES 155

341. The status at each level is indicated by printing two lines, where the first line indicates what was
read so far and the second line shows what remains to be read. The context is cropped, if necessary, so
that the first line contains at most half error line characters, and the second contains at most error line .
Non-current input levels whose token type is ‘backed up ’ are shown only if they have not been fully read.

procedure show context ; { prints where the scanner is }
label done ;
var old setting : 0 . . max selector ; { saved selector setting }
nn : integer ; { number of contexts shown so far, less one }
bottom line : boolean ; { have we reached the final context to be shown? }
⟨Local variables for formatting calculations 345 ⟩

begin base ptr ← input ptr ; input stack [base ptr]← cur input ; { store current state }
nn ← −1; bottom line ← false ;
loop begin cur input ← input stack [base ptr]; { enter into the context }
if (state ̸= token list) then
if (name > 19) ∨ (base ptr = 0) then bottom line ← true ;

if (base ptr = input ptr) ∨ bottom line ∨ (nn < error context lines) then
⟨Display the current context 342 ⟩

else if nn = error context lines then
begin print nl ("..."); incr (nn); { omitted if error context lines < 0 }
end;

if bottom line then goto done ;
decr (base ptr);
end;

done : cur input ← input stack [input ptr]; { restore original state }
end;

342. ⟨Display the current context 342 ⟩ ≡
begin if (base ptr = input ptr) ∨ (state ̸= token list) ∨ (token type ̸= backed up) ∨ (loc ̸= null) then

{we omit backed-up token lists that have already been read }
begin tally ← 0; { get ready to count characters }
old setting ← selector ;
if state ̸= token list then

begin ⟨Print location of current line 343 ⟩;
⟨Pseudoprint the line 348 ⟩;
end

else begin ⟨Print type of token list 344 ⟩;
⟨Pseudoprint the token list 349 ⟩;
end;

selector ← old setting ; { stop pseudoprinting }
⟨Print two lines using the tricky pseudoprinted information 347 ⟩;
incr (nn);
end;

end

This code is used in section 341.

156 PART 22: INPUT STACKS AND STATES X ETEX §343

343. This routine should be changed, if necessary, to give the best possible indication of where the current
line resides in the input file. For example, on some systems it is best to print both a page and line number.

⟨Print location of current line 343 ⟩ ≡
if name ≤ 17 then
if terminal input then

if base ptr = 0 then print nl ("<*>")
else print nl ("<insert>␣")

else begin print nl ("<read␣");
if name = 17 then print char ("*") else print int (name − 1);
print char (">");
end

else begin print nl ("l.");
if index = in open then print int (line)
else print int (line stack [index + 1]); { input from a pseudo file }
end;

print char ("␣")

This code is used in section 342.

344. ⟨Print type of token list 344 ⟩ ≡
case token type of
parameter : print nl ("<argument>␣");
u template , v template : print nl ("<template>␣");
backed up , backed up char : if loc = null then print nl ("<recently␣read>␣")
else print nl ("<to␣be␣read␣again>␣");

inserted : print nl ("<inserted␣text>␣");
macro : begin print ln ; print cs (name);
end;

output text : print nl ("<output>␣");
every par text : print nl ("<everypar>␣");
every math text : print nl ("<everymath>␣");
every display text : print nl ("<everydisplay>␣");
every hbox text : print nl ("<everyhbox>␣");
every vbox text : print nl ("<everyvbox>␣");
every job text : print nl ("<everyjob>␣");
every cr text : print nl ("<everycr>␣");
mark text : print nl ("<mark>␣");
every eof text : print nl ("<everyeof>␣");
inter char text : print nl ("<XeTeXinterchartoks>␣");
write text : print nl ("<write>␣");
othercases print nl ("?") { this should never happen }
endcases

This code is used in section 342.

§345 X ETEX PART 22: INPUT STACKS AND STATES 157

345. Here it is necessary to explain a little trick. We don’t want to store a long string that corresponds
to a token list, because that string might take up lots of memory; and we are printing during a time
when an error message is being given, so we dare not do anything that might overflow one of TEX’s tables.
So ‘pseudoprinting’ is the answer: We enter a mode of printing that stores characters into a buffer of
length error line , where character k + 1 is placed into trick buf [k mod error line] if k < trick count ,
otherwise character k is dropped. Initially we set tally ← 0 and trick count ← 1000000; then when
we reach the point where transition from line 1 to line 2 should occur, we set first count ← tally and
trick count ← max(error line , tally +1+ error line − half error line). At the end of the pseudoprinting, the
values of first count , tally , and trick count give us all the information we need to print the two lines, and
all of the necessary text is in trick buf .
Namely, let l be the length of the descriptive information that appears on the first line. The length of

the context information gathered for that line is k = first count , and the length of the context information
gathered for line 2 is m = min(tally , trick count) − k. If l + k ≤ h, where h = half error line , we print
trick buf [0 . . k − 1] after the descriptive information on line 1, and set n ← l + k; here n is the length of
line 1. If l + k > h, some cropping is necessary, so we set n← h and print ‘...’ followed by

trick buf [(l + k − h+ 3) . . k − 1],

where subscripts of trick buf are circular modulo error line . The second line consists of n spaces followed
by trick buf [k . . (k +m − 1)], unless n +m > error line ; in the latter case, further cropping is done. This
is easier to program than to explain.

⟨Local variables for formatting calculations 345 ⟩ ≡
i: 0 . . buf size ; { index into buffer }
j: 0 . . buf size ; { end of current line in buffer }
l: 0 . . half error line ; { length of descriptive information on line 1 }
m: integer ; { context information gathered for line 2 }
n: 0 . . error line ; { length of line 1 }
p: integer ; { starting or ending place in trick buf }
q: integer ; { temporary index }
This code is used in section 341.

346. The following code sets up the print routines so that they will gather the desired information.

define begin pseudoprint ≡
begin l← tally ; tally ← 0; selector ← pseudo ; trick count ← 1000000;
end

define set trick count ≡
begin first count ← tally ; trick count ← tally + 1 + error line − half error line ;
if trick count < error line then trick count ← error line ;
end

158 PART 22: INPUT STACKS AND STATES X ETEX §347

347. And the following code uses the information after it has been gathered.

⟨Print two lines using the tricky pseudoprinted information 347 ⟩ ≡
if trick count = 1000000 then set trick count ; { set trick count must be performed }
if tally < trick count then m← tally − first count
else m← trick count − first count ; { context on line 2 }
if l + first count ≤ half error line then
begin p← 0; n← l + first count ;
end

else begin print ("..."); p← l + first count − half error line + 3; n← half error line ;
end;

for q ← p to first count − 1 do print char (trick buf [q mod error line]);
print ln ;
for q ← 1 to n do print visible char ("␣"); { print n spaces to begin line 2 }
if m+ n ≤ error line then p← first count +m
else p← first count + (error line − n− 3);
for q ← first count to p− 1 do print char (trick buf [q mod error line]);
if m+ n > error line then print ("...")

This code is used in section 342.

348. But the trick is distracting us from our current goal, which is to understand the input state. So let’s
concentrate on the data structures that are being pseudoprinted as we finish up the show context procedure.

⟨Pseudoprint the line 348 ⟩ ≡
begin pseudoprint ;
if buffer [limit] = end line char then j ← limit
else j ← limit + 1; { determine the effective end of the line }
if j > 0 then
for i← start to j − 1 do
begin if i = loc then set trick count ;
print char (buffer [i]);
end

This code is used in section 342.

349. ⟨Pseudoprint the token list 349 ⟩ ≡
begin pseudoprint ;
if token type < macro then show token list (start , loc , 100000)
else show token list (link (start), loc , 100000) { avoid reference count }

This code is used in section 342.

350. Here is the missing piece of show token list that is activated when the token beginning line 2 is about
to be shown:

⟨Do magic computation 350 ⟩ ≡
set trick count

This code is used in section 322.

§351 X ETEX PART 23: MAINTAINING THE INPUT STACKS 159

351. Maintaining the input stacks. The following subroutines change the input status in commonly
needed ways.
First comes push input , which stores the current state and creates a new level (having, initially, the same

properties as the old).

define push input ≡ { enter a new input level, save the old }
begin if input ptr > max in stack then
begin max in stack ← input ptr ;
if input ptr = stack size then overflow ("input␣stack␣size", stack size);
end;

input stack [input ptr]← cur input ; { stack the record }
incr (input ptr);
end

352. And of course what goes up must come down.

define pop input ≡ { leave an input level, re-enter the old }
begin decr (input ptr); cur input ← input stack [input ptr];
end

353. Here is a procedure that starts a new level of token-list input, given a token list p and its type t. If
t = macro , the calling routine should set name and loc .

define back list (#) ≡ begin token list (#, backed up) { backs up a simple token list }
define ins list (#) ≡ begin token list (#, inserted) { inserts a simple token list }

procedure begin token list (p : pointer ; t : quarterword);
begin push input ; state ← token list ; start ← p; token type ← t;
if t ≥ macro then { the token list starts with a reference count }
begin add token ref (p);
if t = macro then param start ← param ptr
else begin loc ← link (p);

if tracing macros > 1 then
begin begin diagnostic ; print nl ("");
case t of
mark text : print esc("mark");
write text : print esc("write");
othercases print cmd chr (assign toks , t− output text + output routine loc)
endcases;
print ("−>"); token show (p); end diagnostic(false);
end;

end;
end

else loc ← p;
end;

160 PART 23: MAINTAINING THE INPUT STACKS X ETEX §354

354. When a token list has been fully scanned, the following computations should be done as we leave
that level of input. The token type tends to be equal to either backed up or inserted about 2/3 of the time.

procedure end token list ; { leave a token-list input level }
begin if token type ≥ backed up then { token list to be deleted }
begin if token type ≤ inserted then flush list (start)
else begin delete token ref (start); { update reference count }
if token type = macro then { parameters must be flushed }

while param ptr > param start do
begin decr (param ptr); flush list (param stack [param ptr]);
end;

end;
end

else if token type = u template then
if align state > 500000 then align state ← 0
else fatal error ("(interwoven␣alignment␣preambles␣are␣not␣allowed)");

pop input ; check interrupt ;
end;

355. Sometimes TEX has read too far and wants to “unscan” what it has seen. The back input procedure
takes care of this by putting the token just scanned back into the input stream, ready to be read again. This
procedure can be used only if cur tok represents the token to be replaced. Some applications of TEX use
this procedure a lot, so it has been slightly optimized for speed.

procedure back input ; { undoes one token of input }
var p: pointer ; { a token list of length one }
begin while (state = token list) ∧ (loc = null) ∧ (token type ̸= v template) do end token list ;

{ conserve stack space }
p← get avail ; info(p)← cur tok ;
if cur tok < right brace limit then
if cur tok < left brace limit then decr (align state)
else incr (align state);

push input ; state ← token list ; start ← p; token type ← backed up ; loc ← p;
{ that was back list (p), without procedure overhead }

end;

356. ⟨ Insert token p into TEX’s input 356 ⟩ ≡
begin t← cur tok ; cur tok ← p;
if a then
begin p← get avail ; info(p)← cur tok ; link (p)← loc ; loc ← p; start ← p;
if cur tok < right brace limit then

if cur tok < left brace limit then decr (align state)
else incr (align state);

end
else begin back input ; a← eTeX ex ;
end;

cur tok ← t;
end

This code is used in section 312.

§357 X ETEX PART 23: MAINTAINING THE INPUT STACKS 161

357. The back error routine is used when we want to replace an offending token just before issuing an error
message. This routine, like back input , requires that cur tok has been set. We disable interrupts during the
call of back input so that the help message won’t be lost.

procedure back error ; { back up one token and call error }
begin OK to interrupt ← false ; back input ; OK to interrupt ← true ; error ;
end;

procedure ins error ; { back up one inserted token and call error }
begin OK to interrupt ← false ; back input ; token type ← inserted ; OK to interrupt ← true ; error ;
end;

358. The begin file reading procedure starts a new level of input for lines of characters to be read from a
file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or limit
or line .

procedure begin file reading ;
begin if in open = max in open then overflow ("text␣input␣levels",max in open);
if first = buf size then overflow ("buffer␣size", buf size);
incr (in open); push input ; index ← in open ; eof seen [index]← false ;
grp stack [index]← cur boundary ; if stack [index]← cond ptr ; line stack [index]← line ; start ← first ;
state ← mid line ; name ← 0; { terminal input is now true }
end;

359. Conversely, the variables must be downdated when such a level of input is finished:

procedure end file reading ;
begin first ← start ; line ← line stack [index];
if (name = 18) ∨ (name = 19) then pseudo close
else if name > 17 then u close (cur file); { forget it }
pop input ; decr (in open);
end;

360. In order to keep the stack from overflowing during a long sequence of inserted ‘\show’ commands,
the following routine removes completed error-inserted lines from memory.

procedure clear for error prompt ;
begin while (state ̸= token list) ∧ terminal input ∧ (input ptr > 0) ∧ (loc > limit) do end file reading ;
print ln ; clear terminal ;
end;

361. To get TEX’s whole input mechanism going, we perform the following actions.

⟨ Initialize the input routines 361 ⟩ ≡
begin input ptr ← 0; max in stack ← 0; in open ← 0; open parens ← 0; max buf stack ← 0;
grp stack [0]← 0; if stack [0]← null ; param ptr ← 0; max param stack ← 0; first ← buf size ;
repeat buffer [first]← 0; decr (first);
until first = 0;
scanner status ← normal ; warning index ← null ; first ← 1; state ← new line ; start ← 1; index ← 0;
line ← 0; name ← 0; force eof ← false ; align state ← 1000000;
if ¬init terminal then goto final end ;
limit ← last ; first ← last + 1; { init terminal has set loc and last }
end

This code is used in section 1391.

162 PART 24: GETTING THE NEXT TOKEN X ETEX §362

362. Getting the next token. The heart of TEX’s input mechanism is the get next procedure, which
we shall develop in the next few sections of the program. Perhaps we shouldn’t actually call it the “heart,”
however, because it really acts as TEX’s eyes and mouth, reading the source files and gobbling them up. And
it also helps TEX to regurgitate stored token lists that are to be processed again.
The main duty of get next is to input one token and to set cur cmd and cur chr to that token’s command

code and modifier. Furthermore, if the input token is a control sequence, the eqtb location of that control
sequence is stored in cur cs ; otherwise cur cs is set to zero.

Underlying this simple description is a certain amount of complexity because of all the cases that need to
be handled. However, the inner loop of get next is reasonably short and fast.

When get next is asked to get the next token of a \read line, it sets cur cmd = cur chr = cur cs = 0 in
the case that no more tokens appear on that line. (There might not be any tokens at all, if the end line char
has ignore as its catcode.)

363. The value of par loc is the eqtb address of ‘\par’. This quantity is needed because a blank line of
input is supposed to be exactly equivalent to the appearance of \par; we must set cur cs ← par loc when
detecting a blank line.

⟨Global variables 13 ⟩ +≡
par loc : pointer ; { location of ‘\par’ in eqtb }
par token : halfword ; { token representing ‘\par’ }

364. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("par", par end , too big usv); { cf. scan file name }
par loc ← cur val ; par token ← cs token flag + par loc ;

365. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
par end : print esc("par");

366. Before getting into get next , let’s consider the subroutine that is called when an ‘\outer’ control
sequence has been scanned or when the end of a file has been reached. These two cases are distinguished by
cur cs , which is zero at the end of a file.

procedure check outer validity ;
var p: pointer ; { points to inserted token list }
q: pointer ; { auxiliary pointer }

begin if scanner status ̸= normal then
begin deletions allowed ← false ; ⟨Back up an outer control sequence so that it can be reread 367 ⟩;
if scanner status > skipping then ⟨Tell the user what has run away and try to recover 368 ⟩
else begin print err ("Incomplete␣"); print cmd chr (if test , cur if);

print (";␣all␣text␣was␣ignored␣after␣line␣"); print int (skip line);
help3 ("A␣forbidden␣control␣sequence␣occurred␣in␣skipped␣text.")
("This␣kind␣of␣error␣happens␣when␣you␣say␣`\if...´␣and␣forget")
("the␣matching␣`\fi´.␣I´ve␣inserted␣a␣`\fi´;␣this␣might␣work.");
if cur cs ̸= 0 then cur cs ← 0
else help line [2]← "The␣file␣ended␣while␣I␣was␣skipping␣conditional␣text.";
cur tok ← cs token flag + frozen fi ; ins error ;
end;

deletions allowed ← true ;
end;

end;

§367 X ETEX PART 24: GETTING THE NEXT TOKEN 163

367. An outer control sequence that occurs in a \read will not be reread, since the error recovery for
\read is not very powerful.

⟨Back up an outer control sequence so that it can be reread 367 ⟩ ≡
if cur cs ̸= 0 then
begin if (state = token list) ∨ (name < 1) ∨ (name > 17) then
begin p← get avail ; info(p)← cs token flag + cur cs ; back list (p);

{ prepare to read the control sequence again }
end;

cur cmd ← spacer ; cur chr ← "␣"; { replace it by a space }
end

This code is used in section 366.

368. ⟨Tell the user what has run away and try to recover 368 ⟩ ≡
begin runaway ; { print a definition, argument, or preamble }
if cur cs = 0 then print err ("File␣ended")
else begin cur cs ← 0; print err ("Forbidden␣control␣sequence␣found");
end;

print ("␣while␣scanning␣"); ⟨Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert
tokens that should lead to recovery 369 ⟩;

print ("␣of␣"); sprint cs (warning index);
help4 ("I␣suspect␣you␣have␣forgotten␣a␣`}´,␣causing␣me")
("to␣read␣past␣where␣you␣wanted␣me␣to␣stop.")
("I´ll␣try␣to␣recover;␣but␣if␣the␣error␣is␣serious,")
("you´d␣better␣type␣`E´␣or␣`X´␣now␣and␣fix␣your␣file.");
error ;
end

This code is used in section 366.

369. The recovery procedure can’t be fully understood without knowing more about the TEX routines that
should be aborted, but we can sketch the ideas here: For a runaway definition or a runaway balanced text
we will insert a right brace; for a runaway preamble, we will insert a special \cr token and a right brace;
and for a runaway argument, we will set long state to outer call and insert \par.

⟨Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 369 ⟩ ≡

p← get avail ;
case scanner status of
defining : begin print ("definition"); info(p)← right brace token + "}";
end;

matching : begin print ("use"); info(p)← par token ; long state ← outer call ;
end;

aligning : begin print ("preamble"); info(p)← right brace token + "}"; q ← p; p← get avail ;
link (p)← q; info(p)← cs token flag + frozen cr ; align state ← −1000000;
end;

absorbing : begin print ("text"); info(p)← right brace token + "}";
end;

end; { there are no other cases }
ins list (p)

This code is used in section 368.

370. We need to mention a procedure here that may be called by get next .

procedure firm up the line ; forward ;

164 PART 24: GETTING THE NEXT TOKEN X ETEX §371

371. Now we’re ready to take the plunge into get next itself. Parts of this routine are executed more often
than any other instructions of TEX.

define switch = 25 { a label in get next }
define start cs = 26 { another }
define not exp = 27

procedure get next ; { sets cur cmd , cur chr , cur cs to next token }
label restart , { go here to get the next input token }
switch , { go here to eat the next character from a file }
reswitch , { go here to digest it again }
start cs , { go here to start looking for a control sequence }
found , { go here when a control sequence has been found }
not exp , { go here when ‘turned out not to start an expanded code }
exit ; { go here when the next input token has been got }

var k: 0 . . buf size ; { an index into buffer }
t: halfword ; { a token }
cat : 0 . . max char code ; { cat code (cur chr), usually }
c: UnicodeScalar ; { constituent of a possible expanded code }
lower : UTF16 code ; { lower surrogate of a possible UTF-16 compound }
d: small number ; { number of excess characters in an expanded code }
sup count : small number ; { number of identical sup mark characters }

begin restart : cur cs ← 0;
if state ̸= token list then ⟨ Input from external file, goto restart if no input found 373 ⟩
else ⟨ Input from token list, goto restart if end of list or if a parameter needs to be expanded 387 ⟩;
⟨ If an alignment entry has just ended, take appropriate action 372 ⟩;

exit : end;

372. An alignment entry ends when a tab or \cr occurs, provided that the current level of braces is the
same as the level that was present at the beginning of that alignment entry; i.e., provided that align state
has returned to the value it had after the ⟨uj⟩ template for that entry.

⟨ If an alignment entry has just ended, take appropriate action 372 ⟩ ≡
if cur cmd ≤ car ret then
if cur cmd ≥ tab mark then
if align state = 0 then ⟨ Insert the ⟨vj⟩ template and goto restart 837 ⟩

This code is used in section 371.

§373 X ETEX PART 24: GETTING THE NEXT TOKEN 165

373. ⟨ Input from external file, goto restart if no input found 373 ⟩ ≡
begin switch : if loc ≤ limit then { current line not yet finished }
begin cur chr ← buffer [loc]; incr (loc);
if (cur chr ≥ ˝D800)∧ (cur chr < ˝DC00)∧ (loc ≤ limit)∧ (buffer [loc] ≥ ˝DC00)∧ (buffer [loc] < ˝E000)

then
begin lower ← buffer [loc]−˝DC00; incr (loc); cur chr ← ˝10000+(cur chr −˝D800)∗1024+ lower ;
end;

reswitch : cur cmd ← cat code (cur chr); ⟨Change state if necessary, and goto switch if the current
character should be ignored, or goto reswitch if the current character changes to another 374 ⟩;

end
else begin state ← new line ;
⟨Move to next line of file, or goto restart if there is no next line, or return if a \read line has

finished 390 ⟩;
check interrupt ; goto switch ;
end;

end

This code is used in section 371.

374. The following 48-way switch accomplishes the scanning quickly, assuming that a decent Pascal
compiler has translated the code. Note that the numeric values for mid line , skip blanks , and new line
are spaced apart from each other by max char code + 1, so we can add a character’s command code to the
state to get a single number that characterizes both.

define any state plus (#) ≡ mid line + #, skip blanks + #,new line + #

⟨Change state if necessary, and goto switch if the current character should be ignored, or goto reswitch if
the current character changes to another 374 ⟩ ≡

case state + cur cmd of
⟨Cases where character is ignored 375 ⟩: goto switch ;
any state plus (escape): ⟨ Scan a control sequence and set state ← skip blanks or mid line 384 ⟩;
any state plus (active char): ⟨Process an active-character control sequence and set state ← mid line 383 ⟩;
any state plus (sup mark): ⟨ If this sup mark starts an expanded character like ^^A or ^^df, then goto

reswitch , otherwise set state ← mid line 382 ⟩;
any state plus (invalid char): ⟨Decry the invalid character and goto restart 376 ⟩;
⟨Handle situations involving spaces, braces, changes of state 377 ⟩
othercases do nothing
endcases

This code is used in section 373.

375. ⟨Cases where character is ignored 375 ⟩ ≡
any state plus (ignore), skip blanks + spacer ,new line + spacer

This code is used in section 374.

376. We go to restart instead of to switch , because state might equal token list after the error has been
dealt with (cf. clear for error prompt).

⟨Decry the invalid character and goto restart 376 ⟩ ≡
begin print err ("Text␣line␣contains␣an␣invalid␣character");
help2 ("A␣funny␣symbol␣that␣I␣can´t␣read␣has␣just␣been␣input.")
("Continue,␣and␣I´ll␣forget␣that␣it␣ever␣happened.");
deletions allowed ← false ; error ; deletions allowed ← true ; goto restart ;
end

This code is used in section 374.

166 PART 24: GETTING THE NEXT TOKEN X ETEX §377

377. define add delims to(#) ≡ #+math shift , #+ tab mark , #+mac param , #+ sub mark , #+ letter ,
#+ other char

⟨Handle situations involving spaces, braces, changes of state 377 ⟩ ≡
mid line + spacer : ⟨Enter skip blanks state, emit a space 379 ⟩;
mid line + car ret : ⟨Finish line, emit a space 378 ⟩;
skip blanks + car ret , any state plus (comment): ⟨Finish line, goto switch 380 ⟩;
new line + car ret : ⟨Finish line, emit a \par 381 ⟩;
mid line + left brace : incr (align state);
skip blanks + left brace ,new line + left brace : begin state ← mid line ; incr (align state);
end;

mid line + right brace : decr (align state);
skip blanks + right brace ,new line + right brace : begin state ← mid line ; decr (align state);
end;

add delims to(skip blanks), add delims to(new line): state ← mid line ;

This code is used in section 374.

378. When a character of type spacer gets through, its character code is changed to "␣" = 4́0 . This
means that the ASCII codes for tab and space, and for the space inserted at the end of a line, will be treated
alike when macro parameters are being matched. We do this since such characters are indistinguishable on
most computer terminal displays.

⟨Finish line, emit a space 378 ⟩ ≡
begin loc ← limit + 1; cur cmd ← spacer ; cur chr ← "␣";
end

This code is used in section 377.

379. The following code is performed only when cur cmd = spacer .

⟨Enter skip blanks state, emit a space 379 ⟩ ≡
begin state ← skip blanks ; cur chr ← "␣";
end

This code is used in section 377.

380. ⟨Finish line, goto switch 380 ⟩ ≡
begin loc ← limit + 1; goto switch ;
end

This code is used in section 377.

381. ⟨Finish line, emit a \par 381 ⟩ ≡
begin loc ← limit + 1; cur cs ← par loc ; cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs);
if cur cmd ≥ outer call then check outer validity ;
end

This code is used in section 377.

§382 X ETEX PART 24: GETTING THE NEXT TOKEN 167

382. Notice that a code like ^^8 becomes x if not followed by a hex digit.

define is hex (#) ≡ (((# ≥ "0") ∧ (# ≤ "9")) ∨ ((# ≥ "a") ∧ (# ≤ "f")))
define hex to cur chr ≡

if c ≤ "9" then cur chr ← c− "0" else cur chr ← c− "a"+ 10;
if cc ≤ "9" then cur chr ← 16 ∗ cur chr + cc − "0"

else cur chr ← 16 ∗ cur chr + cc − "a"+ 10
define long hex to cur chr ≡

if c ≤ "9" then cur chr ← c− "0" else cur chr ← c− "a"+ 10;
if cc ≤ "9" then cur chr ← 16 ∗ cur chr + cc − "0"

else cur chr ← 16 ∗ cur chr + cc − "a"+ 10;
if ccc ≤ "9" then cur chr ← 16 ∗ cur chr + ccc − "0"

else cur chr ← 16 ∗ cur chr + ccc − "a"+ 10;
if cccc ≤ "9" then cur chr ← 16 ∗ cur chr + cccc − "0"

else cur chr ← 16 ∗ cur chr + cccc − "a"+ 10

⟨ If this sup mark starts an expanded character like ^^A or ^^df, then goto reswitch , otherwise set
state ← mid line 382 ⟩ ≡

begin if cur chr = buffer [loc] then
if loc < limit then
begin sup count ← 2;

{we have ↑↑ and another char; check how many ↑s we have altogether, up to a max of 6 }
while (sup count < 6) ∧ (loc + 2 ∗ sup count − 2 ≤ limit) ∧ (cur chr = buffer [loc + sup count − 1])

do incr (sup count); { check whether we have enough hex chars for the number of ↑s }
for d← 1 to sup count do
if ¬is hex (buffer [loc + sup count − 2 + d]) then { found a non-hex char, so do single ↑↑X style }
begin c← buffer [loc + 1];
if c < 2́00 then

begin loc ← loc + 2;
if c < 1́00 then cur chr ← c+ 1́00 else cur chr ← c− 1́00 ;
goto reswitch ;
end;

goto not exp ;
end; { there were the right number of hex chars, so convert them }

cur chr ← 0;
for d← 1 to sup count do

begin c← buffer [loc + sup count − 2 + d];
if c ≤ "9" then cur chr ← 16 ∗ cur chr + c− "0"

else cur chr ← 16 ∗ cur chr + c− "a"+ 10;
end; { check the resulting value is within the valid range }

if cur chr > biggest usv then
begin cur chr ← buffer [loc]; goto not exp ;
end;

loc ← loc + 2 ∗ sup count − 1; goto reswitch ;
end;

not exp : state ← mid line ;
end

This code is used in section 374.

168 PART 24: GETTING THE NEXT TOKEN X ETEX §383

383. ⟨Process an active-character control sequence and set state ← mid line 383 ⟩ ≡
begin cur cs ← cur chr + active base ; cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs);
state ← mid line ;
if cur cmd ≥ outer call then check outer validity ;
end

This code is used in section 374.

384. Control sequence names are scanned only when they appear in some line of a file; once they have
been scanned the first time, their eqtb location serves as a unique identification, so TEX doesn’t need to refer
to the original name any more except when it prints the equivalent in symbolic form.
The program that scans a control sequence has been written carefully in order to avoid the blowups that

might otherwise occur if a malicious user tried something like ‘\catcode´15=0’. The algorithm might look
at buffer [limit + 1], but it never looks at buffer [limit + 2].

If expanded characters like ‘^^A’ or ‘^^df’ appear in or just following a control sequence name, they are
converted to single characters in the buffer and the process is repeated, slowly but surely.

⟨ Scan a control sequence and set state ← skip blanks or mid line 384 ⟩ ≡
begin if loc > limit then cur cs ← null cs { state is irrelevant in this case }
else begin start cs : k ← loc ; cur chr ← buffer [k]; cat ← cat code (cur chr); incr (k);
if cat = letter then state ← skip blanks
else if cat = spacer then state ← skip blanks
else state ← mid line ;

if (cat = letter)∧ (k ≤ limit) then ⟨ Scan ahead in the buffer until finding a nonletter; if an expanded
code is encountered, reduce it and goto start cs ; otherwise if a multiletter control sequence is
found, adjust cur cs and loc , and goto found 386 ⟩

else ⟨ If an expanded code is present, reduce it and goto start cs 385 ⟩; {At this point, we have a
single-character cs name in the buffer. But if the character code is > ˝FFFF, we treat it like a
multiletter name for string purposes, because we use UTF-16 in the string pool. }

if buffer [loc] > ˝FFFF then
begin cur cs ← id lookup(loc , 1); incr (loc); goto found ;
end;

cur cs ← single base + buffer [loc]; incr (loc);
end;

found : cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs);
if cur cmd ≥ outer call then check outer validity ;
end

This code is used in section 374.

§385 X ETEX PART 24: GETTING THE NEXT TOKEN 169

385. Whenever we reach the following piece of code, we will have cur chr = buffer [k−1] and k ≤ limit +1
and cat = cat code (cur chr). If an expanded code like ^^A or ^^df appears in buffer [(k − 1) . . (k + 1)] or
buffer [(k− 1) . . (k+2)], we will store the corresponding code in buffer [k− 1] and shift the rest of the buffer
left two or three places.

⟨ If an expanded code is present, reduce it and goto start cs 385 ⟩ ≡
begin if (cat = sup mark) ∧ (buffer [k] = cur chr) ∧ (k < limit) then
begin sup count ← 2;

{we have ↑↑ and another char; check how many ↑s we have altogether, up to a max of 6 }
while (sup count < 6) ∧ (k + 2 ∗ sup count − 2 ≤ limit) ∧ (buffer [k + sup count − 1] = cur chr) do

incr (sup count); { check whether we have enough hex chars for the number of ↑s }
for d← 1 to sup count do

if ¬is hex (buffer [k + sup count − 2 + d]) then { found a non-hex char, so do single ↑↑X style }
begin c← buffer [k + 1];
if c < 2́00 then
begin if c < 1́00 then buffer [k − 1]← c+ 1́00 else buffer [k − 1]← c− 1́00 ;
d← 2; limit ← limit − d;
while k ≤ limit do

begin buffer [k]← buffer [k + d]; incr (k);
end;

goto start cs ;
end

else sup count ← 0;
end;

if sup count > 0 then { there were the right number of hex chars, so convert them }
begin cur chr ← 0;
for d← 1 to sup count do

begin c← buffer [k + sup count − 2 + d];
if c ≤ "9" then cur chr ← 16 ∗ cur chr + c− "0"

else cur chr ← 16 ∗ cur chr + c− "a"+ 10;
end; { check the resulting value is within the valid range }

if cur chr > biggest usv then cur chr ← buffer [k]
else begin buffer [k − 1]← cur chr ; d← 2 ∗ sup count − 1;

{ shift the rest of the buffer left by d chars }
limit ← limit − d;
while k ≤ limit do
begin buffer [k]← buffer [k + d]; incr (k);
end;

goto start cs ;
end

end
end

end

This code is used in sections 384 and 386.

170 PART 24: GETTING THE NEXT TOKEN X ETEX §386

386. ⟨ Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it
and goto start cs ; otherwise if a multiletter control sequence is found, adjust cur cs and loc , and
goto found 386 ⟩ ≡

begin repeat cur chr ← buffer [k]; cat ← cat code (cur chr); incr (k);
until (cat ̸= letter) ∨ (k > limit);
⟨ If an expanded code is present, reduce it and goto start cs 385 ⟩;
if cat ̸= letter then decr (k); { now k points to first nonletter }
if k > loc + 1 then {multiletter control sequence has been scanned }
begin cur cs ← id lookup(loc , k − loc); loc ← k; goto found ;
end;

end

This code is used in section 384.

387. Let’s consider now what happens when get next is looking at a token list.

⟨ Input from token list, goto restart if end of list or if a parameter needs to be expanded 387 ⟩ ≡
if loc ̸= null then { list not exhausted }
begin t← info(loc); loc ← link (loc); {move to next }
if t ≥ cs token flag then { a control sequence token }
begin cur cs ← t− cs token flag ; cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs);
if cur cmd ≥ outer call then

if cur cmd = dont expand then ⟨Get the next token, suppressing expansion 388 ⟩
else check outer validity ;

end
else begin cur cmd ← t div max char val ; cur chr ← tmod max char val ;

case cur cmd of
left brace : incr (align state);
right brace : decr (align state);
out param : ⟨ Insert macro parameter and goto restart 389 ⟩;
othercases do nothing
endcases;
end;

end
else begin {we are done with this token list }
end token list ; goto restart ; { resume previous level }
end

This code is used in section 371.

388. The present point in the program is reached only when the expand routine has inserted a special
marker into the input. In this special case, info(loc) is known to be a control sequence token, and
link (loc) = null .

define no expand flag = special char { this characterizes a special variant of relax }
⟨Get the next token, suppressing expansion 388 ⟩ ≡

begin cur cs ← info(loc)− cs token flag ; loc ← null ;
cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs);
if cur cmd > max command then
begin cur cmd ← relax ; cur chr ← no expand flag ;
end;

end

This code is used in section 387.

§389 X ETEX PART 24: GETTING THE NEXT TOKEN 171

389. ⟨ Insert macro parameter and goto restart 389 ⟩ ≡
begin begin token list (param stack [param start + cur chr − 1], parameter); goto restart ;
end

This code is used in section 387.

390. All of the easy branches of get next have now been taken care of. There is one more branch.

define end line char inactive ≡ (end line char < 0) ∨ (end line char > 255)

⟨Move to next line of file, or goto restart if there is no next line, or return if a \read line has
finished 390 ⟩ ≡

if name > 17 then ⟨Read next line of file into buffer , or goto restart if the file has ended 392 ⟩
else begin if ¬terminal input then { \read line has ended }

begin cur cmd ← 0; cur chr ← 0; return;
end;

if input ptr > 0 then { text was inserted during error recovery }
begin end file reading ; goto restart ; { resume previous level }
end;

if selector < log only then open log file ;
if interaction > nonstop mode then

begin if end line char inactive then incr (limit);
if limit = start then { previous line was empty }

print nl ("(Please␣type␣a␣command␣or␣say␣`\end´)");
print ln ; first ← start ; prompt input ("*"); { input on-line into buffer }
limit ← last ;
if end line char inactive then decr (limit)
else buffer [limit]← end line char ;
first ← limit + 1; loc ← start ;
end

else fatal error ("***␣(job␣aborted,␣no␣legal␣\end␣found)");
{ nonstop mode, which is intended for overnight batch processing, never waits for on-line input }

end

This code is used in section 373.

391. The global variable force eof is normally false ; it is set true by an \endinput command.

⟨Global variables 13 ⟩ +≡
force eof : boolean ; { should the next \input be aborted early? }

172 PART 24: GETTING THE NEXT TOKEN X ETEX §392

392. ⟨Read next line of file into buffer , or goto restart if the file has ended 392 ⟩ ≡
begin incr (line); first ← start ;
if ¬force eof then
if name ≤ 19 then
begin if pseudo input then { not end of file }
firm up the line { this sets limit }

else if (every eof ̸= null) ∧ ¬eof seen [index] then
begin limit ← first − 1; eof seen [index]← true ; { fake one empty line }
begin token list (every eof , every eof text); goto restart ;
end

else force eof ← true ;
end

else begin if input ln (cur file , true) then { not end of file }
firm up the line { this sets limit }

else if (every eof ̸= null) ∧ ¬eof seen [index] then
begin limit ← first − 1; eof seen [index]← true ; { fake one empty line }
begin token list (every eof , every eof text); goto restart ;
end

else force eof ← true ;
end;

if force eof then
begin if tracing nesting > 0 then

if (grp stack [in open] ̸= cur boundary) ∨ (if stack [in open] ̸= cond ptr) then file warning ;
{ give warning for some unfinished groups and/or conditionals }

if name ≥ 19 then
begin print char (")"); decr (open parens); update terminal ; { show user that file has been read }
end;

force eof ← false ; end file reading ; { resume previous level }
check outer validity ; goto restart ;
end;

if end line char inactive then decr (limit)
else buffer [limit]← end line char ;
first ← limit + 1; loc ← start ; { ready to read }
end

This code is used in section 390.

§393 X ETEX PART 24: GETTING THE NEXT TOKEN 173

393. If the user has set the pausing parameter to some positive value, and if nonstop mode has not been
selected, each line of input is displayed on the terminal and the transcript file, followed by ‘=>’. TEX waits
for a response. If the response is simply carriage return , the line is accepted as it stands, otherwise the line
typed is used instead of the line in the file.

procedure firm up the line ;
var k: 0 . . buf size ; { an index into buffer }
begin limit ← last ;
if pausing > 0 then
if interaction > nonstop mode then

begin wake up terminal ; print ln ;
if start < limit then
for k ← start to limit − 1 do print (buffer [k]);

first ← limit ; prompt input ("=>"); {wait for user response }
if last > first then

begin for k ← first to last − 1 do {move line down in buffer }
buffer [k + start − first]← buffer [k];

limit ← start + last − first ;
end;

end;
end;

394. Since get next is used so frequently in TEX, it is convenient to define three related procedures that
do a little more:

get token not only sets cur cmd and cur chr , it also sets cur tok , a packed halfword version of the current
token.

get x token , meaning “get an expanded token,” is like get token , but if the current token turns out to be
a user-defined control sequence (i.e., a macro call), or a conditional, or something like \topmark or
\expandafter or \csname, it is eliminated from the input by beginning the expansion of the macro
or the evaluation of the conditional.

x token is like get x token except that it assumes that get next has already been called.

In fact, these three procedures account for almost every use of get next .

395. No new control sequences will be defined except during a call of get token , or when \csname com-
presses a token list, because no new control sequence is always true at other times.

procedure get token ; { sets cur cmd , cur chr , cur tok }
begin no new control sequence ← false ; get next ; no new control sequence ← true ;
if cur cs = 0 then cur tok ← (cur cmd ∗max char val) + cur chr
else cur tok ← cs token flag + cur cs ;
end;

174 PART 25: EXPANDING THE NEXT TOKEN X ETEX §396

396. Expanding the next token. Only a dozen or so command codes > max command can possibly
be returned by get next ; in increasing order, they are undefined cs , expand after , no expand , input , if test ,
fi or else , cs name , convert , the , top bot mark , call , long call , outer call , long outer call , and end template .
The expand subroutine is used when cur cmd > max command . It removes a “call” or a conditional or

one of the other special operations just listed. It follows that expand might invoke itself recursively. In all
cases, expand destroys the current token, but it sets things up so that the next get next will deliver the
appropriate next token. The value of cur tok need not be known when expand is called.
Since several of the basic scanning routines communicate via global variables, their values are saved as

local variables of expand so that recursive calls don’t invalidate them.

⟨Declare the procedure called macro call 423 ⟩
⟨Declare the procedure called insert relax 413 ⟩
⟨Declare ε-TEX procedures for expanding 1563 ⟩
procedure pass text ; forward ;
procedure start input ; forward ;
procedure conditional ; forward ;
procedure get x token ; forward ;
procedure conv toks ; forward ;
procedure ins the toks ; forward ;
procedure expand ;

label reswitch ;
var t: halfword ; { token that is being “expanded after” }
b: boolean ; { keep track of nested csnames }
p, q, r: pointer ; { for list manipulation }
j: 0 . . buf size ; { index into buffer }
cv backup : integer ; { to save the global quantity cur val }
cvl backup , radix backup , co backup : small number ; { to save cur val level , etc. }
backup backup : pointer ; { to save link (backup head) }
save scanner status : small number ; { temporary storage of scanner status }

begin cv backup ← cur val ; cvl backup ← cur val level ; radix backup ← radix ; co backup ← cur order ;
backup backup ← link (backup head);

reswitch : if cur cmd < call then ⟨Expand a nonmacro 399 ⟩
else if cur cmd < end template then macro call
else ⟨ Insert a token containing frozen endv 409 ⟩;

cur val ← cv backup ; cur val level ← cvl backup ; radix ← radix backup ; cur order ← co backup ;
link (backup head)← backup backup ;
end;

397. ⟨Global variables 13 ⟩ +≡
is in csname : boolean ;

398. ⟨ Set initial values of key variables 23 ⟩ +≡
is in csname ← false ;

§399 X ETEX PART 25: EXPANDING THE NEXT TOKEN 175

399. ⟨Expand a nonmacro 399 ⟩ ≡
begin if tracing commands > 1 then show cur cmd chr ;
case cur cmd of
top bot mark : ⟨ Insert the appropriate mark text into the scanner 420 ⟩;
expand after : if cur chr = 0 then ⟨Expand the token after the next token 400 ⟩
else ⟨Negate a boolean conditional and goto reswitch 1576 ⟩;

no expand : if cur chr = 0 then ⟨ Suppress expansion of the next token 401 ⟩
else ⟨ Implement \primitive 402 ⟩;

cs name : ⟨Manufacture a control sequence name 406 ⟩;
convert : conv toks ; { this procedure is discussed in Part 27 below }
the : ins the toks ; { this procedure is discussed in Part 27 below }
if test : conditional ; { this procedure is discussed in Part 28 below }
fi or else : ⟨Terminate the current conditional and skip to \fi 545 ⟩;
input : ⟨ Initiate or terminate input from a file 412 ⟩;
othercases ⟨Complain about an undefined macro 404 ⟩
endcases;
end

This code is used in section 396.

400. It takes only a little shuffling to do what TEX calls \expandafter.

⟨Expand the token after the next token 400 ⟩ ≡
begin get token ; t← cur tok ; get token ;
if cur cmd > max command then expand else back input ;
cur tok ← t; back input ;
end

This code is used in section 399.

401. The implementation of \noexpand is a bit trickier, because it is necessary to insert a special
‘dont expand ’ marker into TEX’s reading mechanism. This special marker is processed by get next , but it
does not slow down the inner loop.
Since \outer macros might arise here, we must also clear the scanner status temporarily.

⟨ Suppress expansion of the next token 401 ⟩ ≡
begin save scanner status ← scanner status ; scanner status ← normal ; get token ;
scanner status ← save scanner status ; t← cur tok ; back input ;
{ now start and loc point to the backed-up token t }

if t ≥ cs token flag then
begin p← get avail ; info(p)← cs token flag + frozen dont expand ; link (p)← loc ; start ← p;
loc ← p;
end;

end

This code is used in section 399.

176 PART 25: EXPANDING THE NEXT TOKEN X ETEX §402

402. The \primitive handling. If the primitive meaning of the next token is an expandable command, it
suffices to replace the current token with the primitive one and restart expand /
Otherwise, the token we just read has to be pushed back, as well as a token matching the internal form of

\primitive, that is sneaked in as an alternate form of ignore spaces .
Simply pushing back a token that matches the correct internal command does not work, because approach

would not survive roundtripping to a temporary file.

⟨ Implement \primitive 402 ⟩ ≡
begin save scanner status ← scanner status ; scanner status ← normal ; get token ;
scanner status ← save scanner status ;
if cur cs < hash base then cur cs ← prim lookup(cur cs − single base)
else cur cs ← prim lookup(text (cur cs));
if cur cs ̸= undefined primitive then
begin t← prim eq type (cur cs);
if t > max command then
begin cur cmd ← t; cur chr ← prim equiv (cur cs);
cur tok ← (cur cmd ∗max char val) + cur chr ; cur cs ← 0; goto reswitch ;
end

else begin back input ; { now loc and start point to a one-item list }
p← get avail ; info(p)← cs token flag + frozen primitive ; link (p)← loc ; loc ← p; start ← p;
end;

end;
end

This code is used in section 399.

403. This block deals with unexpandable \primitive appearing at a spot where an integer or an internal
values should have been found. It fetches the next token then resets cur cmd , cur cs , and cur tok , based
on the primitive value of that token. No expansion takes place, because the next token may be all sorts of
things. This could trigger further expansion creating new errors.

⟨Reset cur tok for unexpandable primitives, goto restart 403 ⟩ ≡
begin get token ;
if cur cs < hash base then cur cs ← prim lookup(cur cs − single base)
else cur cs ← prim lookup(text (cur cs));
if cur cs ̸= undefined primitive then
begin cur cmd ← prim eq type (cur cs); cur chr ← prim equiv (cur cs);
cur cs ← prim eqtb base + cur cs ; cur tok ← cs token flag + cur cs ;
end

else begin cur cmd ← relax ; cur chr ← 0; cur tok ← cs token flag + frozen relax ;
cur cs ← frozen relax ;
end;

goto restart ;
end

This code is used in sections 447 and 474.

§404 X ETEX PART 25: EXPANDING THE NEXT TOKEN 177

404. ⟨Complain about an undefined macro 404 ⟩ ≡
begin print err ("Undefined␣control␣sequence");
help5 ("The␣control␣sequence␣at␣the␣end␣of␣the␣top␣line")
("of␣your␣error␣message␣was␣never␣\def´ed.␣If␣you␣have")
("misspelled␣it␣(e.g.,␣`\hobx´),␣type␣`I´␣and␣the␣correct")
("spelling␣(e.g.,␣`I\hbox´).␣Otherwise␣just␣continue,")
("and␣I´ll␣forget␣about␣whatever␣was␣undefined."); error ;
end

This code is used in section 399.

405. The expand procedure and some other routines that construct token lists find it convenient to use
the following macros, which are valid only if the variables p and q are reserved for token-list building.

define store new token (#) ≡
begin q ← get avail ; link (p)← q; info(q)← #; p← q; { link (p) is null }
end

define fast store new token (#) ≡
begin fast get avail (q); link (p)← q; info(q)← #; p← q; { link (p) is null }
end

406. ⟨Manufacture a control sequence name 406 ⟩ ≡
begin r ← get avail ; p← r; { head of the list of characters }
b← is in csname ; is in csname ← true ;
repeat get x token ;
if cur cs = 0 then store new token (cur tok);

until cur cs ̸= 0;
if cur cmd ̸= end cs name then ⟨Complain about missing \endcsname 407 ⟩;
is in csname ← b; ⟨Look up the characters of list r in the hash table, and set cur cs 408 ⟩;
flush list (r);
if eq type (cur cs) = undefined cs then
begin eq define (cur cs , relax , too big usv); {N.B.: The save stack might change }
end; { the control sequence will now match ‘\relax’ }

cur tok ← cur cs + cs token flag ; back input ;
end

This code is used in section 399.

407. ⟨Complain about missing \endcsname 407 ⟩ ≡
begin print err ("Missing␣"); print esc("endcsname"); print ("␣inserted");
help2 ("The␣control␣sequence␣marked␣<to␣be␣read␣again>␣should")
("not␣appear␣between␣\csname␣and␣\endcsname."); back error ;
end

This code is used in sections 406 and 1578.

178 PART 25: EXPANDING THE NEXT TOKEN X ETEX §408

408. ⟨Look up the characters of list r in the hash table, and set cur cs 408 ⟩ ≡
j ← first ; p← link (r);
while p ̸= null do
begin if j ≥ max buf stack then
begin max buf stack ← j + 1;
if max buf stack = buf size then overflow ("buffer␣size", buf size);
end;

buffer [j]← info(p)mod max char val ; incr (j); p← link (p);
end;

if (j > first + 1) ∨ (buffer [first] > ˝FFFF) then
begin no new control sequence ← false ; cur cs ← id lookup(first , j − first);
no new control sequence ← true ;
end

else if j = first then cur cs ← null cs { the list is empty }
else cur cs ← single base + buffer [first] { the list has length one }

This code is used in section 406.

409. An end template command is effectively changed to an endv command by the following code. (The
reason for this is discussed below; the frozen end template at the end of the template has passed the
check outer validity test, so its mission of error detection has been accomplished.)

⟨ Insert a token containing frozen endv 409 ⟩ ≡
begin cur tok ← cs token flag + frozen endv ; back input ;
end

This code is used in section 396.

410. The processing of \input involves the start input subroutine, which will be declared later; the
processing of \endinput is trivial.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("input", input , 0);
primitive ("endinput", input , 1);

411. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
input : if chr code = 0 then print esc("input")
⟨Cases of input for print cmd chr 1559 ⟩

else print esc("endinput");

412. ⟨ Initiate or terminate input from a file 412 ⟩ ≡
if cur chr = 1 then force eof ← true
⟨Cases for input 1560 ⟩

else if name in progress then insert relax
else start input

This code is used in section 399.

413. Sometimes the expansion looks too far ahead, so we want to insert a harmless \relax into the user’s
input.

⟨Declare the procedure called insert relax 413 ⟩ ≡
procedure insert relax ;
begin cur tok ← cs token flag + cur cs ; back input ; cur tok ← cs token flag + frozen relax ; back input ;
token type ← inserted ;
end;

This code is used in section 396.

§414 X ETEX PART 25: EXPANDING THE NEXT TOKEN 179

414. Here is a recursive procedure that is TEX’s usual way to get the next token of input. It has been
slightly optimized to take account of common cases.

procedure get x token ; { sets cur cmd , cur chr , cur tok , and expands macros }
label restart , done ;
begin restart : get next ;
if cur cmd ≤ max command then goto done ;
if cur cmd ≥ call then
if cur cmd < end template then macro call
else begin cur cs ← frozen endv ; cur cmd ← endv ; goto done ; { cur chr = null list }
end

else expand ;
goto restart ;

done : if cur cs = 0 then cur tok ← (cur cmd ∗max char val) + cur chr
else cur tok ← cs token flag + cur cs ;
end;

415. The get x token procedure is essentially equivalent to two consecutive procedure calls: get next ;
x token .

procedure x token ; { get x token without the initial get next }
begin while cur cmd > max command do
begin expand ; get next ;
end;

if cur cs = 0 then cur tok ← (cur cmd ∗max char val) + cur chr
else cur tok ← cs token flag + cur cs ;
end;

416. A control sequence that has been \def’ed by the user is expanded by TEX’s macro call procedure.
Before we get into the details of macro call , however, let’s consider the treatment of primitives like

\topmark, since they are essentially macros without parameters. The token lists for such marks are kept in
a global array of five pointers; we refer to the individual entries of this array by symbolic names top mark ,
etc. The value of top mark is either null or a pointer to the reference count of a token list.

define marks code ≡ 5 { add this for \topmarks etc. }
define top mark code = 0 { the mark in effect at the previous page break }
define first mark code = 1 { the first mark between top mark and bot mark }
define bot mark code = 2 { the mark in effect at the current page break }
define split first mark code = 3 { the first mark found by \vsplit }
define split bot mark code = 4 { the last mark found by \vsplit }
define top mark ≡ cur mark [top mark code]
define first mark ≡ cur mark [first mark code]
define bot mark ≡ cur mark [bot mark code]
define split first mark ≡ cur mark [split first mark code]
define split bot mark ≡ cur mark [split bot mark code]

⟨Global variables 13 ⟩ +≡
cur mark : array [top mark code . . split bot mark code] of pointer ; { token lists for marks }

417. ⟨ Set initial values of key variables 23 ⟩ +≡
top mark ← null ; first mark ← null ; bot mark ← null ; split first mark ← null ; split bot mark ← null ;

180 PART 25: EXPANDING THE NEXT TOKEN X ETEX §418

418. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("topmark", top bot mark , top mark code);
primitive ("firstmark", top bot mark ,first mark code);
primitive ("botmark", top bot mark , bot mark code);
primitive ("splitfirstmark", top bot mark , split first mark code);
primitive ("splitbotmark", top bot mark , split bot mark code);

419. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
top bot mark : begin case (chr code mod marks code) of

first mark code : print esc("firstmark");
bot mark code : print esc("botmark");
split first mark code : print esc("splitfirstmark");
split bot mark code : print esc("splitbotmark");
othercases print esc("topmark")
endcases;
if chr code ≥ marks code then print char ("s");
end;

420. The following code is activated when cur cmd = top bot mark and when cur chr is a code like
top mark code .

⟨ Insert the appropriate mark text into the scanner 420 ⟩ ≡
begin t← cur chr mod marks code ;
if cur chr ≥ marks code then scan register num else cur val ← 0;
if cur val = 0 then cur ptr ← cur mark [t]
else ⟨Compute the mark pointer for mark type t and class cur val 1635 ⟩;
if cur ptr ̸= null then begin token list (cur ptr ,mark text);
end

This code is used in section 399.

421. Now let’s consider macro call itself, which is invoked when TEX is scanning a control sequence whose
cur cmd is either call , long call , outer call , or long outer call . The control sequence definition appears in
the token list whose reference count is in location cur chr of mem .

The global variable long state will be set to call or to long call , depending on whether or not the control
sequence disallows \par in its parameters. The get next routine will set long state to outer call and emit
\par, if a file ends or if an \outer control sequence occurs in the midst of an argument.

⟨Global variables 13 ⟩ +≡
long state : call . . long outer call ; { governs the acceptance of \par }

422. The parameters, if any, must be scanned before the macro is expanded. Parameters are token lists
without reference counts. They are placed on an auxiliary stack called pstack while they are being scanned,
since the param stack may be losing entries during the matching process. (Note that param stack can’t
be gaining entries, since macro call is the only routine that puts anything onto param stack , and it is not
recursive.)

⟨Global variables 13 ⟩ +≡
pstack : array [0 . . 8] of pointer ; { arguments supplied to a macro }

§423 X ETEX PART 25: EXPANDING THE NEXT TOKEN 181

423. After parameter scanning is complete, the parameters are moved to the param stack . Then the macro
body is fed to the scanner; in other words, macro call places the defined text of the control sequence at the
top of TEX’s input stack, so that get next will proceed to read it next.

The global variable cur cs contains the eqtb address of the control sequence being expanded, when
macro call begins. If this control sequence has not been declared \long, i.e., if its command code in the
eq type field is not long call or long outer call , its parameters are not allowed to contain the control sequence
\par. If an illegal \par appears, the macro call is aborted, and the \par will be rescanned.

⟨Declare the procedure called macro call 423 ⟩ ≡
procedure macro call ; { invokes a user-defined control sequence }

label exit , continue , done , done1 , found ;
var r: pointer ; { current node in the macro’s token list }
p: pointer ; { current node in parameter token list being built }
q: pointer ; { new node being put into the token list }
s: pointer ; { backup pointer for parameter matching }
t: pointer ; { cycle pointer for backup recovery }
u, v: pointer ; { auxiliary pointers for backup recovery }
rbrace ptr : pointer ; { one step before the last right brace token }
n: small number ; { the number of parameters scanned }
unbalance : halfword ; { unmatched left braces in current parameter }
m: halfword ; { the number of tokens or groups (usually) }
ref count : pointer ; { start of the token list }
save scanner status : small number ; { scanner status upon entry }
save warning index : pointer ; {warning index upon entry }
match chr : ASCII code ; { character used in parameter }

begin save scanner status ← scanner status ; save warning index ← warning index ;
warning index ← cur cs ; ref count ← cur chr ; r ← link (ref count); n← 0;
if tracing macros > 0 then ⟨ Show the text of the macro being expanded 435 ⟩;
if info(r) = protected token then r ← link (r);
if info(r) ̸= end match token then ⟨ Scan the parameters and make link (r) point to the macro body;

but return if an illegal \par is detected 425 ⟩;
⟨Feed the macro body and its parameters to the scanner 424 ⟩;

exit : scanner status ← save scanner status ; warning index ← save warning index ;
end;

This code is used in section 396.

424. Before we put a new token list on the input stack, it is wise to clean off all token lists that have
recently been depleted. Then a user macro that ends with a call to itself will not require unbounded stack
space.

⟨Feed the macro body and its parameters to the scanner 424 ⟩ ≡
while (state = token list) ∧ (loc = null) ∧ (token type ̸= v template) do end token list ;

{ conserve stack space }
begin token list (ref count ,macro); name ← warning index ; loc ← link (r);
if n > 0 then
begin if param ptr + n > max param stack then

begin max param stack ← param ptr + n;
if max param stack > param size then overflow ("parameter␣stack␣size", param size);
end;

for m← 0 to n− 1 do param stack [param ptr +m]← pstack [m];
param ptr ← param ptr + n;
end

This code is used in section 423.

182 PART 25: EXPANDING THE NEXT TOKEN X ETEX §425

425. At this point, the reader will find it advisable to review the explanation of token list format that was
presented earlier, since many aspects of that format are of importance chiefly in the macro call routine.

The token list might begin with a string of compulsory tokens before the first match or end match . In
that case the macro name is supposed to be followed by those tokens; the following program will set s = null
to represent this restriction. Otherwise s will be set to the first token of a string that will delimit the next
parameter.

⟨ Scan the parameters and make link (r) point to the macro body; but return if an illegal \par is
detected 425 ⟩ ≡

begin scanner status ← matching ; unbalance ← 0; long state ← eq type (cur cs);
if long state ≥ outer call then long state ← long state − 2;
repeat link (temp head)← null ;
if (info(r) ≥ end match token) ∨ (info(r) < match token) then s← null
else begin match chr ← info(r)−match token ; s← link (r); r ← s; p← temp head ; m← 0;

end;
⟨ Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiter

string 426 ⟩;
{ now info(r) is a token whose command code is either match or end match }

until info(r) = end match token ;
end

This code is used in section 423.

426. If info(r) is a match or end match command, it cannot be equal to any token found by get token .
Therefore an undelimited parameter—i.e., a match that is immediately followed by match or end match—
will always fail the test ‘cur tok = info(r)’ in the following algorithm.

⟨ Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiter
string 426 ⟩ ≡

continue : get token ; { set cur tok to the next token of input }
if cur tok = info(r) then ⟨Advance r; goto found if the parameter delimiter has been fully matched,

otherwise goto continue 428 ⟩;
⟨Contribute the recently matched tokens to the current parameter, and goto continue if a partial match

is still in effect; but abort if s = null 431 ⟩;
if cur tok = par token then
if long state ̸= long call then ⟨Report a runaway argument and abort 430 ⟩;

if cur tok < right brace limit then
if cur tok < left brace limit then ⟨Contribute an entire group to the current parameter 433 ⟩
else ⟨Report an extra right brace and goto continue 429 ⟩

else ⟨ Store the current token, but goto continue if it is a blank space that would become an undelimited
parameter 427 ⟩;

incr (m);
if info(r) > end match token then goto continue ;
if info(r) < match token then goto continue ;

found : if s ̸= null then ⟨Tidy up the parameter just scanned, and tuck it away 434 ⟩
This code is used in section 425.

§427 X ETEX PART 25: EXPANDING THE NEXT TOKEN 183

427. ⟨ Store the current token, but goto continue if it is a blank space that would become an undelimited
parameter 427 ⟩ ≡

begin if cur tok = space token then
if info(r) ≤ end match token then

if info(r) ≥ match token then goto continue ;
store new token (cur tok);
end

This code is used in section 426.

428. A slightly subtle point arises here: When the parameter delimiter ends with ‘#{’, the token list will
have a left brace both before and after the end match . Only one of these should affect the align state , but
both will be scanned, so we must make a correction.

⟨Advance r; goto found if the parameter delimiter has been fully matched, otherwise goto continue 428 ⟩ ≡
begin r ← link (r);
if (info(r) ≥ match token) ∧ (info(r) ≤ end match token) then
begin if cur tok < left brace limit then decr (align state);
goto found ;
end

else goto continue ;
end

This code is used in section 426.

429. ⟨Report an extra right brace and goto continue 429 ⟩ ≡
begin back input ; print err ("Argument␣of␣"); sprint cs (warning index); print ("␣has␣an␣extra␣}");
help6 ("I´ve␣run␣across␣a␣`}´␣that␣doesn´t␣seem␣to␣match␣anything.")
("For␣example,␣`\def\a#1{...}´␣and␣`\a}´␣would␣produce")
("this␣error.␣If␣you␣simply␣proceed␣now,␣the␣`\par´␣that")
("I´ve␣just␣inserted␣will␣cause␣me␣to␣report␣a␣runaway")
("argument␣that␣might␣be␣the␣root␣of␣the␣problem.␣But␣if")
("your␣`}´␣was␣spurious,␣just␣type␣`2´␣and␣it␣will␣go␣away."); incr (align state);
long state ← call ; cur tok ← par token ; ins error ; goto continue ;
end { a white lie; the \par won’t always trigger a runaway }

This code is used in section 426.

430. If long state = outer call , a runaway argument has already been reported.

⟨Report a runaway argument and abort 430 ⟩ ≡
begin if long state = call then
begin runaway ; print err ("Paragraph␣ended␣before␣"); sprint cs (warning index);
print ("␣was␣complete");
help3 ("I␣suspect␣you´ve␣forgotten␣a␣`}´,␣causing␣me␣to␣apply␣this")
("control␣sequence␣to␣too␣much␣text.␣How␣can␣we␣recover?")
("My␣plan␣is␣to␣forget␣the␣whole␣thing␣and␣hope␣for␣the␣best."); back error ;
end;

pstack [n]← link (temp head); align state ← align state − unbalance ;
for m← 0 to n do flush list (pstack [m]);
return;
end

This code is used in sections 426 and 433.

184 PART 25: EXPANDING THE NEXT TOKEN X ETEX §431

431. When the following code becomes active, we have matched tokens from s to the predecessor of r, and
we have found that cur tok ̸= info(r). An interesting situation now presents itself: If the parameter is to be
delimited by a string such as ‘ab’, and if we have scanned ‘aa’, we want to contribute one ‘a’ to the current
parameter and resume looking for a ‘b’. The program must account for such partial matches and for others
that can be quite complex. But most of the time we have s = r and nothing needs to be done.
Incidentally, it is possible for \par tokens to sneak in to certain parameters of non-\long macros. For

example, consider a case like ‘\def\a#1\par!{...}’ where the first \par is not followed by an exclamation
point. In such situations it does not seem appropriate to prohibit the \par, so TEX keeps quiet about this
bending of the rules.

⟨Contribute the recently matched tokens to the current parameter, and goto continue if a partial match is
still in effect; but abort if s = null 431 ⟩ ≡

if s ̸= r then
if s = null then ⟨Report an improper use of the macro and abort 432 ⟩
else begin t← s;
repeat store new token (info(t)); incr (m); u← link (t); v ← s;
loop begin if u = r then

if cur tok ̸= info(v) then goto done
else begin r ← link (v); goto continue ;

end;
if info(u) ̸= info(v) then goto done ;
u← link (u); v ← link (v);
end;

done : t← link (t);
until t = r;
r ← s; { at this point, no tokens are recently matched }
end

This code is used in section 426.

432. ⟨Report an improper use of the macro and abort 432 ⟩ ≡
begin print err ("Use␣of␣"); sprint cs (warning index); print ("␣doesn´t␣match␣its␣definition");
help4 ("If␣you␣say,␣e.g.,␣`\def\a1{...}´,␣then␣you␣must␣always")
("put␣`1´␣after␣`\a´,␣since␣control␣sequence␣names␣are")
("made␣up␣of␣letters␣only.␣The␣macro␣here␣has␣not␣been")
("followed␣by␣the␣required␣stuff,␣so␣I´m␣ignoring␣it."); error ; return;
end

This code is used in section 431.

433. ⟨Contribute an entire group to the current parameter 433 ⟩ ≡
begin unbalance ← 1;
loop begin fast store new token (cur tok); get token ;
if cur tok = par token then
if long state ̸= long call then ⟨Report a runaway argument and abort 430 ⟩;

if cur tok < right brace limit then
if cur tok < left brace limit then incr (unbalance)
else begin decr (unbalance);
if unbalance = 0 then goto done1 ;
end;

end;
done1 : rbrace ptr ← p; store new token (cur tok);
end

This code is used in section 426.

§434 X ETEX PART 25: EXPANDING THE NEXT TOKEN 185

434. If the parameter consists of a single group enclosed in braces, we must strip off the enclosing braces.
That’s why rbrace ptr was introduced.

⟨Tidy up the parameter just scanned, and tuck it away 434 ⟩ ≡
begin if (m = 1) ∧ (info(p) < right brace limit) then
begin link (rbrace ptr)← null ; free avail (p); p← link (temp head); pstack [n]← link (p); free avail (p);
end

else pstack [n]← link (temp head);
incr (n);
if tracing macros > 0 then
begin begin diagnostic ; print nl (match chr); print int (n); print ("<−");
show token list (pstack [n− 1],null , 1000); end diagnostic(false);
end;

end

This code is used in section 426.

435. ⟨ Show the text of the macro being expanded 435 ⟩ ≡
begin begin diagnostic ; print ln ; print cs (warning index); token show (ref count);
end diagnostic(false);
end

This code is used in section 423.

186 PART 26: BASIC SCANNING SUBROUTINES X ETEX §436

436. Basic scanning subroutines. Let’s turn now to some procedures that TEX calls upon frequently
to digest certain kinds of patterns in the input. Most of these are quite simple; some are quite elaborate.
Almost all of the routines call get x token , which can cause them to be invoked recursively.

437. The scan left brace routine is called when a left brace is supposed to be the next non-blank token.
(The term “left brace” means, more precisely, a character whose catcode is left brace .) TEX allows \relax
to appear before the left brace .

procedure scan left brace ; { reads a mandatory left brace }
begin ⟨Get the next non-blank non-relax non-call token 438 ⟩;
if cur cmd ̸= left brace then
begin print err ("Missing␣{␣inserted");
help4 ("A␣left␣brace␣was␣mandatory␣here,␣so␣I´ve␣put␣one␣in.")
("You␣might␣want␣to␣delete␣and/or␣insert␣some␣corrections")
("so␣that␣I␣will␣find␣a␣matching␣right␣brace␣soon.")
("(If␣you´re␣confused␣by␣all␣this,␣try␣typing␣`I}´␣now.)"); back error ;
cur tok ← left brace token + "{"; cur cmd ← left brace ; cur chr ← "{"; incr (align state);
end;

end;

438. ⟨Get the next non-blank non-relax non-call token 438 ⟩ ≡
repeat get x token ;
until (cur cmd ̸= spacer) ∧ (cur cmd ̸= relax)

This code is used in sections 437, 1132, 1138, 1205, 1214, 1265, 1280, and 1324.

439. The scan optional equals routine looks for an optional ‘=’ sign preceded by optional spaces; ‘\relax’
is not ignored here.

procedure scan optional equals ;
begin ⟨Get the next non-blank non-call token 440 ⟩;
if cur tok ̸= other token + "=" then back input ;
end;

440. ⟨Get the next non-blank non-call token 440 ⟩ ≡
repeat get x token ;
until cur cmd ̸= spacer

This code is used in sections 439, 475, 490, 538, 561, 612, 1099, 1595, and 1596.

§441 X ETEX PART 26: BASIC SCANNING SUBROUTINES 187

441. In case you are getting bored, here is a slightly less trivial routine: Given a string of lowercase letters,
like ‘pt’ or ‘plus’ or ‘width’, the scan keyword routine checks to see whether the next tokens of input match
this string. The match must be exact, except that uppercase letters will match their lowercase counterparts;
uppercase equivalents are determined by subtracting "a" − "A", rather than using the uc code table, since
TEX uses this routine only for its own limited set of keywords.
If a match is found, the characters are effectively removed from the input and true is returned. Otherwise

false is returned, and the input is left essentially unchanged (except for the fact that some macros may have
been expanded, etc.).

function scan keyword (s : str number): boolean ; { look for a given string }
label exit ;
var p: pointer ; { tail of the backup list }
q: pointer ; { new node being added to the token list via store new token }
k: pool pointer ; { index into str pool }
save cur cs : pointer ; { to save cur cs }

begin p← backup head ; link (p)← null ;
if s < too big char then
begin while true do
begin get x token ; { recursion is possible here }
if (cur cs = 0) ∧ ((cur chr = s) ∨ (cur chr = s− "a"+ "A")) then

begin store new token (cur tok); flush list (link (backup head)); scan keyword ← true ; return;
end

else if (cur cmd ̸= spacer) ∨ (p ̸= backup head) then
begin back input ;
if p ̸= backup head then back list (link (backup head));
scan keyword ← false ; return;
end;

end;
end;

k ← str start macro(s); save cur cs ← cur cs ;
while k < str start macro(s+ 1) do
begin get x token ; { recursion is possible here }
if (cur cs = 0) ∧ ((cur chr = so(str pool [k])) ∨ (cur chr = so(str pool [k])− "a"+ "A")) then

begin store new token (cur tok); incr (k);
end

else if (cur cmd ̸= spacer) ∨ (p ̸= backup head) then
begin back input ;
if p ̸= backup head then back list (link (backup head));
cur cs ← save cur cs ; scan keyword ← false ; return;
end;

end;
flush list (link (backup head)); scan keyword ← true ;

exit : end;

442. Here is a procedure that sounds an alarm when mu and non-mu units are being switched.

procedure mu error ;
begin print err ("Incompatible␣glue␣units");
help1 ("I´m␣going␣to␣assume␣that␣1mu=1pt␣when␣they´re␣mixed."); error ;
end;

188 PART 26: BASIC SCANNING SUBROUTINES X ETEX §443

443. The next routine ‘scan something internal ’ is used to fetch internal numeric quantities like ‘\hsize’,
and also to handle the ‘\the’ when expanding constructions like ‘\the\toks0’ and ‘\the\baselineskip’.
Soon we will be considering the scan int procedure, which calls scan something internal ; on the other hand,
scan something internal also calls scan int , for constructions like ‘\catcode`\$’ or ‘\fontdimen 3 \ff’. So
we have to declare scan int as a forward procedure. A few other procedures are also declared at this point.

procedure scan int ; forward ; { scans an integer value }
⟨Declare procedures that scan restricted classes of integers 467 ⟩
⟨Declare ε-TEX procedures for scanning 1492 ⟩
⟨Declare procedures that scan font-related stuff 612 ⟩

444. TEX doesn’t know exactly what to expect when scan something internal begins. For example, an
integer or dimension or glue value could occur immediately after ‘\hskip’; and one can even say \the with
respect to token lists in constructions like ‘\xdef\o{\the\output}’. On the other hand, only integers are
allowed after a construction like ‘\count’. To handle the various possibilities, scan something internal has
a level parameter, which tells the “highest” kind of quantity that scan something internal is allowed to
produce. Six levels are distinguished, namely int val , dimen val , glue val , mu val , ident val , and tok val .
The output of scan something internal (and of the other routines scan int , scan dimen , and scan glue

below) is put into the global variable cur val , and its level is put into cur val level . The highest values of
cur val level are special: mu val is used only when cur val points to something in a “muskip” register, or to
one of the three parameters \thinmuskip, \medmuskip, \thickmuskip; ident val is used only when cur val
points to a font identifier; tok val is used only when cur val points to null or to the reference count of a
token list. The last two cases are allowed only when scan something internal is called with level = tok val .

If the output is glue, cur val will point to a glue specification, and the reference count of that glue will
have been updated to reflect this reference; if the output is a nonempty token list, cur val will point to its
reference count, but in this case the count will not have been updated. Otherwise cur val will contain the
integer or scaled value in question.

define int val = 0 { integer values }
define dimen val = 1 { dimension values }
define glue val = 2 { glue specifications }
define mu val = 3 {math glue specifications }
define ident val = 4 { font identifier }
define tok val = 5 { token lists }
define inter char val = 6 { inter-character (class) token lists }

⟨Global variables 13 ⟩ +≡
cur val : integer ; { value returned by numeric scanners }
cur val1 : integer ; { value returned by numeric scanners }
cur val level : int val . . tok val ; { the “level” of this value }

445. The hash table is initialized with ‘\count’, ‘\dimen’, ‘\skip’, and ‘\muskip’ all having register as
their command code; they are distinguished by the chr code , which is either int val , dimen val , glue val , or
mu val more than mem bot (dynamic variable-size nodes cannot have these values)

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("count", register ,mem bot + int val); primitive ("dimen", register ,mem bot + dimen val);
primitive ("skip", register ,mem bot + glue val); primitive ("muskip", register ,mem bot +mu val);

446. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
register : ⟨Cases of register for print cmd chr 1643 ⟩;

§447 X ETEX PART 26: BASIC SCANNING SUBROUTINES 189

447. OK, we’re ready for scan something internal itself. A second parameter, negative , is set true if
the value that is found should be negated. It is assumed that cur cmd and cur chr represent the first
token of the internal quantity to be scanned; an error will be signalled if cur cmd < min internal or
cur cmd > max internal .

define scanned result end (#) ≡ cur val level ← #; end
define scanned result (#) ≡ begin cur val ← #; scanned result end
define char class limit = ˝1000
define char class ignored ≡ char class limit
define char class boundary ≡ (char class ignored − 1)

procedure scan something internal (level : small number ; negative : boolean);
{ fetch an internal parameter }

label exit , restart ;
var m: halfword ; { chr code part of the operand token }
n, k, kk : integer ; { accumulators }
q, r: pointer ; { general purpose indices }
tx : pointer ; { effective tail node }
i: four quarters ; { character info }
p: 0 . . nest size ; { index into nest }

begin restart : m← cur chr ;
case cur cmd of
def code : ⟨Fetch a character code from some table 448 ⟩;
XeTeX def code : begin scan usv num ;
if m = sf code base then
begin scanned result (ho(sf code (cur val) div ˝10000))(int val)
end

else if m = math code base then
begin scanned result (ho(math code (cur val)))(int val)
end

else if m = math code base + 1 then
begin print err ("Can´t␣use␣\Umathcode␣as␣a␣number␣(try␣\Umathcodenum)");
help2 ("\Umathcode␣is␣for␣setting␣a␣mathcode␣from␣separate␣values;")
("use␣\Umathcodenum␣to␣access␣them␣as␣single␣values."); error ;
scanned result (0)(int val)
end

else if m = del code base then
begin scanned result (ho(del code (cur val)))(int val)
end

else begin print err ("Can´t␣use␣\Udelcode␣as␣a␣number␣(try␣\Udelcodenum)");
help2 ("\Udelcode␣is␣for␣setting␣a␣delcode␣from␣separate␣values;")
("use␣\Udelcodenum␣to␣access␣them␣as␣single␣values."); error ;
scanned result (0)(int val);
end;

end;
toks register , assign toks , def family , set font , def font : ⟨Fetch a token list or font identifier, provided

that level = tok val 449 ⟩;
assign int : scanned result (eqtb [m].int)(int val);
assign dimen : scanned result (eqtb [m].sc)(dimen val);
assign glue : scanned result (equiv (m))(glue val);
assign mu glue : scanned result (equiv (m))(mu val);
set aux : ⟨Fetch the space factor or the prev depth 452 ⟩;
set prev graf : ⟨Fetch the prev graf 456 ⟩;
set page int : ⟨Fetch the dead cycles or the insert penalties 453 ⟩;

190 PART 26: BASIC SCANNING SUBROUTINES X ETEX §447

set page dimen : ⟨Fetch something on the page so far 455 ⟩;
set shape : ⟨Fetch the par shape size 457 ⟩;
set box dimen : ⟨Fetch a box dimension 454 ⟩;
char given ,math given ,XeTeX math given : scanned result (cur chr)(int val);
assign font dimen : ⟨Fetch a font dimension 459 ⟩;
assign font int : ⟨Fetch a font integer 460 ⟩;
register : ⟨Fetch a register 461 ⟩;
last item : ⟨Fetch an item in the current node, if appropriate 458 ⟩;
ignore spaces : { trap unexpandable primitives }
if cur chr = 1 then ⟨Reset cur tok for unexpandable primitives, goto restart 403 ⟩;
othercases ⟨Complain that \the can’t do this; give zero result 462 ⟩

endcases;
while cur val level > level do ⟨Convert cur val to a lower level 463 ⟩;
⟨Fix the reference count, if any, and negate cur val if negative 464 ⟩;

exit : end;

448. ⟨Fetch a character code from some table 448 ⟩ ≡
begin scan usv num ;
if m = math code base then
begin cur val1 ← ho(math code (cur val));
if is active math char (cur val1) then cur val1 ← ˝8000
else if (math class field (cur val1) > 7)∨(math fam field (cur val1) > 15)∨(math char field (cur val1) >

255) then
begin print err ("Extended␣mathchar␣used␣as␣mathchar");
help2 ("A␣mathchar␣number␣must␣be␣between␣0␣and␣""7FFF.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val1); cur val1 ← 0;
end;

cur val1 ← (math class field (cur val1) ∗ ˝1000) + (math fam field (cur val1) ∗ ˝100) +
math char field (cur val1); scanned result (cur val1)(int val)

end
else if m = del code base then

begin cur val1 ← del code (cur val);
if cur val1 ≥ ˝40000000 then

begin print err ("Extended␣delcode␣used␣as␣delcode");
help2 ("A␣delimiter␣code␣must␣be␣between␣0␣and␣""7FFFFFF.")
("I␣changed␣this␣one␣to␣zero."); error ; scanned result (0)(int val);
end

else begin scanned result (cur val1)(int val);
end

end
else if m < sf code base then scanned result (equiv (m+ cur val))(int val)

else if m < math code base then scanned result (equiv (m+ cur val)mod ˝10000)(int val)
else scanned result (eqtb [m+ cur val].int)(int val);

end

This code is used in section 447.

§449 X ETEX PART 26: BASIC SCANNING SUBROUTINES 191

449. ⟨Fetch a token list or font identifier, provided that level = tok val 449 ⟩ ≡
if level ̸= tok val then
begin print err ("Missing␣number,␣treated␣as␣zero");
help3 ("A␣number␣should␣have␣been␣here;␣I␣inserted␣`0´.")
("(If␣you␣can´t␣figure␣out␣why␣I␣needed␣to␣see␣a␣number,")
("look␣up␣`weird␣error´␣in␣the␣index␣to␣The␣TeXbook.)"); back error ;
scanned result (0)(dimen val);
end

else if cur cmd ≤ assign toks then
begin if cur cmd < assign toks then { cur cmd = toks register }

if m = mem bot then
begin scan register num ;
if cur val < 256 then cur val ← equiv (toks base + cur val)
else begin find sa element (tok val , cur val , false);

if cur ptr = null then cur val ← null
else cur val ← sa ptr (cur ptr);
end;

end
else cur val ← sa ptr (m)

else if cur chr = XeTeX inter char loc then
begin scan char class not ignored ; cur ptr ← cur val ; scan char class not ignored ;
find sa element (inter char val , cur ptr ∗ char class limit + cur val , false);
if cur ptr = null then cur val ← null
else cur val ← sa ptr (cur ptr);
end

else cur val ← equiv (m);
cur val level ← tok val ;
end

else begin back input ; scan font ident ; scanned result (font id base + cur val)(ident val);
end

This code is used in section 447.

192 PART 26: BASIC SCANNING SUBROUTINES X ETEX §450

450. Users refer to ‘\the\spacefactor’ only in horizontal mode, and to ‘\the\prevdepth’ only in
vertical mode; so we put the associated mode in the modifier part of the set aux command. The set page int
command has modifier 0 or 1, for ‘\deadcycles’ and ‘\insertpenalties’, respectively. The set box dimen
command is modified by either width offset , height offset , or depth offset . And the last item command
is modified by either int val , dimen val , glue val , input line no code , or badness code . ε-TEX inserts
last node type code after glue val and adds the codes for its extensions: eTeX version code ,

define last node type code = glue val + 1 { code for \lastnodetype }
define input line no code = glue val + 2 { code for \inputlineno }
define badness code = input line no code + 1 { code for \badness }
define pdftex first rint code = badness code + 1 { base for pdfTEX’s command codes }
define pdf last x pos code = pdftex first rint code + 6 { code for \pdflastxpos }
define pdf last y pos code = pdftex first rint code + 7 { code for \pdflastypos }
define elapsed time code = pdftex first rint code + 10 { code for \elapsedtime }
define pdf shell escape code = pdftex first rint code + 11 { code for \shellescape }
define random seed code = pdftex first rint code + 12 { code for \randomseed }
define pdftex last item codes = pdftex first rint code + 12 { end of pdfTEX’s command codes }
define eTeX int = pdftex last item codes + 1 { first of ε-TEX codes for integers }
define XeTeX int = eTeX int + 8 { base for X ETEX’s command codes }
define XeTeX version code = XeTeX int + 0 { code for \XeTeXversion }
define XeTeX count glyphs code = XeTeX int + 1 { code for \XeTeXcountglyphs }
define XeTeX count variations code = XeTeX int + 2 {Deprecated }
define XeTeX variation code = XeTeX int + 3 {Deprecated }
define XeTeX find variation by name code = XeTeX int + 4 {Deprecated }
define XeTeX variation min code = XeTeX int + 5 {Deprecated }
define XeTeX variation max code = XeTeX int + 6 {Deprecated }
define XeTeX variation default code = XeTeX int + 7 {Deprecated }
define XeTeX count features code = XeTeX int + 8 { code for \XeTeXcountfeatures }
define XeTeX feature code code = XeTeX int + 9 { code for \XeTeXfeaturecode }
define XeTeX find feature by name code = XeTeX int + 10 { code for \XeTeXfindfeaturebyname }
define XeTeX is exclusive feature code = XeTeX int + 11 { code for \XeTeXisexclusivefeature }
define XeTeX count selectors code = XeTeX int + 12 { code for \XeTeXcountselectors }
define XeTeX selector code code = XeTeX int + 13 { code for \XeTeXselectorcode }
define XeTeX find selector by name code = XeTeX int + 14 { code for \XeTeXfindselectorbyname }
define XeTeX is default selector code = XeTeX int + 15 { code for \XeTeXisdefaultselector }
define XeTeX OT count scripts code = XeTeX int + 16 { code for \XeTeXOTcountscripts }
define XeTeX OT count languages code = XeTeX int + 17 { code for \XeTeXOTcountlanguages }
define XeTeX OT count features code = XeTeX int + 18 { code for \XeTeXOTcountfeatures }
define XeTeX OT script code = XeTeX int + 19 { code for \XeTeXOTscripttag }
define XeTeX OT language code = XeTeX int + 20 { code for \XeTeXOTlanguagetag }
define XeTeX OT feature code = XeTeX int + 21 { code for \XeTeXOTfeaturetag }
define XeTeX map char to glyph code = XeTeX int + 22 { code for \XeTeXcharglyph }
define XeTeX glyph index code = XeTeX int + 23 { code for \XeTeXglyphindex }
define XeTeX font type code = XeTeX int + 24 { code for \XeTeXfonttype }
define XeTeX first char code = XeTeX int + 25 { code for \XeTeXfirstfontchar }
define XeTeX last char code = XeTeX int + 26 { code for \XeTeXlastfontchar }
define XeTeX pdf page count code = XeTeX int + 27 { code for \XeTeXpdfpagecount }
define XeTeX last item codes = XeTeX int + 27 { end of X ETEX’s command codes }
define XeTeX dim = XeTeX last item codes + 1 { first of X ETEX codes for dimensions }
define XeTeX glyph bounds code = XeTeX dim + 0 { code for \XeTeXglyphbounds }
define XeTeX last dim codes = XeTeX dim + 0 { end of X ETEX’s command codes }
define eTeX dim = XeTeX last dim codes + 1 { first of ε-TEX codes for dimensions }

§450 X ETEX PART 26: BASIC SCANNING SUBROUTINES 193

define eTeX glue = eTeX dim + 9 { first of ε-TEX codes for glue }
define eTeX mu = eTeX glue + 1 { first of ε-TEX codes for muglue }
define eTeX expr = eTeX mu + 1 { first of ε-TEX codes for expressions }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("spacefactor", set aux , hmode); primitive ("prevdepth", set aux , vmode);
primitive ("deadcycles", set page int , 0); primitive ("insertpenalties", set page int , 1);
primitive ("wd", set box dimen ,width offset); primitive ("ht", set box dimen , height offset);
primitive ("dp", set box dimen , depth offset); primitive ("lastpenalty", last item , int val);
primitive ("lastkern", last item , dimen val); primitive ("lastskip", last item , glue val);
primitive ("inputlineno", last item , input line no code); primitive ("badness", last item , badness code);
primitive ("pdflastxpos", last item , pdf last x pos code);
primitive ("pdflastypos", last item , pdf last y pos code);
primitive ("elapsedtime", last item , elapsed time code);
primitive ("shellescape", last item , pdf shell escape code);
primitive ("randomseed", last item , random seed code);

451. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
set aux : if chr code = vmode then print esc("prevdepth") else print esc("spacefactor");
set page int : if chr code = 0 then print esc("deadcycles")
⟨Cases of set page int for print cmd chr 1503 ⟩ else print esc("insertpenalties");

set box dimen : if chr code = width offset then print esc("wd")
else if chr code = height offset then print esc("ht")
else print esc("dp");

last item : case chr code of
int val : print esc("lastpenalty");
dimen val : print esc("lastkern");
glue val : print esc("lastskip");
input line no code : print esc("inputlineno");
⟨Cases of last item for print cmd chr 1453 ⟩

pdf last x pos code : print esc("pdflastxpos");
pdf last y pos code : print esc("pdflastypos");
elapsed time code : print esc("elapsedtime");
pdf shell escape code : print esc("shellescape");
random seed code : print esc("randomseed");
othercases print esc("badness")
endcases;

452. ⟨Fetch the space factor or the prev depth 452 ⟩ ≡
if abs (mode) ̸= m then
begin print err ("Improper␣"); print cmd chr (set aux ,m);
help4 ("You␣can␣refer␣to␣\spacefactor␣only␣in␣horizontal␣mode;")
("you␣can␣refer␣to␣\prevdepth␣only␣in␣vertical␣mode;␣and")
("neither␣of␣these␣is␣meaningful␣inside␣\write.␣So")
("I´m␣forgetting␣what␣you␣said␣and␣using␣zero␣instead."); error ;
if level ̸= tok val then scanned result (0)(dimen val)
else scanned result (0)(int val);
end

else if m = vmode then scanned result (prev depth)(dimen val)
else scanned result (space factor)(int val)

This code is used in section 447.

194 PART 26: BASIC SCANNING SUBROUTINES X ETEX §453

453. ⟨Fetch the dead cycles or the insert penalties 453 ⟩ ≡
begin if m = 0 then cur val ← dead cycles
⟨Cases for ‘Fetch the dead cycles or the insert penalties ’ 1504 ⟩

else cur val ← insert penalties ; cur val level ← int val ;
end

This code is used in section 447.

454. ⟨Fetch a box dimension 454 ⟩ ≡
begin scan register num ; fetch box (q);
if q = null then cur val ← 0 else cur val ← mem [q +m].sc ;
cur val level ← dimen val ;
end

This code is used in section 447.

455. Inside an \output routine, a user may wish to look at the page totals that were present at the moment
when output was triggered.

define max dimen ≡ 7́777777777 { 230 − 1 }
⟨Fetch something on the page so far 455 ⟩ ≡
begin if (page contents = empty) ∧ (¬output active) then
if m = 0 then cur val ← max dimen else cur val ← 0

else cur val ← page so far [m];
cur val level ← dimen val ;
end

This code is used in section 447.

456. ⟨Fetch the prev graf 456 ⟩ ≡
if mode = 0 then scanned result (0)(int val) { prev graf = 0 within \write }
else begin nest [nest ptr]← cur list ; p← nest ptr ;
while abs (nest [p].mode field) ̸= vmode do decr (p);
scanned result (nest [p].pg field)(int val);
end

This code is used in section 447.

457. ⟨Fetch the par shape size 457 ⟩ ≡
begin if m > par shape loc then ⟨Fetch a penalties array element 1677 ⟩
else if par shape ptr = null then cur val ← 0
else cur val ← info(par shape ptr);

cur val level ← int val ;
end

This code is used in section 447.

§458 X ETEX PART 26: BASIC SCANNING SUBROUTINES 195

458. Here is where \lastpenalty, \lastkern, \lastskip, and \lastnodetype are implemented. The
reference count for \lastskip will be updated later.
We also handle \inputlineno and \badness here, because they are legal in similar contexts.
The macro find effective tail eTeX sets tx to the last non-\endM node of the current list.

define find effective tail eTeX ≡ tx ← tail ;
if ¬is char node (tx) then
if (type (tx) = math node) ∧ (subtype (tx) = end M code) then
begin r ← head ;
repeat q ← r; r ← link (q);
until r = tx ;
tx ← q;
end

define find effective tail ≡ find effective tail eTeX

⟨Fetch an item in the current node, if appropriate 458 ⟩ ≡
if m ≥ input line no code then
if m ≥ eTeX glue then ⟨Process an expression and return 1591 ⟩
else if m ≥ XeTeX dim then

begin case m of
⟨Cases for fetching a dimension value 1458 ⟩

end; { there are no other cases }
cur val level ← dimen val ;
end

else begin case m of
input line no code : cur val ← line ;
badness code : cur val ← last badness ;
elapsed time code : cur val ← get microinterval ;
random seed code : cur val ← random seed ;
pdf shell escape code : begin if shellenabledp then

begin if restrictedshell then cur val ← 2
else cur val ← 1;
end

else cur val ← 0;
end;
⟨Cases for fetching an integer value 1454 ⟩

end; { there are no other cases }
cur val level ← int val ;
end

else begin if cur chr = glue val then cur val ← zero glue else cur val ← 0;
find effective tail ;
if cur chr = last node type code then

begin cur val level ← int val ;
if (tx = head) ∨ (mode = 0) then cur val ← −1;
end

else cur val level ← cur chr ;
if ¬is char node (tx) ∧ (mode ̸= 0) then
case cur chr of
int val : if type (tx) = penalty node then cur val ← penalty (tx);
dimen val : if type (tx) = kern node then cur val ← width (tx);
glue val : if type (tx) = glue node then

begin cur val ← glue ptr (tx);
if subtype (tx) = mu glue then cur val level ← mu val ;
end;

196 PART 26: BASIC SCANNING SUBROUTINES X ETEX §458

last node type code : if type (tx) ≤ unset node then cur val ← type (tx) + 1
else cur val ← unset node + 2;

end { there are no other cases }
else if (mode = vmode) ∧ (tx = head) then

case cur chr of
int val : cur val ← last penalty ;
dimen val : cur val ← last kern ;
glue val : if last glue ̸= max halfword then cur val ← last glue ;
last node type code : cur val ← last node type ;
end; { there are no other cases }

end

This code is used in section 447.

459. ⟨Fetch a font dimension 459 ⟩ ≡
begin find font dimen (false); font info [fmem ptr].sc ← 0;
scanned result (font info [cur val].sc)(dimen val);
end

This code is used in section 447.

460. ⟨Fetch a font integer 460 ⟩ ≡
begin scan font ident ;
if m = 0 then scanned result (hyphen char [cur val])(int val)
else if m = 1 then scanned result (skew char [cur val])(int val)
else begin n← cur val ;
if is native font (n) then scan glyph number (n)
else scan char num ;
k ← cur val ;
case m of
lp code base : scanned result (get cp code (n, k, left side))(int val);
rp code base : scanned result (get cp code (n, k, right side))(int val);
end;
end;

end

This code is used in section 447.

§461 X ETEX PART 26: BASIC SCANNING SUBROUTINES 197

461. ⟨Fetch a register 461 ⟩ ≡
begin if (m < mem bot) ∨ (m > lo mem stat max) then
begin cur val level ← sa type (m);
if cur val level < glue val then cur val ← sa int (m)
else cur val ← sa ptr (m);
end

else begin scan register num ; cur val level ← m−mem bot ;
if cur val > 255 then

begin find sa element (cur val level , cur val , false);
if cur ptr = null then

if cur val level < glue val then cur val ← 0
else cur val ← zero glue

else if cur val level < glue val then cur val ← sa int (cur ptr)
else cur val ← sa ptr (cur ptr);

end
else case cur val level of
int val : cur val ← count (cur val);
dimen val : cur val ← dimen (cur val);
glue val : cur val ← skip(cur val);
mu val : cur val ← mu skip(cur val);
end; { there are no other cases }

end;
end

This code is used in section 447.

462. ⟨Complain that \the can’t do this; give zero result 462 ⟩ ≡
begin print err ("You␣can´t␣use␣`"); print cmd chr (cur cmd , cur chr); print ("´␣after␣");
print esc("the"); help1 ("I´m␣forgetting␣what␣you␣said␣and␣using␣zero␣instead."); error ;
if level ̸= tok val then scanned result (0)(dimen val)
else scanned result (0)(int val);
end

This code is used in section 447.

463. When a glue val changes to a dimen val , we use the width component of the glue; there is no need to
decrease the reference count, since it has not yet been increased. When a dimen val changes to an int val ,
we use scaled points so that the value doesn’t actually change. And when a mu val changes to a glue val ,
the value doesn’t change either.

⟨Convert cur val to a lower level 463 ⟩ ≡
begin if cur val level = glue val then cur val ← width (cur val)
else if cur val level = mu val then mu error ;
decr (cur val level);
end

This code is used in section 447.

198 PART 26: BASIC SCANNING SUBROUTINES X ETEX §464

464. If cur val points to a glue specification at this point, the reference count for the glue does not yet
include the reference by cur val . If negative is true , cur val level is known to be ≤ mu val .

⟨Fix the reference count, if any, and negate cur val if negative 464 ⟩ ≡
if negative then
if cur val level ≥ glue val then

begin cur val ← new spec(cur val); ⟨Negate all three glue components of cur val 465 ⟩;
end

else negate (cur val)
else if (cur val level ≥ glue val) ∧ (cur val level ≤ mu val) then add glue ref (cur val)

This code is used in section 447.

465. ⟨Negate all three glue components of cur val 465 ⟩ ≡
begin negate (width (cur val)); negate (stretch (cur val)); negate (shrink (cur val));
end

This code is used in sections 464 and 1591.

466. Our next goal is to write the scan int procedure, which scans anything that TEX treats as an integer.
But first we might as well look at some simple applications of scan int that have already been made inside
of scan something internal .

§467 X ETEX PART 26: BASIC SCANNING SUBROUTINES 199

467. ⟨Declare procedures that scan restricted classes of integers 467 ⟩ ≡
procedure scan glyph number (f : internal font number);

{ scan a glyph ID for native font f , identified by Unicode value or name or glyph number }
begin if scan keyword ("/") then { set cp value by glyph name }
begin scan and pack name ; { result is in nameoffile }
scanned result (map glyph to index (f))(int val);
end

else if scan keyword ("u") then { set cp value by unicode }
begin scan char num ; scanned result (map char to glyph (f, cur val))(int val);
end

else scan int ;
end;

procedure scan char class ;
begin scan int ;
if (cur val < 0) ∨ (cur val > char class limit) then
begin print err ("Bad␣character␣class");
help2 ("A␣character␣class␣must␣be␣between␣0␣and␣4096.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan char class not ignored ;
begin scan int ;
if (cur val < 0) ∨ (cur val > char class limit) then
begin print err ("Bad␣character␣class");
help2 ("A␣class␣for␣inter−character␣transitions␣must␣be␣between␣0␣and␣4095.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan eight bit int ;
begin scan int ;
if (cur val < 0) ∨ (cur val > 255) then
begin print err ("Bad␣register␣code");
help2 ("A␣register␣code␣or␣char␣class␣must␣be␣between␣0␣and␣255.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

See also sections 468, 469, 470, 471, and 1622.

This code is used in section 443.

200 PART 26: BASIC SCANNING SUBROUTINES X ETEX §468

468. ⟨Declare procedures that scan restricted classes of integers 467 ⟩ +≡
procedure scan usv num ;

begin scan int ;
if (cur val < 0) ∨ (cur val > biggest usv) then
begin print err ("Bad␣character␣code");
help2 ("A␣Unicode␣scalar␣value␣must␣be␣between␣0␣and␣""10FFFF.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan char num ;
begin scan int ;
if (cur val < 0) ∨ (cur val > biggest char) then
begin print err ("Bad␣character␣code");
help2 ("A␣character␣number␣must␣be␣between␣0␣and␣65535.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

§469 X ETEX PART 26: BASIC SCANNING SUBROUTINES 201

469. While we’re at it, we might as well deal with similar routines that will be needed later.

⟨Declare procedures that scan restricted classes of integers 467 ⟩ +≡
procedure scan xetex math char int ;
begin scan int ;
if is active math char (cur val) then
begin if cur val ̸= active math char then
begin print err ("Bad␣active␣XeTeX␣math␣code");
help2 ("Since␣I␣ignore␣class␣and␣family␣for␣active␣math␣chars,")
("I␣changed␣this␣one␣to␣""1FFFFF."); int error (cur val); cur val ← active math char ;
end

end
else if math char field (cur val) > biggest usv then

begin print err ("Bad␣XeTeX␣math␣character␣code");
help2 ("Since␣I␣expected␣a␣character␣number␣between␣0␣and␣""10FFFF,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan math class int ;
begin scan int ;
if (cur val < 0) ∨ (cur val > 7) then
begin print err ("Bad␣math␣class");
help2 ("Since␣I␣expected␣to␣read␣a␣number␣between␣0␣and␣7,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan math fam int ;
begin scan int ;
if (cur val < 0) ∨ (cur val > number math families − 1) then
begin print err ("Bad␣math␣family");
help2 ("Since␣I␣expected␣to␣read␣a␣number␣between␣0␣and␣255,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
procedure scan four bit int ;
begin scan int ;
if (cur val < 0) ∨ (cur val > 15) then
begin print err ("Bad␣number");
help2 ("Since␣I␣expected␣to␣read␣a␣number␣between␣0␣and␣15,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

470. ⟨Declare procedures that scan restricted classes of integers 467 ⟩ +≡
procedure scan fifteen bit int ;

begin scan int ;
if (cur val < 0) ∨ (cur val > 7́7777) then
begin print err ("Bad␣mathchar"); help2 ("A␣mathchar␣number␣must␣be␣between␣0␣and␣32767.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

202 PART 26: BASIC SCANNING SUBROUTINES X ETEX §471

471. ⟨Declare procedures that scan restricted classes of integers 467 ⟩ +≡
procedure scan delimiter int ;

begin scan int ;
if (cur val < 0) ∨ (cur val > 7́77777777) then
begin print err ("Bad␣delimiter␣code");
help2 ("A␣numeric␣delimiter␣code␣must␣be␣between␣0␣and␣2^{27}−1.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

472. An integer number can be preceded by any number of spaces and ‘+’ or ‘−’ signs. Then comes either
a decimal constant (i.e., radix 10), an octal constant (i.e., radix 8, preceded by ´), a hexadecimal constant
(radix 16, preceded by "), an alphabetic constant (preceded by `), or an internal variable. After scanning is
complete, cur val will contain the answer, which must be at most 231 − 1 = 2147483647 in absolute value.
The value of radix is set to 10, 8, or 16 in the cases of decimal, octal, or hexadecimal constants, otherwise
radix is set to zero. An optional space follows a constant.

define octal token = other token + "´" { apostrophe, indicates an octal constant }
define hex token = other token + """" { double quote, indicates a hex constant }
define alpha token = other token + "`" { reverse apostrophe, precedes alpha constants }
define point token = other token + "." { decimal point }
define continental point token = other token + "," { decimal point, Eurostyle }

⟨Global variables 13 ⟩ +≡
radix : small number ; { scan int sets this to 8, 10, 16, or zero }

473. We initialize the following global variables just in case expand comes into action before any of the
basic scanning routines has assigned them a value.

⟨ Set initial values of key variables 23 ⟩ +≡
cur val ← 0; cur val level ← int val ; radix ← 0; cur order ← normal ;

474. The scan int routine is used also to scan the integer part of a fraction; for example, the ‘3’ in
‘3.14159’ will be found by scan int . The scan dimen routine assumes that cur tok = point token after the
integer part of such a fraction has been scanned by scan int , and that the decimal point has been backed
up to be scanned again.

procedure scan int ; { sets cur val to an integer }
label done , restart ;
var negative : boolean ; { should the answer be negated? }
m: integer ; { 231 div radix , the threshold of danger }
d: small number ; { the digit just scanned }
vacuous : boolean ; { have no digits appeared? }
OK so far : boolean ; { has an error message been issued? }

begin radix ← 0; OK so far ← true ;
⟨Get the next non-blank non-sign token; set negative appropriately 475 ⟩;

restart : if cur tok = alpha token then ⟨ Scan an alphabetic character code into cur val 476 ⟩
else if cur tok = cs token flag + frozen primitive then

⟨Reset cur tok for unexpandable primitives, goto restart 403 ⟩
else if (cur cmd ≥ min internal) ∧ (cur cmd ≤ max internal) then

scan something internal (int val , false)
else ⟨ Scan a numeric constant 478 ⟩;

if negative then negate (cur val);
end;

§475 X ETEX PART 26: BASIC SCANNING SUBROUTINES 203

475. ⟨Get the next non-blank non-sign token; set negative appropriately 475 ⟩ ≡
negative ← false ;
repeat ⟨Get the next non-blank non-call token 440 ⟩;
if cur tok = other token + "−" then

begin negative ← ¬negative ; cur tok ← other token + "+";
end;

until cur tok ̸= other token + "+"

This code is used in sections 474, 482, and 496.

476. A space is ignored after an alphabetic character constant, so that such constants behave like numeric
ones.

⟨ Scan an alphabetic character code into cur val 476 ⟩ ≡
begin get token ; { suppress macro expansion }
if cur tok < cs token flag then
begin cur val ← cur chr ;
if cur cmd ≤ right brace then

if cur cmd = right brace then incr (align state)
else decr (align state);

end
else if cur tok < cs token flag + single base then cur val ← cur tok − cs token flag − active base
else cur val ← cur tok − cs token flag − single base ;

if cur val > biggest usv then
begin print err ("Improper␣alphabetic␣constant");
help2 ("A␣one−character␣control␣sequence␣belongs␣after␣a␣`␣mark.")
("So␣I´m␣essentially␣inserting␣\0␣here."); cur val ← "0"; back error ;
end

else ⟨ Scan an optional space 477 ⟩;
end

This code is used in section 474.

477. ⟨ Scan an optional space 477 ⟩ ≡
begin get x token ;
if cur cmd ̸= spacer then back input ;
end

This code is used in sections 476, 482, 490, and 1254.

478. ⟨ Scan a numeric constant 478 ⟩ ≡
begin radix ← 10; m← 214748364;
if cur tok = octal token then
begin radix ← 8; m← 2́000000000 ; get x token ;
end

else if cur tok = hex token then
begin radix ← 16; m← 1́000000000 ; get x token ;
end;

vacuous ← true ; cur val ← 0;
⟨Accumulate the constant until cur tok is not a suitable digit 479 ⟩;
if vacuous then ⟨Express astonishment that no number was here 480 ⟩
else if cur cmd ̸= spacer then back input ;
end

This code is used in section 474.

204 PART 26: BASIC SCANNING SUBROUTINES X ETEX §479

479. define infinity ≡ 1́7777777777 { the largest positive value that TEX knows }
define zero token = other token + "0" { zero, the smallest digit }
define A token = letter token + "A" { the smallest special hex digit }
define other A token = other token + "A" { special hex digit of type other char }

⟨Accumulate the constant until cur tok is not a suitable digit 479 ⟩ ≡
loop begin if (cur tok < zero token + radix) ∧ (cur tok ≥ zero token) ∧ (cur tok ≤ zero token + 9)

then d← cur tok − zero token
else if radix = 16 then

if (cur tok ≤ A token + 5) ∧ (cur tok ≥ A token) then d← cur tok − A token + 10
else if (cur tok ≤ other A token + 5) ∧ (cur tok ≥ other A token) then

d← cur tok − other A token + 10
else goto done

else goto done ;
vacuous ← false ;
if (cur val ≥ m) ∧ ((cur val > m) ∨ (d > 7) ∨ (radix ̸= 10)) then

begin if OK so far then
begin print err ("Number␣too␣big");
help2 ("I␣can␣only␣go␣up␣to␣2147483647=´17777777777=""7FFFFFFF,")
("so␣I´m␣using␣that␣number␣instead␣of␣yours."); error ; cur val ← infinity ;
OK so far ← false ;
end;

end
else cur val ← cur val ∗ radix + d;
get x token ;
end;

done :

This code is used in section 478.

480. ⟨Express astonishment that no number was here 480 ⟩ ≡
begin print err ("Missing␣number,␣treated␣as␣zero");
help3 ("A␣number␣should␣have␣been␣here;␣I␣inserted␣`0´.")
("(If␣you␣can´t␣figure␣out␣why␣I␣needed␣to␣see␣a␣number,")
("look␣up␣`weird␣error´␣in␣the␣index␣to␣The␣TeXbook.)"); back error ;
end

This code is used in section 478.

481. The scan dimen routine is similar to scan int , but it sets cur val to a scaled value, i.e., an integral
number of sp. One of its main tasks is therefore to interpret the abbreviations for various kinds of units and
to convert measurements to scaled points.
There are three parameters: mu is true if the finite units must be ‘mu’, while mu is false if ‘mu’ units

are disallowed; inf is true if the infinite units ‘fil’, ‘fill’, ‘filll’ are permitted; and shortcut is true if
cur val already contains an integer and only the units need to be considered.

The order of infinity that was found in the case of infinite glue is returned in the global variable cur order .

⟨Global variables 13 ⟩ +≡
cur order : glue ord ; { order of infinity found by scan dimen }

§482 X ETEX PART 26: BASIC SCANNING SUBROUTINES 205

482. Constructions like ‘−´77 pt’ are legal dimensions, so scan dimen may begin with scan int . This
explains why it is convenient to use scan int also for the integer part of a decimal fraction.
Several branches of scan dimen work with cur val as an integer and with an auxiliary fraction f , so that

the actual quantity of interest is cur val + f/216. At the end of the routine, this “unpacked” representation
is put into the single word cur val , which suddenly switches significance from integer to scaled .

define attach fraction = 88 { go here to pack cur val and f into cur val }
define attach sign = 89 { go here when cur val is correct except perhaps for sign }
define scan normal dimen ≡ scan dimen (false , false , false)

procedure xetex scan dimen (mu , inf , shortcut , requires units : boolean); { sets cur val to a dimension }
label done , done1 , done2 , found ,not found , attach fraction , attach sign ;
var negative : boolean ; { should the answer be negated? }
f : integer ; { numerator of a fraction whose denominator is 216 }
⟨Local variables for dimension calculations 485 ⟩

begin f ← 0; arith error ← false ; cur order ← normal ; negative ← false ;
if ¬shortcut then
begin ⟨Get the next non-blank non-sign token; set negative appropriately 475 ⟩;
if (cur cmd ≥ min internal) ∧ (cur cmd ≤ max internal) then
⟨Fetch an internal dimension and goto attach sign , or fetch an internal integer 484 ⟩

else begin back input ;
if cur tok = continental point token then cur tok ← point token ;
if cur tok ̸= point token then scan int
else begin radix ← 10; cur val ← 0;
end;

if cur tok = continental point token then cur tok ← point token ;
if (radix = 10) ∧ (cur tok = point token) then ⟨ Scan decimal fraction 487 ⟩;
end;

end;
if cur val < 0 then { in this case f = 0 }
begin negative ← ¬negative ; negate (cur val);
end;

if requires units then
begin ⟨ Scan units and set cur val to x · (cur val + f/216), where there are x sp per unit; goto

attach sign if the units are internal 488 ⟩;
⟨ Scan an optional space 477 ⟩;
end

else begin if cur val ≥ 4́0000 then arith error ← true
else cur val ← cur val ∗ unity + f ;
end;

attach sign : if arith error ∨ (abs (cur val) ≥ 1́0000000000) then
⟨Report that this dimension is out of range 495 ⟩;

if negative then negate (cur val);
end;

procedure scan dimen (mu , inf , shortcut : boolean);
begin xetex scan dimen (mu , inf , shortcut , true);
end;

483. For XeTeX, we have an additional version scan decimal , like scan dimen but without any scanning
of units.

procedure scan decimal ; { sets cur val to a quantity expressed as a decimal fraction }
begin xetex scan dimen (false , false , false , false);
end;

206 PART 26: BASIC SCANNING SUBROUTINES X ETEX §484

484. ⟨Fetch an internal dimension and goto attach sign , or fetch an internal integer 484 ⟩ ≡
if mu then
begin scan something internal (mu val , false); ⟨Coerce glue to a dimension 486 ⟩;
if cur val level = mu val then goto attach sign ;
if cur val level ̸= int val then mu error ;
end

else begin scan something internal (dimen val , false);
if cur val level = dimen val then goto attach sign ;
end

This code is used in section 482.

485. ⟨Local variables for dimension calculations 485 ⟩ ≡
num , denom : 1 . . 65536; { conversion ratio for the scanned units }
k, kk : small number ; { number of digits in a decimal fraction }
p, q: pointer ; { top of decimal digit stack }
v: scaled ; { an internal dimension }
save cur val : integer ; { temporary storage of cur val }
This code is used in section 482.

486. The following code is executed when scan something internal was called asking for mu val , when we
really wanted a “mudimen” instead of “muglue.”

⟨Coerce glue to a dimension 486 ⟩ ≡
if cur val level ≥ glue val then
begin v ← width (cur val); delete glue ref (cur val); cur val ← v;
end

This code is used in sections 484 and 490.

487. When the following code is executed, we have cur tok = point token , but this token has been backed
up using back input ; we must first discard it.

It turns out that a decimal point all by itself is equivalent to ‘0.0’. Let’s hope people don’t use that fact.

⟨ Scan decimal fraction 487 ⟩ ≡
begin k ← 0; p← null ; get token ; { point token is being re-scanned }
loop begin get x token ;
if (cur tok > zero token + 9) ∨ (cur tok < zero token) then goto done1 ;
if k < 17 then { digits for k ≥ 17 cannot affect the result }
begin q ← get avail ; link (q)← p; info(q)← cur tok − zero token ; p← q; incr (k);
end;

end;
done1 : for kk ← k downto 1 do

begin dig [kk − 1]← info(p); q ← p; p← link (p); free avail (q);
end;

f ← round decimals (k);
if cur cmd ̸= spacer then back input ;
end

This code is used in section 482.

§488 X ETEX PART 26: BASIC SCANNING SUBROUTINES 207

488. Now comes the harder part: At this point in the program, cur val is a nonnegative integer and f/216

is a nonnegative fraction less than 1; we want to multiply the sum of these two quantities by the appropriate
factor, based on the specified units, in order to produce a scaled result, and we want to do the calculation
with fixed point arithmetic that does not overflow.

⟨ Scan units and set cur val to x · (cur val + f/216), where there are x sp per unit; goto attach sign if the
units are internal 488 ⟩ ≡

if inf then ⟨ Scan for fil units; goto attach fraction if found 489 ⟩;
⟨ Scan for units that are internal dimensions; goto attach sign with cur val set if found 490 ⟩;
if mu then ⟨ Scan for mu units and goto attach fraction 491 ⟩;
if scan keyword ("true") then ⟨Adjust for the magnification ratio 492 ⟩;
if scan keyword ("pt") then goto attach fraction ; { the easy case }
⟨ Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaled

points 493 ⟩;
attach fraction : if cur val ≥ 4́0000 then arith error ← true
else cur val ← cur val ∗ unity + f ;

done :

This code is used in section 482.

489. A specification like ‘filllll’ or ‘fill L L L’ will lead to two error messages (one for each additional
keyword "l").

⟨ Scan for fil units; goto attach fraction if found 489 ⟩ ≡
if scan keyword ("fil") then
begin cur order ← fil ;
while scan keyword ("l") do

begin if cur order = filll then
begin print err ("Illegal␣unit␣of␣measure␣("); print ("replaced␣by␣filll)");
help1 ("I␣dddon´t␣go␣any␣higher␣than␣filll."); error ;
end

else incr (cur order);
end;

goto attach fraction ;
end

This code is used in section 488.

208 PART 26: BASIC SCANNING SUBROUTINES X ETEX §490

490. ⟨ Scan for units that are internal dimensions; goto attach sign with cur val set if found 490 ⟩ ≡
save cur val ← cur val ; ⟨Get the next non-blank non-call token 440 ⟩;
if (cur cmd < min internal) ∨ (cur cmd > max internal) then back input
else begin if mu then

begin scan something internal (mu val , false); ⟨Coerce glue to a dimension 486 ⟩;
if cur val level ̸= mu val then mu error ;
end

else scan something internal (dimen val , false);
v ← cur val ; goto found ;
end;

if mu then goto not found ;
if scan keyword ("em") then v ← (⟨The em width for cur font 593 ⟩)
else if scan keyword ("ex") then v ← (⟨The x-height for cur font 594 ⟩)
else goto not found ;
⟨ Scan an optional space 477 ⟩;

found : cur val ← nx plus y (save cur val , v, xn over d (v, f , 2́00000)); goto attach sign ;
not found :

This code is used in section 488.

491. ⟨ Scan for mu units and goto attach fraction 491 ⟩ ≡
if scan keyword ("mu") then goto attach fraction
else begin print err ("Illegal␣unit␣of␣measure␣("); print ("mu␣inserted)");
help4 ("The␣unit␣of␣measurement␣in␣math␣glue␣must␣be␣mu.")
("To␣recover␣gracefully␣from␣this␣error,␣it´s␣best␣to")
("delete␣the␣erroneous␣units;␣e.g.,␣type␣`2´␣to␣delete")
("two␣letters.␣(See␣Chapter␣27␣of␣The␣TeXbook.)"); error ; goto attach fraction ;
end

This code is used in section 488.

492. ⟨Adjust for the magnification ratio 492 ⟩ ≡
begin prepare mag ;
if mag ̸= 1000 then
begin cur val ← xn over d (cur val , 1000,mag); f ← (1000 ∗ f + 2́00000 ∗ remainder) div mag ;
cur val ← cur val + (f div 2́00000); f ← f mod 2́00000 ;
end;

end

This code is used in section 488.

§493 X ETEX PART 26: BASIC SCANNING SUBROUTINES 209

493. The necessary conversion factors can all be specified exactly as fractions whose numerator and
denominator sum to 32768 or less. According to the definitions here, 2660 dd ≈ 1000.33297mm; this agrees
well with the value 1000.333mm cited by Bosshard in Technische Grundlagen zur Satzherstellung (Bern,
1980).

define set conversion end (#) ≡ denom ← #;
end

define set conversion (#) ≡ begin num ← #; set conversion end

⟨ Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaled points 493 ⟩ ≡
if scan keyword ("in") then set conversion (7227)(100)
else if scan keyword ("pc") then set conversion (12)(1)
else if scan keyword ("cm") then set conversion (7227)(254)
else if scan keyword ("mm") then set conversion (7227)(2540)

else if scan keyword ("bp") then set conversion (7227)(7200)
else if scan keyword ("dd") then set conversion (1238)(1157)
else if scan keyword ("cc") then set conversion (14856)(1157)

else if scan keyword ("sp") then goto done
else ⟨Complain about unknown unit and goto done2 494 ⟩;

cur val ← xn over d (cur val ,num , denom); f ← (num ∗ f + 2́00000 ∗ remainder) div denom ;
cur val ← cur val + (f div 2́00000); f ← f mod 2́00000 ;

done2 :

This code is used in section 488.

494. ⟨Complain about unknown unit and goto done2 494 ⟩ ≡
begin print err ("Illegal␣unit␣of␣measure␣("); print ("pt␣inserted)");
help6 ("Dimensions␣can␣be␣in␣units␣of␣em,␣ex,␣in,␣pt,␣pc,")
("cm,␣mm,␣dd,␣cc,␣bp,␣or␣sp;␣but␣yours␣is␣a␣new␣one!")
("I´ll␣assume␣that␣you␣meant␣to␣say␣pt,␣for␣printer´s␣points.")
("To␣recover␣gracefully␣from␣this␣error,␣it´s␣best␣to")
("delete␣the␣erroneous␣units;␣e.g.,␣type␣`2´␣to␣delete")
("two␣letters.␣(See␣Chapter␣27␣of␣The␣TeXbook.)"); error ; goto done2 ;
end

This code is used in section 493.

495. ⟨Report that this dimension is out of range 495 ⟩ ≡
begin print err ("Dimension␣too␣large");
help2 ("I␣can´t␣work␣with␣sizes␣bigger␣than␣about␣19␣feet.")
("Continue␣and␣I´ll␣use␣the␣largest␣value␣I␣can.");
error ; cur val ← max dimen ; arith error ← false ;
end

This code is used in section 482.

210 PART 26: BASIC SCANNING SUBROUTINES X ETEX §496

496. The final member of TEX’s value-scanning trio is scan glue , which makes cur val point to a glue
specification. The reference count of that glue spec will take account of the fact that cur val is pointing
to it.
The level parameter should be either glue val or mu val .
Since scan dimen was so much more complex than scan int , we might expect scan glue to be even worse.

But fortunately, it is very simple, since most of the work has already been done.

procedure scan glue (level : small number); { sets cur val to a glue spec pointer }
label exit ;
var negative : boolean ; { should the answer be negated? }
q: pointer ; { new glue specification }
mu : boolean ; { does level = mu val ? }

begin mu ← (level = mu val); ⟨Get the next non-blank non-sign token; set negative appropriately 475 ⟩;
if (cur cmd ≥ min internal) ∧ (cur cmd ≤ max internal) then
begin scan something internal (level ,negative);
if cur val level ≥ glue val then

begin if cur val level ̸= level then mu error ;
return;
end;

if cur val level = int val then scan dimen (mu , false , true)
else if level = mu val then mu error ;
end

else begin back input ; scan dimen (mu , false , false);
if negative then negate (cur val);
end;
⟨Create a new glue specification whose width is cur val ; scan for its stretch and shrink components 497 ⟩;

exit : end;

⟨Declare procedures needed for expressions 1593 ⟩

497. ⟨Create a new glue specification whose width is cur val ; scan for its stretch and shrink
components 497 ⟩ ≡

q ← new spec(zero glue); width (q)← cur val ;
if scan keyword ("plus") then
begin scan dimen (mu , true , false); stretch (q)← cur val ; stretch order (q)← cur order ;
end;

if scan keyword ("minus") then
begin scan dimen (mu , true , false); shrink (q)← cur val ; shrink order (q)← cur order ;
end;

cur val ← q

This code is used in section 496.

§498 X ETEX PART 26: BASIC SCANNING SUBROUTINES 211

498. Here’s a similar procedure that returns a pointer to a rule node. This routine is called just after TEX
has seen \hrule or \vrule; therefore cur cmd will be either hrule or vrule . The idea is to store the default
rule dimensions in the node, then to override them if ‘height’ or ‘width’ or ‘depth’ specifications are found
(in any order).

define default rule = 26214 { 0.4 pt }
function scan rule spec : pointer ;
label reswitch ;
var q: pointer ; { the rule node being created }
begin q ← new rule ; {width , depth , and height all equal null flag now }
if cur cmd = vrule then width (q)← default rule
else begin height (q)← default rule ; depth (q)← 0;
end;

reswitch : if scan keyword ("width") then
begin scan normal dimen ; width (q)← cur val ; goto reswitch ;
end;

if scan keyword ("height") then
begin scan normal dimen ; height (q)← cur val ; goto reswitch ;
end;

if scan keyword ("depth") then
begin scan normal dimen ; depth (q)← cur val ; goto reswitch ;
end;

scan rule spec ← q;
end;

212 PART 27: BUILDING TOKEN LISTS X ETEX §499

499. Building token lists. The token lists for macros and for other things like \mark and \output and
\write are produced by a procedure called scan toks .
Before we get into the details of scan toks , let’s consider a much simpler task, that of converting the current

string into a token list. The str toks function does this; it classifies spaces as type spacer and everything
else as type other char .
The token list created by str toks begins at link (temp head) and ends at the value p that is returned. (If

p = temp head , the list is empty.)
The str toks cat function is the same, except that the catcode cat is stamped on all the characters, unless

zero is passed in which case it chooses spacer or other char automatically.

⟨Declare ε-TEX procedures for token lists 1493 ⟩
function str toks cat (b : pool pointer ; cat : small number): pointer ;

{ changes the string str pool [b . . pool ptr] to a token list }
var p: pointer ; { tail of the token list }
q: pointer ; { new node being added to the token list via store new token }
t: halfword ; { token being appended }
k: pool pointer ; { index into str pool }

begin str room (1); p← temp head ; link (p)← null ; k ← b;
while k < pool ptr do
begin t← so(str pool [k]);
if (t = "␣") ∧ (cat = 0) then t← space token
else begin if (t ≥ ˝D800) ∧ (t ≤ ˝DBFF) ∧ (k + 1 < pool ptr) ∧ (so(str pool [k + 1]) ≥

˝DC00) ∧ (so(str pool [k + 1]) ≤ ˝DFFF) then
begin incr (k); t← ˝10000+ (t− ˝D800) ∗ ˝400+ (so(str pool [k])− ˝DC00);
end;

if cat = 0 then t← other token + t
else if cat = active char then t← cs token flag + active base + t

else t← max char val ∗ cat + t;
end;

fast store new token (t); incr (k);
end;

pool ptr ← b; str toks cat ← p;
end;

function str toks (b : pool pointer): pointer ;
begin str toks ← str toks cat (b, 0);
end;

§500 X ETEX PART 27: BUILDING TOKEN LISTS 213

500. The main reason for wanting str toks is the next function, the toks , which has similar input/output
characteristics.
This procedure is supposed to scan something like ‘\skip\count12’, i.e., whatever can follow ‘\the’, and

it constructs a token list containing something like ‘−3.0pt minus 0.5fill’.

function the toks : pointer ;
label exit ;
var old setting : 0 . . max selector ; { holds selector setting }
p, q, r: pointer ; { used for copying a token list }
b: pool pointer ; { base of temporary string }
c: small number ; { value of cur chr }

begin ⟨Handle \unexpanded or \detokenize and return 1498 ⟩;
get x token ; scan something internal (tok val , false);
if cur val level ≥ ident val then ⟨Copy the token list 501 ⟩
else begin old setting ← selector ; selector ← new string ; b← pool ptr ;
case cur val level of
int val : print int (cur val);
dimen val : begin print scaled (cur val); print ("pt");
end;

glue val : begin print spec(cur val , "pt"); delete glue ref (cur val);
end;

mu val : begin print spec(cur val , "mu"); delete glue ref (cur val);
end;

end; { there are no other cases }
selector ← old setting ; the toks ← str toks (b);
end;

exit : end;

501. ⟨Copy the token list 501 ⟩ ≡
begin p← temp head ; link (p)← null ;
if cur val level = ident val then store new token (cs token flag + cur val)
else if cur val ̸= null then

begin r ← link (cur val); { do not copy the reference count }
while r ̸= null do

begin fast store new token (info(r)); r ← link (r);
end;

end;
the toks ← p;
end

This code is used in section 500.

502. Here’s part of the expand subroutine that we are now ready to complete:

procedure ins the toks ;
begin link (garbage)← the toks ; ins list (link (temp head));
end;

214 PART 27: BUILDING TOKEN LISTS X ETEX §503

503. The primitives \number, \romannumeral, \string, \meaning, \fontname, and \jobname are defined
as follows.
ε-TEX adds \eTeXrevision such that job name code remains last.

define number code = 0 { command code for \number }
define roman numeral code = 1 { command code for \romannumeral }
define string code = 2 { command code for \string }
define meaning code = 3 { command code for \meaning }
define font name code = 4 { command code for \fontname }
define etex convert base = 5 { base for ε-TEX’s command codes }
define eTeX revision code = etex convert base { command code for \eTeXrevision }
define etex convert codes = etex convert base + 1 { end of ε-TEX’s command codes }
define expanded code = etex convert codes { command code for \expanded }
define pdftex first expand code = expanded code + 1 { base for pdfTEX’s command codes }
define left margin kern code = pdftex first expand code + 9 { command code for \leftmarginkern }
define right margin kern code = pdftex first expand code +10 { command code for \rightmarginkern }
define pdf strcmp code = pdftex first expand code + 11 { command code for \strcmp }
define pdf creation date code = pdftex first expand code + 15 { command code for \creationdate }
define pdf file mod date code = pdftex first expand code + 16 { command code for \filemoddate }
define pdf file size code = pdftex first expand code + 17 { command code for \filesize }
define pdf mdfive sum code = pdftex first expand code + 18 { command code for \mdfivesum }
define pdf file dump code = pdftex first expand code + 19 { command code for \filedump }
define uniform deviate code = pdftex first expand code + 22 { command code for \uniformdeviate }
define normal deviate code = pdftex first expand code + 23 { command code for \normaldeviate }
define pdftex convert codes = pdftex first expand code + 26 { end of pdfTEX’s command codes }
define XeTeX first expand code = pdftex convert codes { base for X ETEX’s command codes }
define XeTeX revision code = XeTeX first expand code + 0 { command code for \XeTeXrevision }
define XeTeX variation name code = XeTeX first expand code + 1

{ command code for \XeTeXvariationname }
define XeTeX feature name code = XeTeX first expand code + 2

{ command code for \XeTeXfeaturename }
define XeTeX selector name code = XeTeX first expand code + 3

{ command code for \XeTeXselectornamename }
define XeTeX glyph name code = XeTeX first expand code +4 { command code for \XeTeXglyphname }
define XeTeX Uchar code = XeTeX first expand code + 5 { command code for \Uchar }
define XeTeX Ucharcat code = XeTeX first expand code + 6 { command code for \Ucharcat }
define XeTeX convert codes = XeTeX first expand code + 7 { end of X ETEX’s command codes }
define job name code = XeTeX convert codes { command code for \jobname }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("number", convert ,number code);
primitive ("romannumeral", convert , roman numeral code);
primitive ("string", convert , string code);
primitive ("meaning", convert ,meaning code);
primitive ("fontname", convert , font name code);

primitive ("expanded", convert , expanded code);

primitive ("leftmarginkern", convert , left margin kern code);
primitive ("rightmarginkern", convert , right margin kern code);
primitive ("creationdate", convert , pdf creation date code);
primitive ("filemoddate", convert , pdf file mod date code);
primitive ("filesize", convert , pdf file size code);
primitive ("mdfivesum", convert , pdf mdfive sum code);
primitive ("filedump", convert , pdf file dump code);

§503 X ETEX PART 27: BUILDING TOKEN LISTS 215

primitive ("strcmp", convert , pdf strcmp code);
primitive ("uniformdeviate", convert , uniform deviate code);
primitive ("normaldeviate", convert ,normal deviate code);

primitive ("jobname", convert , job name code);
primitive ("Uchar", convert ,XeTeX Uchar code);
primitive ("Ucharcat", convert ,XeTeX Ucharcat code);

504. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
convert : case chr code of

number code : print esc("number");
roman numeral code : print esc("romannumeral");
string code : print esc("string");
meaning code : print esc("meaning");
font name code : print esc("fontname");
eTeX revision code : print esc("eTeXrevision");
expanded code : print esc("expanded");
left margin kern code : print esc("leftmarginkern");
right margin kern code : print esc("rightmarginkern");
pdf creation date code : print esc("creationdate");
pdf file mod date code : print esc("filemoddate");
pdf file size code : print esc("filesize");
pdf mdfive sum code : print esc("mdfivesum");
pdf file dump code : print esc("filedump");
pdf strcmp code : print esc("strcmp");
uniform deviate code : print esc("uniformdeviate");
normal deviate code : print esc("normaldeviate");
⟨Cases of convert for print cmd chr 1459 ⟩

othercases print esc("jobname")
endcases;

216 PART 27: BUILDING TOKEN LISTS X ETEX §505

505. The procedure conv toks uses str toks to insert the token list for convert functions into the scanner;
‘\outer’ control sequences are allowed to follow ‘\string’ and ‘\meaning’.
The extra temp string u is needed because pdf scan ext toks incorporates any pending string in its output.

In order to save such a pending string, we have to create a temporary string that is destroyed immediately
after.

define save cur string ≡
if str start macro(str ptr) < pool ptr then u← make string
else u← 0

define restore cur string ≡
if u ̸= 0 then decr (str ptr)

procedure conv toks ;
var old setting : 0 . . max selector ; { holds selector setting }
save warning index , save def ref : pointer ; boolvar : boolean ; { temp boolean }
s: str number ; u: str number ; j: integer ; c: small number ; { desired type of conversion }
save scanner status : small number ; { scanner status upon entry }
b: pool pointer ; { base of temporary string }
fnt , arg1 , arg2 : integer ; { args for X ETEX extensions }
font name str : str number ; { local vars for \fontname quoting extension }
i: small number ; quote char : UTF16 code ; cat : small number ;

{ desired catcode, or 0 for automatic spacer /other char selection }
saved chr : UnicodeScalar ; p, q: pointer ;

begin cat ← 0; c← cur chr ; ⟨ Scan the argument for command c 506 ⟩;
old setting ← selector ; selector ← new string ; b← pool ptr ; ⟨Print the result of command c 507 ⟩;
selector ← old setting ; link (garbage)← str toks cat (b, cat); ins list (link (temp head));
end;

§506 X ETEX PART 27: BUILDING TOKEN LISTS 217

506. Not all catcode values are allowed by \Ucharcat:

define illegal Ucharcat catcode (#) ≡ (# < left brace)∨ (# > active char)∨ (# = out param)∨ (# = ignore)

⟨ Scan the argument for command c 506 ⟩ ≡
case c of
number code , roman numeral code : scan int ;
string code ,meaning code : begin save scanner status ← scanner status ; scanner status ← normal ;
get token ; scanner status ← save scanner status ;
end;

font name code : scan font ident ;
eTeX revision code : do nothing ;
expanded code : begin save scanner status ← scanner status ; save warning index ← warning index ;
save def ref ← def ref ; save cur string ; scan pdf ext toks ; warning index ← save warning index ;
scanner status ← save scanner status ; ins list (link (def ref)); free avail (def ref);
def ref ← save def ref ; restore cur string ; return;
end;

left margin kern code , right margin kern code : begin scan register num ; fetch box (p);
if (p = null) ∨ (type (p) ̸= hlist node) then pdf error ("marginkern", "a␣non−empty␣hbox␣expected")
end;

pdf creation date code : begin b← pool ptr ; getcreationdate ; link (garbage)← str toks (b);
ins list (link (temp head)); return;
end;

pdf file mod date code : begin save scanner status ← scanner status ;
save warning index ← warning index ; save def ref ← def ref ; save cur string ; scan pdf ext toks ;
if selector = new string then

pdf error ("tokens", "tokens_to_string()␣called␣while␣selector␣=␣new_string");
old setting ← selector ; selector ← new string ;
show token list (link (def ref),null , pool size − pool ptr); selector ← old setting ; s← make string ;
delete token ref (def ref); def ref ← save def ref ; warning index ← save warning index ;
scanner status ← save scanner status ; b← pool ptr ; getfilemoddate (s); link (garbage)← str toks (b);
if flushable (s) then flush string ;
ins list (link (temp head)); restore cur string ; return;
end;

pdf file size code : begin save scanner status ← scanner status ; save warning index ← warning index ;
save def ref ← def ref ; save cur string ; scan pdf ext toks ;
if selector = new string then
pdf error ("tokens", "tokens_to_string()␣called␣while␣selector␣=␣new_string");

old setting ← selector ; selector ← new string ;
show token list (link (def ref),null , pool size − pool ptr); selector ← old setting ; s← make string ;
delete token ref (def ref); def ref ← save def ref ; warning index ← save warning index ;
scanner status ← save scanner status ; b← pool ptr ; getfilesize (s); link (garbage)← str toks (b);
if flushable (s) then flush string ;
ins list (link (temp head)); restore cur string ; return;
end;

pdf mdfive sum code : begin save scanner status ← scanner status ;
save warning index ← warning index ; save def ref ← def ref ; save cur string ;
boolvar ← scan keyword ("file"); scan pdf ext toks ;
if selector = new string then

pdf error ("tokens", "tokens_to_string()␣called␣while␣selector␣=␣new_string");
old setting ← selector ; selector ← new string ; show token list (link (def ref),null , pool size − pool ptr);
selector ← old setting ; s← make string ; delete token ref (def ref); def ref ← save def ref ;
warning index ← save warning index ; scanner status ← save scanner status ; b← pool ptr ;
getmd5sum (s, boolvar); link (garbage)← str toks (b);

218 PART 27: BUILDING TOKEN LISTS X ETEX §506

if flushable (s) then flush string ;
ins list (link (temp head)); restore cur string ; return;
end;

pdf file dump code : begin save scanner status ← scanner status ; save warning index ← warning index ;
save def ref ← def ref ; save cur string ; { scan offset }
cur val ← 0;
if (scan keyword ("offset")) then
begin scan int ;
if (cur val < 0) then
begin print err ("Bad␣file␣offset");
help2 ("A␣file␣offset␣must␣be␣between␣0␣and␣2^{31}−1,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
i← cur val ; { scan length }
cur val ← 0;
if (scan keyword ("length")) then
begin scan int ;
if (cur val < 0) then
begin print err ("Bad␣dump␣length");
help2 ("A␣dump␣length␣must␣be␣between␣0␣and␣2^{31}−1,")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;
j ← cur val ; { scan file name }
scan pdf ext toks ;
if selector = new string then
pdf error ("tokens", "tokens_to_string()␣called␣while␣selector␣=␣new_string");

old setting ← selector ; selector ← new string ;
show token list (link (def ref),null , pool size − pool ptr); selector ← old setting ; s← make string ;
delete token ref (def ref); def ref ← save def ref ; warning index ← save warning index ;
scanner status ← save scanner status ; b← pool ptr ; getfiledump (s, i, j); link (garbage)← str toks (b);
if flushable (s) then flush string ;
ins list (link (temp head)); restore cur string ; return;
end;

pdf strcmp code : begin save scanner status ← scanner status ; save warning index ← warning index ;
save def ref ← def ref ; save cur string ; compare strings ; def ref ← save def ref ;
warning index ← save warning index ; scanner status ← save scanner status ; restore cur string ;
end;

XeTeX Uchar code : scan usv num ;
XeTeX Ucharcat code : begin scan usv num ; saved chr ← cur val ; scan int ;
if illegal Ucharcat catcode (cur val) then
begin print err ("Invalid␣code␣("); print int (cur val);
print ("),␣should␣be␣in␣the␣ranges␣1..4,␣6..8,␣10..13");
help1 ("I´m␣going␣to␣use␣12␣instead␣of␣that␣illegal␣code␣value.");
error ; cat ← 12;
end

else cat ← cur val ;
cur val ← saved chr ;
end;
⟨Cases of ‘Scan the argument for command c’ 1460 ⟩

job name code : if job name = 0 then open log file ;

§506 X ETEX PART 27: BUILDING TOKEN LISTS 219

uniform deviate code : scan int ;
normal deviate code : do nothing ;
end { there are no other cases }

This code is used in section 505.

507. ⟨Print the result of command c 507 ⟩ ≡
case c of
number code : print int (cur val);
roman numeral code : print roman int (cur val);
string code : if cur cs ̸= 0 then sprint cs (cur cs)
else print char (cur chr);

meaning code : print meaning ;
font name code : begin font name str ← font name [cur val];
if is native font (cur val) then

begin quote char ← """";
for i← 0 to length (font name str)− 1 do
if str pool [str start macro(font name str) + i] = """" then quote char ← "´";

print char (quote char); print (font name str); print char (quote char);
end

else print (font name str);
if font size [cur val] ̸= font dsize [cur val] then
begin print ("␣at␣"); print scaled (font size [cur val]); print ("pt");
end;

end;
eTeX revision code : print (eTeX revision);
left margin kern code : begin p← list ptr (p);
while (p ̸= null) ∧ (cp skipable (p) ∨ ((¬is char node (p)) ∧ (type (p) = glue node) ∧ (subtype (p) =

left skip code + 1))) do p← link (p);
if (p ̸= null) ∧ (¬is char node (p)) ∧ (type (p) = margin kern node) ∧ (subtype (p) = left side) then

print scaled (width (p))
else print ("0");
print ("pt");
end;

right margin kern code : begin q ← list ptr (p); p← prev rightmost (q, null);
while (p ̸= null) ∧ (cp skipable (p) ∨ ((¬is char node (p)) ∧ (type (p) = glue node) ∧ (subtype (p) =

right skip code + 1))) do p← prev rightmost (q, p);
if (p ̸= null) ∧ (¬is char node (p)) ∧ (type (p) = margin kern node) ∧ (subtype (p) = right side) then

print scaled (width (p))
else print ("0");
print ("pt");
end;

pdf strcmp code : print int (cur val);
uniform deviate code : print int (unif rand (cur val));
normal deviate code : print int (norm rand);
XeTeX Uchar code ,XeTeX Ucharcat code : print char (cur val);
⟨Cases of ‘Print the result of command c’ 1461 ⟩

job name code : print file name (job name , 0, 0);
end { there are no other cases }

This code is used in section 505.

220 PART 27: BUILDING TOKEN LISTS X ETEX §508

508. Now we can’t postpone the difficulties any longer; we must bravely tackle scan toks . This function
returns a pointer to the tail of a new token list, and it also makes def ref point to the reference count at the
head of that list.
There are two boolean parameters, macro def and xpand . If macro def is true, the goal is to create the

token list for a macro definition; otherwise the goal is to create the token list for some other TEX primitive:
\mark, \output, \everypar, \lowercase, \uppercase, \message, \errmessage, \write, or \special. In
the latter cases a left brace must be scanned next; this left brace will not be part of the token list, nor will
the matching right brace that comes at the end. If xpand is false, the token list will simply be copied from
the input using get token . Otherwise all expandable tokens will be expanded until unexpandable tokens are
left, except that the results of expanding ‘\the’ are not expanded further. If both macro def and xpand
are true, the expansion applies only to the macro body (i.e., to the material following the first left brace
character).
The value of cur cs when scan toks begins should be the eqtb address of the control sequence to display

in “runaway” error messages.

function scan toks (macro def , xpand : boolean): pointer ;
label found , continue , done , done1 , done2 ;
var t: halfword ; { token representing the highest parameter number }
s: halfword ; { saved token }
p: pointer ; { tail of the token list being built }
q: pointer ; { new node being added to the token list via store new token }
unbalance : halfword ; { number of unmatched left braces }
hash brace : halfword ; { possible ‘#{’ token }

begin if macro def then scanner status ← defining else scanner status ← absorbing ;
warning index ← cur cs ; def ref ← get avail ; token ref count (def ref)← null ; p← def ref ;
hash brace ← 0; t← zero token ;
if macro def then ⟨ Scan and build the parameter part of the macro definition 509 ⟩
else scan left brace ; { remove the compulsory left brace }
⟨ Scan and build the body of the token list; goto found when finished 512 ⟩;

found : scanner status ← normal ;
if hash brace ̸= 0 then store new token (hash brace);
scan toks ← p;
end;

509. ⟨ Scan and build the parameter part of the macro definition 509 ⟩ ≡
begin loop
begin continue : get token ; { set cur cmd , cur chr , cur tok }
if cur tok < right brace limit then goto done1 ;
if cur cmd = mac param then ⟨ If the next character is a parameter number, make cur tok a match

token; but if it is a left brace, store ‘left brace , end match ’, set hash brace , and goto done 511 ⟩;
store new token (cur tok);
end;

done1 : store new token (end match token);
if cur cmd = right brace then ⟨Express shock at the missing left brace; goto found 510 ⟩;

done : end

This code is used in section 508.

510. ⟨Express shock at the missing left brace; goto found 510 ⟩ ≡
begin print err ("Missing␣{␣inserted"); incr (align state);
help2 ("Where␣was␣the␣left␣brace?␣You␣said␣something␣like␣`\def\a}´,")
("which␣I´m␣going␣to␣interpret␣as␣`\def\a{}´."); error ; goto found ;
end

This code is used in section 509.

§511 X ETEX PART 27: BUILDING TOKEN LISTS 221

511. ⟨ If the next character is a parameter number, make cur tok a match token; but if it is a left brace,
store ‘left brace , end match ’, set hash brace , and goto done 511 ⟩ ≡

begin s← match token + cur chr ; get token ;
if cur tok < left brace limit then
begin hash brace ← cur tok ; store new token (cur tok); store new token (end match token);
goto done ;
end;

if t = zero token + 9 then
begin print err ("You␣already␣have␣nine␣parameters");
help2 ("I´m␣going␣to␣ignore␣the␣#␣sign␣you␣just␣used,")
("as␣well␣as␣the␣token␣that␣followed␣it."); error ; goto continue ;
end

else begin incr (t);
if cur tok ̸= t then

begin print err ("Parameters␣must␣be␣numbered␣consecutively");
help2 ("I´ve␣inserted␣the␣digit␣you␣should␣have␣used␣after␣the␣#.")
("Type␣`1´␣to␣delete␣what␣you␣did␣use."); back error ;
end;

cur tok ← s;
end;

end

This code is used in section 509.

512. ⟨ Scan and build the body of the token list; goto found when finished 512 ⟩ ≡
unbalance ← 1;
loop begin if xpand then ⟨Expand the next part of the input 513 ⟩
else get token ;
if cur tok < right brace limit then
if cur cmd < right brace then incr (unbalance)
else begin decr (unbalance);
if unbalance = 0 then goto found ;
end

else if cur cmd = mac param then
if macro def then ⟨Look for parameter number or ## 514 ⟩;

store new token (cur tok);
end

This code is used in section 508.

222 PART 27: BUILDING TOKEN LISTS X ETEX §513

513. Here we insert an entire token list created by the toks without expanding it further.

⟨Expand the next part of the input 513 ⟩ ≡
begin loop
begin get next ;
if cur cmd ≥ call then

if info(link (cur chr)) = protected token then
begin cur cmd ← relax ; cur chr ← no expand flag ;
end;

if cur cmd ≤ max command then goto done2 ;
if cur cmd ̸= the then expand
else begin q ← the toks ;
if link (temp head) ̸= null then

begin link (p)← link (temp head); p← q;
end;

end;
end;

done2 : x token
end

This code is used in section 512.

514. ⟨Look for parameter number or ## 514 ⟩ ≡
begin s← cur tok ;
if xpand then get x token
else get token ;
if cur cmd ̸= mac param then
if (cur tok ≤ zero token) ∨ (cur tok > t) then

begin print err ("Illegal␣parameter␣number␣in␣definition␣of␣"); sprint cs (warning index);
help3 ("You␣meant␣to␣type␣##␣instead␣of␣#,␣right?")
("Or␣maybe␣a␣}␣was␣forgotten␣somewhere␣earlier,␣and␣things")
("are␣all␣screwed␣up?␣I´m␣going␣to␣assume␣that␣you␣meant␣##."); back error ; cur tok ← s;
end

else cur tok ← out param token − "0"+ cur chr ;
end

This code is used in section 512.

515. Another way to create a token list is via the \read command. The sixteen files potentially usable for
reading appear in the following global variables. The value of read open [n] will be closed if stream number
n has not been opened or if it has been fully read; just open if an \openin but not a \read has been done;
and normal if it is open and ready to read the next line.

define closed = 2 { not open, or at end of file }
define just open = 1 { newly opened, first line not yet read }

⟨Global variables 13 ⟩ +≡
read file : array [0 . . 15] of unicode file ; { used for \read }
read open : array [0 . . 16] of normal . . closed ; { state of read file [n] }

516. ⟨ Set initial values of key variables 23 ⟩ +≡
for k ← 0 to 16 do read open [k]← closed ;

§517 X ETEX PART 27: BUILDING TOKEN LISTS 223

517. The read toks procedure constructs a token list like that for any macro definition, and makes cur val
point to it. Parameter r points to the control sequence that will receive this token list.

procedure read toks (n : integer ; r : pointer ; j : halfword);
label done ;
var p: pointer ; { tail of the token list }
q: pointer ; { new node being added to the token list via store new token }
s: integer ; { saved value of align state }
m: small number ; { stream number }

begin scanner status ← defining ; warning index ← r; def ref ← get avail ;
token ref count (def ref)← null ; p← def ref ; { the reference count }
store new token (end match token);
if (n < 0) ∨ (n > 15) then m← 16 else m← n;
s← align state ; align state ← 1000000; { disable tab marks, etc. }
repeat ⟨ Input and store tokens from the next line of the file 518 ⟩;
until align state = 1000000;
cur val ← def ref ; scanner status ← normal ; align state ← s;
end;

518. ⟨ Input and store tokens from the next line of the file 518 ⟩ ≡
begin file reading ; name ← m+ 1;
if read open [m] = closed then ⟨ Input for \read from the terminal 519 ⟩
else if read open [m] = just open then ⟨ Input the first line of read file [m] 520 ⟩
else ⟨ Input the next line of read file [m] 521 ⟩;

limit ← last ;
if end line char inactive then decr (limit)
else buffer [limit]← end line char ;
first ← limit + 1; loc ← start ; state ← new line ;
⟨Handle \readline and goto done 1572 ⟩;
loop begin get token ;
if cur tok = 0 then goto done ; { cur cmd = cur chr = 0 will occur at the end of the line }
if align state < 1000000 then { unmatched ‘}’ aborts the line }

begin repeat get token ;
until cur tok = 0;
align state ← 1000000; goto done ;
end;

store new token (cur tok);
end;

done : end file reading

This code is used in section 517.

519. Here we input on-line into the buffer array, prompting the user explicitly if n ≥ 0. The value of n is
set negative so that additional prompts will not be given in the case of multi-line input.

⟨ Input for \read from the terminal 519 ⟩ ≡
if interaction > nonstop mode then
if n < 0 then prompt input ("")
else begin wake up terminal ; print ln ; sprint cs (r); prompt input ("="); n← −1;

end
else fatal error ("***␣(cannot␣\read␣from␣terminal␣in␣nonstop␣modes)")

This code is used in section 518.

224 PART 27: BUILDING TOKEN LISTS X ETEX §520

520. The first line of a file must be treated specially, since input ln must be told not to start with get .

⟨ Input the first line of read file [m] 520 ⟩ ≡
if input ln (read file [m], false) then read open [m]← normal
else begin u close (read file [m]); read open [m]← closed ;
end

This code is used in section 518.

521. An empty line is appended at the end of a read file .

⟨ Input the next line of read file [m] 521 ⟩ ≡
begin if ¬input ln (read file [m], true) then
begin u close (read file [m]); read open [m]← closed ;
if align state ̸= 1000000 then
begin runaway ; print err ("File␣ended␣within␣"); print esc("read");
help1 ("This␣\read␣has␣unbalanced␣braces."); align state ← 1000000; limit ← 0; error ;
end;

end;
end

This code is used in section 518.

§522 X ETEX PART 28: CONDITIONAL PROCESSING 225

522. Conditional processing. We consider now the way TEX handles various kinds of \if commands.

define unless code = 32 { amount added for ‘\unless’ prefix }
define if char code = 0 { ‘\if’ }
define if cat code = 1 { ‘\ifcat’ }
define if int code = 2 { ‘\ifnum’ }
define if dim code = 3 { ‘\ifdim’ }
define if odd code = 4 { ‘\ifodd’ }
define if vmode code = 5 { ‘\ifvmode’ }
define if hmode code = 6 { ‘\ifhmode’ }
define if mmode code = 7 { ‘\ifmmode’ }
define if inner code = 8 { ‘\ifinner’ }
define if void code = 9 { ‘\ifvoid’ }
define if hbox code = 10 { ‘\ifhbox’ }
define if vbox code = 11 { ‘\ifvbox’ }
define ifx code = 12 { ‘\ifx’ }
define if eof code = 13 { ‘\ifeof’ }
define if true code = 14 { ‘\iftrue’ }
define if false code = 15 { ‘\iffalse’ }
define if case code = 16 { ‘\ifcase’ }
define if primitive code = 21 { ‘\ifprimitive’ }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("if", if test , if char code); primitive ("ifcat", if test , if cat code);
primitive ("ifnum", if test , if int code); primitive ("ifdim", if test , if dim code);
primitive ("ifodd", if test , if odd code); primitive ("ifvmode", if test , if vmode code);
primitive ("ifhmode", if test , if hmode code); primitive ("ifmmode", if test , if mmode code);
primitive ("ifinner", if test , if inner code); primitive ("ifvoid", if test , if void code);
primitive ("ifhbox", if test , if hbox code); primitive ("ifvbox", if test , if vbox code);
primitive ("ifx", if test , ifx code); primitive ("ifeof", if test , if eof code);
primitive ("iftrue", if test , if true code); primitive ("iffalse", if test , if false code);
primitive ("ifcase", if test , if case code); primitive ("ifprimitive", if test , if primitive code);

226 PART 28: CONDITIONAL PROCESSING X ETEX §523

523. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
if test : begin if chr code ≥ unless code then print esc("unless");

case chr code mod unless code of
if cat code : print esc("ifcat");
if int code : print esc("ifnum");
if dim code : print esc("ifdim");
if odd code : print esc("ifodd");
if vmode code : print esc("ifvmode");
if hmode code : print esc("ifhmode");
if mmode code : print esc("ifmmode");
if inner code : print esc("ifinner");
if void code : print esc("ifvoid");
if hbox code : print esc("ifhbox");
if vbox code : print esc("ifvbox");
ifx code : print esc("ifx");
if eof code : print esc("ifeof");
if true code : print esc("iftrue");
if false code : print esc("iffalse");
if case code : print esc("ifcase");
if primitive code : print esc("ifprimitive");
⟨Cases of if test for print cmd chr 1575 ⟩

othercases print esc("if")
endcases;
end;

524. Conditions can be inside conditions, and this nesting has a stack that is independent of the save stack .
Four global variables represent the top of the condition stack: cond ptr points to pushed-down entries, if

any; if limit specifies the largest code of a fi or else command that is syntactically legal; cur if is the name
of the current type of conditional; and if line is the line number at which it began.

If no conditions are currently in progress, the condition stack has the special state cond ptr = null ,
if limit = normal , cur if = 0, if line = 0. Otherwise cond ptr points to a two-word node; the type , subtype ,
and link fields of the first word contain if limit , cur if , and cond ptr at the next level, and the second word
contains the corresponding if line .

define if node size = 2 { number of words in stack entry for conditionals }
define if line field (#) ≡ mem [#+ 1].int
define if code = 1 { code for \if... being evaluated }
define fi code = 2 { code for \fi }
define else code = 3 { code for \else }
define or code = 4 { code for \or }

⟨Global variables 13 ⟩ +≡
cond ptr : pointer ; { top of the condition stack }
if limit : normal . . or code ; { upper bound on fi or else codes }
cur if : small number ; { type of conditional being worked on }
if line : integer ; { line where that conditional began }

525. ⟨ Set initial values of key variables 23 ⟩ +≡
cond ptr ← null ; if limit ← normal ; cur if ← 0; if line ← 0;

526. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("fi",fi or else ,fi code); text (frozen fi)← "fi"; eqtb [frozen fi]← eqtb [cur val];
primitive ("or",fi or else , or code); primitive ("else",fi or else , else code);

§527 X ETEX PART 28: CONDITIONAL PROCESSING 227

527. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
fi or else : if chr code = fi code then print esc("fi")

else if chr code = or code then print esc("or")
else print esc("else");

528. When we skip conditional text, we keep track of the line number where skipping began, for use in
error messages.

⟨Global variables 13 ⟩ +≡
skip line : integer ; { skipping began here }

529. Here is a procedure that ignores text until coming to an \or, \else, or \fi at the current level of
\if . . . \fi nesting. After it has acted, cur chr will indicate the token that was found, but cur tok will not
be set (because this makes the procedure run faster).

procedure pass text ;
label done ;
var l: integer ; { level of \if . . . \fi nesting }
save scanner status : small number ; { scanner status upon entry }

begin save scanner status ← scanner status ; scanner status ← skipping ; l← 0; skip line ← line ;
loop begin get next ;
if cur cmd = fi or else then
begin if l = 0 then goto done ;
if cur chr = fi code then decr (l);
end

else if cur cmd = if test then incr (l);
end;

done : scanner status ← save scanner status ;
if tracing ifs > 0 then show cur cmd chr ;
end;

530. When we begin to process a new \if, we set if limit ← if code ; then if \or or \else or \fi occurs
before the current \if condition has been evaluated, \relax will be inserted. For example, a sequence of
commands like ‘\ifvoid1\else...\fi’ would otherwise require something after the ‘1’.

⟨Push the condition stack 530 ⟩ ≡
begin p← get node (if node size); link (p)← cond ptr ; type (p)← if limit ; subtype (p)← cur if ;
if line field (p)← if line ; cond ptr ← p; cur if ← cur chr ; if limit ← if code ; if line ← line ;
end

This code is used in section 533.

531. ⟨Pop the condition stack 531 ⟩ ≡
begin if if stack [in open] = cond ptr then if warning ;

{ conditionals possibly not properly nested with files }
p← cond ptr ; if line ← if line field (p); cur if ← subtype (p); if limit ← type (p); cond ptr ← link (p);
free node (p, if node size);
end

This code is used in sections 533, 535, 544, and 545.

228 PART 28: CONDITIONAL PROCESSING X ETEX §532

532. Here’s a procedure that changes the if limit code corresponding to a given value of cond ptr .

procedure change if limit (l : small number ; p : pointer);
label exit ;
var q: pointer ;
begin if p = cond ptr then if limit ← l { that’s the easy case }
else begin q ← cond ptr ;
loop begin if q = null then confusion ("if");
if link (q) = p then

begin type (q)← l; return;
end;

q ← link (q);
end;

end;
exit : end;

533. A condition is started when the expand procedure encounters an if test command; in that case expand
reduces to conditional , which is a recursive procedure.

procedure conditional ;
label exit , common ending ;
var b: boolean ; { is the condition true? }
e: boolean ; { keep track of nested csnames }
r: "<" . . ">"; { relation to be evaluated }
m,n: integer ; { to be tested against the second operand }
p, q: pointer ; { for traversing token lists in \ifx tests }
save scanner status : small number ; { scanner status upon entry }
save cond ptr : pointer ; { cond ptr corresponding to this conditional }
this if : small number ; { type of this conditional }
is unless : boolean ; {was this if preceded by ‘\unless’ ? }

begin if tracing ifs > 0 then
if tracing commands ≤ 1 then show cur cmd chr ;
⟨Push the condition stack 530 ⟩; save cond ptr ← cond ptr ; is unless ← (cur chr ≥ unless code);
this if ← cur chr mod unless code ;
⟨Either process \ifcase or set b to the value of a boolean condition 536 ⟩;
if is unless then b← ¬b;
if tracing commands > 1 then ⟨Display the value of b 537 ⟩;
if b then
begin change if limit (else code , save cond ptr); return; {wait for \else or \fi }
end;
⟨ Skip to \else or \fi, then goto common ending 535 ⟩;

common ending : if cur chr = fi code then ⟨Pop the condition stack 531 ⟩
else if limit ← fi code ; {wait for \fi }

exit : end;

534. In a construction like ‘\if\iftrue abc\else d\fi’, the first \else that we come to after learning
that the \if is false is not the \else we’re looking for. Hence the following curious logic is needed.

§535 X ETEX PART 28: CONDITIONAL PROCESSING 229

535. ⟨ Skip to \else or \fi, then goto common ending 535 ⟩ ≡
loop begin pass text ;
if cond ptr = save cond ptr then
begin if cur chr ̸= or code then goto common ending ;
print err ("Extra␣"); print esc("or");
help1 ("I´m␣ignoring␣this;␣it␣doesn´t␣match␣any␣\if."); error ;
end

else if cur chr = fi code then ⟨Pop the condition stack 531 ⟩;
end

This code is used in section 533.

536. ⟨Either process \ifcase or set b to the value of a boolean condition 536 ⟩ ≡
case this if of
if char code , if cat code : ⟨Test if two characters match 541 ⟩;
if int code , if dim code : ⟨Test relation between integers or dimensions 538 ⟩;
if odd code : ⟨Test if an integer is odd 539 ⟩;
if vmode code : b← (abs (mode) = vmode);
if hmode code : b← (abs (mode) = hmode);
if mmode code : b← (abs (mode) = mmode);
if inner code : b← (mode < 0);
if void code , if hbox code , if vbox code : ⟨Test box register status 540 ⟩;
ifx code : ⟨Test if two tokens match 542 ⟩;
if eof code : begin scan four bit int ; b← (read open [cur val] = closed);
end;

if true code : b← true ;
if false code : b← false ;
⟨Cases for conditional 1577 ⟩

if case code : ⟨ Select the appropriate case and return or goto common ending 544 ⟩;
if primitive code : begin save scanner status ← scanner status ; scanner status ← normal ; get next ;
scanner status ← save scanner status ;
if cur cs < hash base then m← prim lookup(cur cs − single base)
else m← prim lookup(text (cur cs));
b← ((cur cmd ̸= undefined cs)∧(m ̸= undefined primitive)∧(cur cmd = prim eq type (m))∧(cur chr =

prim equiv (m)));
end;

end { there are no other cases }
This code is used in section 533.

537. ⟨Display the value of b 537 ⟩ ≡
begin begin diagnostic ;
if b then print ("{true}") else print ("{false}");
end diagnostic(false);
end

This code is used in section 533.

230 PART 28: CONDITIONAL PROCESSING X ETEX §538

538. Here we use the fact that "<", "=", and ">" are consecutive ASCII codes.

⟨Test relation between integers or dimensions 538 ⟩ ≡
begin if this if = if int code then scan int else scan normal dimen ;
n← cur val ; ⟨Get the next non-blank non-call token 440 ⟩;
if (cur tok ≥ other token + "<") ∧ (cur tok ≤ other token + ">") then r ← cur tok − other token
else begin print err ("Missing␣=␣inserted␣for␣"); print cmd chr (if test , this if);
help1 ("I␣was␣expecting␣to␣see␣`<´,␣`=´,␣or␣`>´.␣Didn´t."); back error ; r ← "=";
end;

if this if = if int code then scan int else scan normal dimen ;
case r of
"<": b← (n < cur val);
"=": b← (n = cur val);
">": b← (n > cur val);
end;
end

This code is used in section 536.

539. ⟨Test if an integer is odd 539 ⟩ ≡
begin scan int ; b← odd (cur val);
end

This code is used in section 536.

540. ⟨Test box register status 540 ⟩ ≡
begin scan register num ; fetch box (p);
if this if = if void code then b← (p = null)
else if p = null then b← false
else if this if = if hbox code then b← (type (p) = hlist node)

else b← (type (p) = vlist node);
end

This code is used in section 536.

§541 X ETEX PART 28: CONDITIONAL PROCESSING 231

541. An active character will be treated as category 13 following \if\noexpand or following
\ifcat\noexpand. We use the fact that active characters have the smallest tokens, among all control
sequences.

define get x token or active char ≡
begin get x token ;
if cur cmd = relax then
if cur chr = no expand flag then

begin cur cmd ← active char ; cur chr ← cur tok − cs token flag − active base ;
end;

end

⟨Test if two characters match 541 ⟩ ≡
begin get x token or active char ;
if (cur cmd > active char) ∨ (cur chr > biggest usv) then { not a character }
begin m← relax ; n← too big usv ;
end

else begin m← cur cmd ; n← cur chr ;
end;

get x token or active char ;
if (cur cmd > active char) ∨ (cur chr > biggest usv) then
begin cur cmd ← relax ; cur chr ← too big usv ;
end;

if this if = if char code then b← (n = cur chr) else b← (m = cur cmd);
end

This code is used in section 536.

542. Note that ‘\ifx’ will declare two macros different if one is long or outer and the other isn’t, even
though the texts of the macros are the same.
We need to reset scanner status , since \outer control sequences are allowed, but we might be scanning a

macro definition or preamble.

⟨Test if two tokens match 542 ⟩ ≡
begin save scanner status ← scanner status ; scanner status ← normal ; get next ; n← cur cs ;
p← cur cmd ; q ← cur chr ; get next ;
if cur cmd ̸= p then b← false
else if cur cmd < call then b← (cur chr = q)
else ⟨Test if two macro texts match 543 ⟩;

scanner status ← save scanner status ;
end

This code is used in section 536.

232 PART 28: CONDITIONAL PROCESSING X ETEX §543

543. Note also that ‘\ifx’ decides that macros \a and \b are different in examples like this:

\def\a{\c} \def\c{}

\def\b{\d} \def\d{}

⟨Test if two macro texts match 543 ⟩ ≡
begin p← link (cur chr); q ← link (equiv (n)); { omit reference counts }
if p = q then b← true
else begin while (p ̸= null) ∧ (q ̸= null) do

if info(p) ̸= info(q) then p← null
else begin p← link (p); q ← link (q);
end;

b← ((p = null) ∧ (q = null));
end;

end

This code is used in section 542.

544. ⟨ Select the appropriate case and return or goto common ending 544 ⟩ ≡
begin scan int ; n← cur val ; {n is the number of cases to pass }
if tracing commands > 1 then
begin begin diagnostic ; print ("{case␣"); print int (n); print char ("}"); end diagnostic(false);
end;

while n ̸= 0 do
begin pass text ;
if cond ptr = save cond ptr then

if cur chr = or code then decr (n)
else goto common ending

else if cur chr = fi code then ⟨Pop the condition stack 531 ⟩;
end;

change if limit (or code , save cond ptr); return; {wait for \or, \else, or \fi }
end

This code is used in section 536.

545. The processing of conditionals is complete except for the following code, which is actually part of
expand . It comes into play when \or, \else, or \fi is scanned.

⟨Terminate the current conditional and skip to \fi 545 ⟩ ≡
begin if tracing ifs > 0 then
if tracing commands ≤ 1 then show cur cmd chr ;

if cur chr > if limit then
if if limit = if code then insert relax { condition not yet evaluated }
else begin print err ("Extra␣"); print cmd chr (fi or else , cur chr);

help1 ("I´m␣ignoring␣this;␣it␣doesn´t␣match␣any␣\if."); error ;
end

else begin while cur chr ̸= fi code do pass text ; { skip to \fi }
⟨Pop the condition stack 531 ⟩;
end;

end

This code is used in section 399.

§546 X ETEX PART 29: FILE NAMES 233

546. File names. It’s time now to fret about file names. Besides the fact that different operating systems
treat files in different ways, we must cope with the fact that completely different naming conventions are used
by different groups of people. The following programs show what is required for one particular operating
system; similar routines for other systems are not difficult to devise.
TEX assumes that a file name has three parts: the name proper; its “extension”; and a “file area” where

it is found in an external file system. The extension of an input file or a write file is assumed to be ‘.tex’
unless otherwise specified; it is ‘.log’ on the transcript file that records each run of TEX; it is ‘.tfm’ on the
font metric files that describe characters in the fonts TEX uses; it is ‘.dvi’ on the output files that specify
typesetting information; and it is ‘.fmt’ on the format files written by INITEX to initialize TEX. The file area
can be arbitrary on input files, but files are usually output to the user’s current area. If an input file cannot
be found on the specified area, TEX will look for it on a special system area; this special area is intended for
commonly used input files like webmac.tex.
Simple uses of TEX refer only to file names that have no explicit extension or area. For example, a person

usually says ‘\input paper’ or ‘\font\tenrm = helvetica’ instead of ‘\input paper.new’ or ‘\font\tenrm
= <csd.knuth>test’. Simple file names are best, because they make the TEX source files portable; whenever
a file name consists entirely of letters and digits, it should be treated in the same way by all implementations
of TEX. However, users need the ability to refer to other files in their environment, especially when responding
to error messages concerning unopenable files; therefore we want to let them use the syntax that appears in
their favorite operating system.

547. In order to isolate the system-dependent aspects of file names, the system-independent parts of TEX
are expressed in terms of three system-dependent procedures called begin name , more name , and end name .
In essence, if the user-specified characters of the file name are c1 . . . cn, the system-independent driver program
does the operations

begin name ; more name (c1); . . . ; more name (cn); end name .

These three procedures communicate with each other via global variables. Afterwards the file name will
appear in the string pool as three strings called cur name, cur area , and cur ext ; the latter two are null
(i.e., ""), unless they were explicitly specified by the user.
Actually the situation is slightly more complicated, because TEX needs to know when the file name ends.

The more name routine is a function (with side effects) that returns true on the calls more name (c1), . . . ,
more name (cn−1). The final call more name (cn) returns false ; or, it returns true and the token following
cn is something like ‘\hbox’ (i.e., not a character). In other words, more name is supposed to return true
unless it is sure that the file name has been completely scanned; and end name is supposed to be able to
finish the assembly of cur name , cur area , and cur ext regardless of whether more name (cn) returned true
or false .

⟨Global variables 13 ⟩ +≡
cur name : str number ; { name of file just scanned }
cur area : str number ; { file area just scanned, or "" }
cur ext : str number ; { file extension just scanned, or "" }

548. The file names we shall deal with for illustrative purposes have the following structure: If the name
contains ‘>’ or ‘:’, the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘.’, the file extension consists of all such characters
from the first remaining ‘.’ to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

⟨Global variables 13 ⟩ +≡
area delimiter : pool pointer ; { the most recent ‘>’ or ‘:’, if any }
ext delimiter : pool pointer ; { the relevant ‘.’, if any }
file name quote char : UTF16 code ;

234 PART 29: FILE NAMES X ETEX §549

549. Input files that can’t be found in the user’s area may appear in a standard system area called
TEX area . Font metric files whose areas are not given explicitly are assumed to appear in a standard system
area called TEX font area . These system area names will, of course, vary from place to place.

define TEX area ≡ "TeXinputs:"

define TEX font area ≡ "TeXfonts:"

550. Here now is the first of the system-dependent routines for file name scanning.

procedure begin name ;
begin area delimiter ← 0; ext delimiter ← 0; file name quote char ← 0;
end;

551. And here’s the second. The string pool might change as the file name is being scanned, since a new
\csname might be entered; therefore we keep area delimiter and ext delimiter relative to the beginning of
the current string, instead of assigning an absolute address like pool ptr to them.

function more name (c : UnicodeScalar): boolean ;
begin if c = "␣" then more name ← false
else begin if (c > ˝FFFF) then str room (2)
else str room (1);
append char (c); { contribute c to the current string }
if (c = ">") ∨ (c = ":") then
begin area delimiter ← cur length ; ext delimiter ← 0;
end

else if (c = ".") ∧ (ext delimiter = 0) then ext delimiter ← cur length ;
more name ← true ;
end;

end;

552. The third.

procedure end name ;
begin if str ptr + 3 > max strings then overflow ("number␣of␣strings",max strings − init str ptr);
if area delimiter = 0 then cur area ← ""

else begin cur area ← str ptr ; str start macro(str ptr + 1)← str start macro(str ptr) + area delimiter ;
incr (str ptr);
end;

if ext delimiter = 0 then
begin cur ext ← ""; cur name ← make string ;
end

else begin cur name ← str ptr ;
str start macro(str ptr + 1)← str start macro(str ptr) + ext delimiter − area delimiter − 1;
incr (str ptr); cur ext ← make string ;
end;

end;

553. Conversely, here is a routine that takes three strings and prints a file name that might have produced
them. (The routine is system dependent, because some operating systems put the file area last instead of
first.)

⟨Basic printing procedures 57 ⟩ +≡
procedure print file name (n, a, e : integer);

begin slow print (a); slow print (n); slow print (e);
end;

§554 X ETEX PART 29: FILE NAMES 235

554. Another system-dependent routine is needed to convert three internal TEX strings into the
name of file value that is used to open files. The present code allows both lowercase and uppercase letters
in the file name.

define append to name (#) ≡
begin c← #; incr (k);
if k ≤ file name size then name of file [k]← xchr [c];
end

procedure pack file name (n, a, e : str number);
var k: integer ; { number of positions filled in name of file }
c: UnicodeScalar ; { character being packed }
j: pool pointer ; { index into str pool }

begin k ← 0;
for j ← str start macro(a) to str start macro(a+ 1)− 1 do append to name (so(str pool [j]));
for j ← str start macro(n) to str start macro(n+ 1)− 1 do append to name (so(str pool [j]));
for j ← str start macro(e) to str start macro(e+ 1)− 1 do append to name (so(str pool [j]));
if k ≤ file name size then name length ← k else name length ← file name size ;
for k ← name length + 1 to file name size do name of file [k]← ´␣´;
end;

555. A messier routine is also needed, since format file names must be scanned before TEX’s string
mechanism has been initialized. We shall use the global variable TEX format default to supply the text
for default system areas and extensions related to format files.

define format default length = 20 { length of the TEX format default string }
define format area length = 11 { length of its area part }
define format ext length = 4 { length of its ‘.fmt’ part }
define format extension = ".fmt" { the extension, as a WEB constant }

⟨Global variables 13 ⟩ +≡
TEX format default : packed array [1 . . format default length] of char ;

556. ⟨ Set initial values of key variables 23 ⟩ +≡
TEX format default ← ´TeXformats:plain.fmt´;

557. ⟨Check the “constant” values for consistency 14 ⟩ +≡
if format default length > file name size then bad ← 31;

236 PART 29: FILE NAMES X ETEX §558

558. Here is the messy routine that was just mentioned. It sets name of file from the first n characters
of TEX format default , followed by buffer [a . . b], followed by the last format ext length characters of
TEX format default .
We dare not give error messages here, since TEX calls this routine before the error routine is ready to roll.

Instead, we simply drop excess characters, since the error will be detected in another way when a strange
file name isn’t found.

procedure pack buffered name (n : small number ; a, b : integer);
var k: integer ; { number of positions filled in name of file }
c: ASCII code ; { character being packed }
j: integer ; { index into buffer or TEX format default }

begin if n+ b− a+ 1 + format ext length > file name size then
b← a+ file name size − n− 1− format ext length ;

k ← 0;
for j ← 1 to n do append to name (xord [TEX format default [j]]);
for j ← a to b do append to name (buffer [j]);
for j ← format default length − format ext length + 1 to format default length do
append to name (xord [TEX format default [j]]);

if k ≤ file name size then name length ← k else name length ← file name size ;
for k ← name length + 1 to file name size do name of file [k]← ´␣´;
end;

559. Here is the only place we use pack buffered name . This part of the program becomes active when a
“virgin” TEX is trying to get going, just after the preliminary initialization, or when the user is substituting
another format file by typing ‘&’ after the initial ‘**’ prompt. The buffer contains the first line of input in
buffer [loc . . (last − 1)], where loc < last and buffer [loc] ̸= "␣".

⟨Declare the function called open fmt file 559 ⟩ ≡
function open fmt file : boolean ;

label found , exit ;
var j: 0 . . buf size ; { the first space after the format file name }
begin j ← loc ;
if buffer [loc] = "&" then
begin incr (loc); j ← loc ; buffer [last]← "␣";
while buffer [j] ̸= "␣" do incr (j);
pack buffered name (0, loc , j − 1); { try first without the system file area }
if w open in (fmt file) then goto found ;
pack buffered name (format area length , loc , j − 1); { now try the system format file area }
if w open in (fmt file) then goto found ;
wake up terminal ; wterm ln (´Sorry,␣I␣can´´t␣find␣that␣format;´, ´␣will␣try␣PLAIN.´);
update terminal ;
end; { now pull out all the stops: try for the system plain file }

pack buffered name (format default length − format ext length , 1, 0);
if ¬w open in (fmt file) then
begin wake up terminal ; wterm ln (´I␣can´´t␣find␣the␣PLAIN␣format␣file!´);
open fmt file ← false ; return;
end;

found : loc ← j; open fmt file ← true ;
exit : end;

This code is used in section 1357.

§560 X ETEX PART 29: FILE NAMES 237

560. Operating systems often make it possible to determine the exact name (and possible version number)
of a file that has been opened. The following routine, which simply makes a TEX string from the value of
name of file , should ideally be changed to deduce the full name of file f , which is the file most recently
opened, if it is possible to do this in a Pascal program.
This routine might be called after string memory has overflowed, hence we dare not use ‘str room ’.

function make name string : str number ;
var k: 0 . . file name size ; { index into name of file }
begin if (pool ptr + name length > pool size) ∨ (str ptr = max strings) ∨ (cur length > 0) then
make name string ← "?"

else begin make utf16 name ;
for k ← 0 to name length16 − 1 do append char (name of file16 [k]);
make name string ← make string ;
end;

end;
function u make name string (var f : unicode file): str number ;

begin u make name string ← make name string ;
end;

function a make name string (var f : alpha file): str number ;
begin a make name string ← make name string ;
end;

function b make name string (var f : byte file): str number ;
begin b make name string ← make name string ;
end;

function w make name string (var f : word file): str number ;
begin w make name string ← make name string ;
end;

561. Now let’s consider the “driver” routines by which TEX deals with file names in a system-independent
manner. First comes a procedure that looks for a file name in the input by calling get x token for the
information.

procedure scan file name ;
label done ;
begin name in progress ← true ; begin name ; ⟨Get the next non-blank non-call token 440 ⟩;
loop begin if (cur cmd > other char) ∨ (cur chr > biggest usv) then { not a character }

begin back input ; goto done ;
end;

if ¬more name (cur chr) then goto done ;
get x token ;
end;

done : end name ; name in progress ← false ;
end;

238 PART 29: FILE NAMES X ETEX §562

562. The global variable name in progress is used to prevent recursive use of scan file name , since the
begin name and other procedures communicate via global variables. Recursion would arise only by devious
tricks like ‘\input\input f’; such attempts at sabotage must be thwarted. Furthermore, name in progress
prevents \input from being initiated when a font size specification is being scanned.
Another global variable, job name , contains the file name that was first \input by the user. This name

is extended by ‘.log’ and ‘.dvi’ and ‘.fmt’ in the names of TEX’s output files.

⟨Global variables 13 ⟩ +≡
name in progress : boolean ; { is a file name being scanned? }
job name : str number ; { principal file name }
log opened : boolean ; { has the transcript file been opened? }

563. Initially job name = 0; it becomes nonzero as soon as the true name is known. We have job name = 0
if and only if the ‘log’ file has not been opened, except of course for a short time just after job name has
become nonzero.

⟨ Initialize the output routines 55 ⟩ +≡
job name ← 0; name in progress ← false ; log opened ← false ;

564. Here is a routine that manufactures the output file names, assuming that job name ̸= 0. It ignores
and changes the current settings of cur area and cur ext .

define pack cur name ≡ pack file name (cur name , cur area , cur ext)

procedure pack job name (s : str number); { s = ".log", output file extension , or format extension }
begin cur area ← ""; cur ext ← s; cur name ← job name ; pack cur name ;
end;

565. If some trouble arises when TEX tries to open a file, the following routine calls upon the user to
supply another file name. Parameter s is used in the error message to identify the type of file; parameter e
is the default extension if none is given. Upon exit from the routine, variables cur name , cur area , cur ext ,
and name of file are ready for another attempt at file opening.

procedure prompt file name (s, e : str number);
label done ;
var k: 0 . . buf size ; { index into buffer }
begin if interaction = scroll mode then wake up terminal ;
if s = "input␣file␣name" then print err ("I␣can´t␣find␣file␣`")
else print err ("I␣can´t␣write␣on␣file␣`");
print file name (cur name , cur area , cur ext); print ("´.");
if e = ".tex" then show context ;
print nl ("Please␣type␣another␣"); print (s);
if interaction < scroll mode then fatal error ("***␣(job␣aborted,␣file␣error␣in␣nonstop␣mode)");
clear terminal ; prompt input (":␣"); ⟨ Scan file name in the buffer 566 ⟩;
if cur ext = "" then cur ext ← e;
pack cur name ;
end;

§566 X ETEX PART 29: FILE NAMES 239

566. ⟨ Scan file name in the buffer 566 ⟩ ≡
begin begin name ; k ← first ;
while (buffer [k] = "␣") ∧ (k < last) do incr (k);
loop begin if k = last then goto done ;
if ¬more name (buffer [k]) then goto done ;
incr (k);
end;

done : end name ;
end

This code is used in section 565.

567. Here’s an example of how these conventions are used. Whenever it is time to ship out a box of stuff,
we shall use the macro ensure dvi open .

define ensure dvi open ≡
if output file name = 0 then
begin if job name = 0 then open log file ;
pack job name (output file extension);
while ¬dvi open out (dvi file) do

prompt file name ("file␣name␣for␣output", output file extension);
output file name ← b make name string (dvi file);
end

⟨Global variables 13 ⟩ +≡
output file extension : str number ;
no pdf output : boolean ;
dvi file : byte file ; { the device-independent output goes here }
output file name : str number ; { full name of the output file }
log name : str number ; { full name of the log file }

568. ⟨ Initialize the output routines 55 ⟩ +≡
output file name ← 0;
if no pdf output then output file extension ← ".xdv"

else output file extension ← ".pdf";

240 PART 29: FILE NAMES X ETEX §569

569. The open log file routine is used to open the transcript file and to help it catch up to what has
previously been printed on the terminal.

procedure open log file ;
var old setting : 0 . . max selector ; { previous selector setting }
k: 0 . . buf size ; { index into months and buffer }
l: 0 . . buf size ; { end of first input line }
months : packed array [1 . . 36] of char ; { abbreviations of month names }

begin old setting ← selector ;
if job name = 0 then job name ← "texput";
pack job name (".log");
while ¬a open out (log file) do ⟨Try to get a different log file name 570 ⟩;
log name ← a make name string (log file); selector ← log only ; log opened ← true ;
⟨Print the banner line, including the date and time 571 ⟩;
input stack [input ptr]← cur input ; {make sure bottom level is in memory }
print nl ("**"); l← input stack [0].limit field ; { last position of first line }
if buffer [l] = end line char then decr (l);
for k ← 1 to l do print (buffer [k]);
print ln ; { now the transcript file contains the first line of input }
selector ← old setting + 2; { log only or term and log }
end;

570. Sometimes open log file is called at awkward moments when TEX is unable to print error messages
or even to show context . The prompt file name routine can result in a fatal error , but the error routine will
not be invoked because log opened will be false.
The normal idea of batch mode is that nothing at all should be written on the terminal. However, in the

unusual case that no log file could be opened, we make an exception and allow an explanatory message to
be seen.
Incidentally, the program always refers to the log file as a ‘transcript file’, because some systems

cannot use the extension ‘.log’ for this file.

⟨Try to get a different log file name 570 ⟩ ≡
begin selector ← term only ; prompt file name ("transcript␣file␣name", ".log");
end

This code is used in section 569.

571. ⟨Print the banner line, including the date and time 571 ⟩ ≡
begin wlog (banner); slow print (format ident); print ("␣␣"); print int (sys day); print char ("␣");
months ← ´JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC´;
for k ← 3 ∗ sys month − 2 to 3 ∗ sys month do wlog (months [k]);
print char ("␣"); print int (sys year); print char ("␣"); print two(sys time div 60); print char (":");
print two(sys time mod 60);
if eTeX ex then
begin ; wlog cr ; wlog (´entering␣extended␣mode´);
end;

end

This code is used in section 569.

§572 X ETEX PART 29: FILE NAMES 241

572. Let’s turn now to the procedure that is used to initiate file reading when an ‘\input’ command is
being processed. Beware: For historic reasons, this code foolishly conserves a tiny bit of string pool space;
but that can confuse the interactive ‘E’ option.

procedure start input ; {TEX will \input something }
label done ;
begin scan file name ; { set cur name to desired file name }
if cur ext = "" then cur ext ← ".tex";
pack cur name ;
loop begin begin file reading ; { set up cur file and new level of input }
if a open in (cur file) then goto done ;
if cur area = "" then
begin pack file name (cur name ,TEX area , cur ext);
if a open in (cur file) then goto done ;
end;

end file reading ; { remove the level that didn’t work }
prompt file name ("input␣file␣name", ".tex");
end;

done : name ← a make name string (cur file);
if job name = 0 then
begin job name ← cur name ; open log file ;
end; { open log file doesn’t show context , so limit and loc needn’t be set to meaningful values yet }

if term offset + length (name) > max print line − 2 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char ("␣");
print char ("("); incr (open parens); slow print (name); update terminal ; state ← new line ;
if name = str ptr − 1 then { conserve string pool space (but see note above) }
begin flush string ; name ← cur name ;
end;
⟨Read the first line of the new file 573 ⟩;
end;

573. Here we have to remember to tell the input ln routine not to start with a get . If the file is empty, it
is considered to contain a single blank line.

⟨Read the first line of the new file 573 ⟩ ≡
begin line ← 1;
if input ln (cur file , false) then do nothing ;
firm up the line ;
if end line char inactive then decr (limit)
else buffer [limit]← end line char ;
first ← limit + 1; loc ← start ;
end

This code is used in section 572.

242 PART 30: FONT METRIC DATA X ETEX §574

574. Font metric data. TEX gets its knowledge about fonts from font metric files, also called TFM files;
the ‘T’ in ‘TFM’ stands for TEX, but other programs know about them too.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words, but TEX uses the byte interpretation.
The format of TFM files was designed by Lyle Ramshaw in 1980. The intent is to convey a lot of different
kinds of information in a compact but useful form.

⟨Global variables 13 ⟩ +≡
tfm file : byte file ;

575. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

lf = length of the entire file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;
nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215. We must have bc − 1 ≤ ec ≤ 255, and

lf = 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np .

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec + 1).
Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most

significant bytes appear first in the file. This is called BigEndian order.

576. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal
specification

header :array [0 . . lh − 1] of stuff
char info :array [bc . . ec] of char info word

width :array [0 . . nw − 1] of fix word
height :array [0 . . nh − 1] of fix word
depth :array [0 . . nd − 1] of fix word
italic :array [0 . . ni − 1] of fix word

lig kern :array [0 . . nl − 1] of lig kern command
kern :array [0 . . nk − 1] of fix word
exten :array [0 . . ne − 1] of extensible recipe
param :array [1 . . np] of fix word

The most important data type used here is a fix word , which is a 32-bit representation of a binary fraction.
A fix word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix word , exactly 12 are to the left of the binary point; thus, the largest fix word value is
2048− 2−20, and the smallest is −2048. We will see below, however, that all but two of the fix word values
must lie between −16 and +16.

§577 X ETEX PART 30: FONT METRIC DATA 243

577. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, header [0] and header [1], whose meaning is explained below.
Additional header information of use to other software routines might also be included, but TEX82 does not
need to know about such details. For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding scheme used (e.g., ‘XEROX text’ or
‘TeX math symbols’), the next five give the font identifier (e.g., ‘HELVETICA’ or ‘CMSY’), and the last gives
the “face byte.” The program that converts DVI files to Xerox printing format gets this information by
looking at the TFM file, which it needs to read anyway because of other information that is not explicitly
repeated in DVI format.

header [0] is a 32-bit check sum that TEX will copy into the DVI output file. Later on when the DVI file is
printed, possibly on another computer, the actual font that gets used is supposed to have a check sum
that agrees with the one in the TFM file used by TEX. In this way, users will be warned about potential
incompatibilities. (However, if the check sum is zero in either the font file or the TFM file, no check
is made.) The actual relation between this check sum and the rest of the TFM file is not important;
the check sum is simply an identification number with the property that incompatible fonts almost
always have distinct check sums.

header [1] is a fix word containing the design size of the font, in units of TEX points. This number must be
at least 1.0; it is fairly arbitrary, but usually the design size is 10.0 for a “10 point” font, i.e., a font
that was designed to look best at a 10-point size, whatever that really means. When a TEX user asks
for a font ‘at δ pt’, the effect is to override the design size and replace it by δ, and to multiply the x
and y coordinates of the points in the font image by a factor of δ divided by the design size. All other
dimensions in the TFM file are fix word numbers in design-size units, with the exception of param [1]
(which denotes the slant ratio). Thus, for example, the value of param [6], which defines the em unit,
is often the fix word value 220 = 1.0, since many fonts have a design size equal to one em. The other
dimensions must be less than 16 design-size units in absolute value; thus, header [1] and param [1] are
the only fix word entries in the whole TFM file whose first byte might be something besides 0 or 255.

578. Next comes the char info array, which contains one char info word per character. Each word in this
part of the file contains six fields packed into four bytes as follows.

first byte: width index (8 bits)
second byte: height index (4 bits) times 16, plus depth index (4 bits)
third byte: italic index (6 bits) times 4, plus tag (2 bits)
fourth byte: remainder (8 bits)

The actual width of a character is width [width index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic corrections.
The italic correction of a character has two different uses. (a) In ordinary text, the italic correction is

added to the width only if the TEX user specifies ‘\/’ after the character. (b) In math formulas, the italic
correction is always added to the width, except with respect to the positioning of subscripts.
Incidentally, the relation width [0] = height [0] = depth [0] = italic [0] = 0 should always hold, so that an

index of zero implies a value of zero. The width index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width index .

244 PART 30: FONT METRIC DATA X ETEX §579

579. The tag field in a char info word has four values that explain how to interpret the remainder field.

tag = 0 (no tag) means that remainder is unused.
tag = 1 (lig tag) means that this character has a ligature/kerning program starting at position remainder

in the lig kern array.
tag = 2 (list tag) means that this character is part of a chain of characters of ascending sizes, and not the

largest in the chain. The remainder field gives the character code of the next larger character.
tag = 3 (ext tag) means that this character code represents an extensible character, i.e., a character that

is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

Characters with tag = 2 and tag = 3 are treated as characters with tag = 0 unless they are used in
special circumstances in math formulas. For example, the \sum operation looks for a list tag , and the \left
operation looks for both list tag and ext tag .

define no tag = 0 { vanilla character }
define lig tag = 1 { character has a ligature/kerning program }
define list tag = 2 { character has a successor in a charlist }
define ext tag = 3 { character is extensible }

§580 X ETEX PART 30: FONT METRIC DATA 245

580. The lig kern array contains instructions in a simple programming language that explains what to do
for special letter pairs. Each word in this array is a lig kern command of four bytes.

first byte: skip byte , indicates that this is the final program step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of intervening steps.

second byte: next char , “if next char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op byte , indicates a ligature step if less than 128, a kern step otherwise.
fourth byte: remainder .

In a kern step, an additional space equal to kern [256 ∗ (op byte − 128) + remainder] is inserted between the
current character and next char . This amount is often negative, so that the characters are brought closer
together by kerning; but it might be positive.
There are eight kinds of ligature steps, having op byte codes 4a+2b+c where 0 ≤ a ≤ b+c and 0 ≤ b, c ≤ 1.

The character whose code is remainder is inserted between the current character and next char ; then the
current character is deleted if b = 0, and next char is deleted if c = 0; then we pass over a characters to
reach the next current character (which may have a ligature/kerning program of its own).
If the very first instruction of the lig kern array has skip byte = 255, the next char byte is the so-called

boundary character of this font; the value of next char need not lie between bc and ec . If the very last
instruction of the lig kern array has skip byte = 255, there is a special ligature/kerning program for a
boundary character at the left, beginning at location 256 ∗ op byte + remainder . The interpretation is that
TEX puts implicit boundary characters before and after each consecutive string of characters from the same
font. These implicit characters do not appear in the output, but they can affect ligatures and kerning.
If the very first instruction of a character’s lig kern program has skip byte > 128, the program actually

begins in location 256 ∗ op byte + remainder . This feature allows access to large lig kern arrays, because the
first instruction must otherwise appear in a location ≤ 255.
Any instruction with skip byte > 128 in the lig kern array must satisfy the condition

256 ∗ op byte + remainder < nl .

If such an instruction is encountered during normal program execution, it denotes an unconditional halt; no
ligature or kerning command is performed.

define stop flag ≡ qi (128) { value indicating ‘STOP’ in a lig/kern program }
define kern flag ≡ qi (128) { op code for a kern step }
define skip byte (#) ≡ #.b0
define next char (#) ≡ #.b1
define op byte (#) ≡ #.b2
define rem byte (#) ≡ #.b3

581. Extensible characters are specified by an extensible recipe , which consists of four bytes called top ,
mid , bot , and rep (in this order). These bytes are the character codes of individual pieces used to build up
a large symbol. If top , mid , or bot are zero, they are not present in the built-up result. For example, an
extensible vertical line is like an extensible bracket, except that the top and bottom pieces are missing.
Let T , M , B, and R denote the respective pieces, or an empty box if the piece isn’t present. Then the

extensible characters have the form TRkMRkB from top to bottom, for some k ≥ 0, unless M is absent; in
the latter case we can have TRkB for both even and odd values of k. The width of the extensible character is
the width of R; and the height-plus-depth is the sum of the individual height-plus-depths of the components
used, since the pieces are butted together in a vertical list.

define ext top(#) ≡ #.b0 { top piece in a recipe }
define ext mid (#) ≡ #.b1 {mid piece in a recipe }
define ext bot (#) ≡ #.b2 { bot piece in a recipe }
define ext rep(#) ≡ #.b3 { rep piece in a recipe }

246 PART 30: FONT METRIC DATA X ETEX §582

582. The final portion of a TFM file is the param array, which is another sequence of fix word values.

param [1] = slant is the amount of italic slant, which is used to help position accents. For example, slant = .25
means that when you go up one unit, you also go .25 units to the right. The slant is a pure number;
it’s the only fix word other than the design size itself that is not scaled by the design size.

param [2] = space is the normal spacing between words in text. Note that character "␣" in the font need not
have anything to do with blank spaces.

param [3] = space stretch is the amount of glue stretching between words.
param [4] = space shrink is the amount of glue shrinking between words.
param [5] = x height is the size of one ex in the font; it is also the height of letters for which accents don’t

have to be raised or lowered.
param [6] = quad is the size of one em in the font.
param [7] = extra space is the amount added to param [2] at the ends of sentences.

If fewer than seven parameters are present, TEX sets the missing parameters to zero. Fonts used for math
symbols are required to have additional parameter information, which is explained later.

define slant code = 1
define space code = 2
define space stretch code = 3
define space shrink code = 4
define x height code = 5
define quad code = 6
define extra space code = 7

583. So that is what TFM files hold. Since TEX has to absorb such information about lots of fonts, it stores
most of the data in a large array called font info . Each item of font info is a memory word ; the fix word
data gets converted into scaled entries, while everything else goes into words of type four quarters .

When the user defines \font\f, say, TEX assigns an internal number to the user’s font \f. Adding this
number to font id base gives the eqtb location of a “frozen” control sequence that will always select the font.

⟨Types in the outer block 18 ⟩ +≡
internal font number = font base . . font max ; { font in a char node }
font index = 0 . . font mem size ; { index into font info }

§584 X ETEX PART 30: FONT METRIC DATA 247

584. Here now is the (rather formidable) array of font arrays.

define otgr font flag = ˝FFFE
define aat font flag = ˝FFFF
define is aat font (#) ≡ (font area [#] = aat font flag)
define is ot font (#) ≡ ((font area [#] = otgr font flag) ∧ (usingOpenType (font layout engine [#])))
define is gr font (#) ≡ ((font area [#] = otgr font flag) ∧ (usingGraphite (font layout engine [#])))
define is otgr font (#) ≡ (font area [#] = otgr font flag)
define is native font (#) ≡ (is aat font (#) ∨ is otgr font (#)) { native fonts have font area = 65534 or

65535, which would be a string containing an invalid Unicode character }
define

is new mathfont (#) ≡ ((font area [#] = otgr font flag) ∧
(isOpenTypeMathFont (font layout engine [#])))

define non char ≡ qi (too big char) { a halfword code that can’t match a real character }
define non address = 0 { a spurious bchar label }

⟨Global variables 13 ⟩ +≡
font info : array [font index] of memory word ; { the big collection of font data }
fmem ptr : font index ; { first unused word of font info }
font ptr : internal font number ; { largest internal font number in use }
font check : array [internal font number] of four quarters ; { check sum }
font size : array [internal font number] of scaled ; { “at” size }
font dsize : array [internal font number] of scaled ; { “design” size }
font params : array [internal font number] of font index ; { how many font parameters are present }
font name : array [internal font number] of str number ; { name of the font }
font area : array [internal font number] of str number ; { area of the font }
font bc : array [internal font number] of eight bits ; { beginning (smallest) character code }
font ec : array [internal font number] of eight bits ; { ending (largest) character code }
font glue : array [internal font number] of pointer ;

{ glue specification for interword space, null if not allocated }
font used : array [internal font number] of boolean ;

{ has a character from this font actually appeared in the output? }
hyphen char : array [internal font number] of integer ; { current \hyphenchar values }
skew char : array [internal font number] of integer ; { current \skewchar values }
bchar label : array [internal font number] of font index ;

{ start of lig kern program for left boundary character, non address if there is none }
font bchar : array [internal font number] of min quarterword . . non char ;

{ boundary character, non char if there is none }
font false bchar : array [internal font number] of min quarterword . . non char ;

{ font bchar if it doesn’t exist in the font, otherwise non char }

248 PART 30: FONT METRIC DATA X ETEX §585

585. Besides the arrays just enumerated, we have directory arrays that make it easy to get at the
individual entries in font info . For example, the char info data for character c in font f will be in
font info [char base [f] + c].qqqq ; and if w is the width index part of this word (the b0 field), the width of
the character is font info [width base [f] + w].sc . (These formulas assume that min quarterword has already
been added to c and to w, since TEX stores its quarterwords that way.)

⟨Global variables 13 ⟩ +≡
char base : array [internal font number] of integer ; { base addresses for char info }
width base : array [internal font number] of integer ; { base addresses for widths }
height base : array [internal font number] of integer ; { base addresses for heights }
depth base : array [internal font number] of integer ; { base addresses for depths }
italic base : array [internal font number] of integer ; { base addresses for italic corrections }
lig kern base : array [internal font number] of integer ; { base addresses for ligature/kerning programs }
kern base : array [internal font number] of integer ; { base addresses for kerns }
exten base : array [internal font number] of integer ; { base addresses for extensible recipes }
param base : array [internal font number] of integer ; { base addresses for font parameters }

586. ⟨ Set initial values of key variables 23 ⟩ +≡
for k ← font base to font max do font used [k]← false ;

587. TEX always knows at least one font, namely the null font. It has no characters, and its seven
parameters are all equal to zero.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
font ptr ← null font ; fmem ptr ← 7; font name [null font]← "nullfont"; font area [null font]← "";
hyphen char [null font]← "−"; skew char [null font]← −1; bchar label [null font]← non address ;
font bchar [null font]← non char ; font false bchar [null font]← non char ; font bc [null font]← 1;
font ec [null font]← 0; font size [null font]← 0; font dsize [null font]← 0; char base [null font]← 0;
width base [null font]← 0; height base [null font]← 0; depth base [null font]← 0;
italic base [null font]← 0; lig kern base [null font]← 0; kern base [null font]← 0;
exten base [null font]← 0; font glue [null font]← null ; font params [null font]← 7;
param base [null font]← −1;
for k ← 0 to 6 do font info [k].sc ← 0;

588. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("nullfont", set font ,null font); text (frozen null font)← "nullfont";
eqtb [frozen null font]← eqtb [cur val];

§589 X ETEX PART 30: FONT METRIC DATA 249

589. Of course we want to define macros that suppress the detail of how font information is actually
packed, so that we don’t have to write things like

font info [width base [f] + font info [char base [f] + c].qqqq .b0].sc

too often. The WEB definitions here make char info(f)(c) the four quarters word of font information
corresponding to character c of font f . If q is such a word, char width (f)(q) will be the character’s width;
hence the long formula above is at least abbreviated to

char width (f)(char info(f)(c)).

Usually, of course, we will fetch q first and look at several of its fields at the same time.
The italic correction of a character will be denoted by char italic(f)(q), so it is analogous to char width .

But we will get at the height and depth in a slightly different way, since we usually want to compute both
height and depth if we want either one. The value of height depth (q) will be the 8-bit quantity

b = height index × 16 + depth index ,

and if b is such a byte we will write char height (f)(b) and char depth (f)(b) for the height and depth of the
character c for which q = char info(f)(c). Got that?
The tag field will be called char tag (q); the remainder byte will be called rem byte (q), using a macro that

we have already defined above.
Access to a character’s width , height , depth , and tag fields is part of TEX’s inner loop, so we want these

macros to produce code that is as fast as possible under the circumstances.

define char info end (#) ≡ #] .qqqq
define char info(#) ≡ font info [char base [#] + char info end
define char width end (#) ≡ #.b0] .sc
define char width (#) ≡ font info [width base [#] + char width end
define char exists (#) ≡ (#.b0 > min quarterword)
define char italic end (#) ≡ (qo(#.b2)) div 4] .sc
define char italic(#) ≡ font info [italic base [#] + char italic end
define height depth (#) ≡ qo(#.b1)
define char height end (#) ≡ (#) div 16] .sc
define char height (#) ≡ font info [height base [#] + char height end
define char depth end (#) ≡ (#)mod 16] .sc
define char depth (#) ≡ font info [depth base [#] + char depth end
define char tag (#) ≡ ((qo(#.b2))mod 4)

590. The global variable null character is set up to be a word of char info for a character that doesn’t
exist. Such a word provides a convenient way to deal with erroneous situations.

⟨Global variables 13 ⟩ +≡
null character : four quarters ; { nonexistent character information }

591. ⟨ Set initial values of key variables 23 ⟩ +≡
null character .b0 ← min quarterword ; null character .b1 ← min quarterword ;
null character .b2 ← min quarterword ; null character .b3 ← min quarterword ;

250 PART 30: FONT METRIC DATA X ETEX §592

592. Here are some macros that help process ligatures and kerns. We write char kern (f)(j) to find the
amount of kerning specified by kerning command j in font f . If j is the char info for a character with a
ligature/kern program, the first instruction of that program is either i = font info [lig kern start (f)(j)] or
font info [lig kern restart (f)(i)], depending on whether or not skip byte (i) ≤ stop flag .
The constant kern base offset should be simplified, for Pascal compilers that do not do local optimization.

define char kern end (#) ≡ 256 ∗ op byte (#) + rem byte (#)] .sc
define char kern (#) ≡ font info [kern base [#] + char kern end
define kern base offset ≡ 256 ∗ (128 +min quarterword)
define lig kern start (#) ≡ lig kern base [#] + rem byte { beginning of lig/kern program }
define lig kern restart end (#) ≡ 256 ∗ op byte (#) + rem byte (#) + 32768− kern base offset
define lig kern restart (#) ≡ lig kern base [#] + lig kern restart end

593. Font parameters are referred to as slant (f), space (f), etc.

define param end (#) ≡ param base [#]] .sc
define param (#) ≡ font info [#+ param end
define slant ≡ param (slant code) { slant to the right, per unit distance upward }
define space ≡ param (space code) { normal space between words }
define space stretch ≡ param (space stretch code) { stretch between words }
define space shrink ≡ param (space shrink code) { shrink between words }
define x height ≡ param (x height code) { one ex }
define quad ≡ param (quad code) { one em }
define extra space ≡ param (extra space code) { additional space at end of sentence }

⟨The em width for cur font 593 ⟩ ≡
quad (cur font)

This code is used in section 490.

594. ⟨The x-height for cur font 594 ⟩ ≡
x height (cur font)

This code is used in section 490.

§595 X ETEX PART 30: FONT METRIC DATA 251

595. TEX checks the information of a TFM file for validity as the file is being read in, so that no further
checks will be needed when typesetting is going on. The somewhat tedious subroutine that does this is called
read font info . It has four parameters: the user font identifier u, the file name and area strings nom and
aire , and the “at” size s. If s is negative, it’s the negative of a scale factor to be applied to the design size;
s = −1000 is the normal case. Otherwise s will be substituted for the design size; in this case, s must be
positive and less than 2048 pt (i.e., it must be less than 227 when considered as an integer).

The subroutine opens and closes a global file variable called tfm file . It returns the value of the internal
font number that was just loaded. If an error is detected, an error message is issued and no font information
is stored; null font is returned in this case.

define bad tfm = 11 { label for read font info }
define abort ≡ goto bad tfm { do this when the TFM data is wrong }

function read font info(u : pointer ; nom , aire : str number ; s : scaled): internal font number ;
{ input a TFM file }

label done , bad tfm ,not found ;
var k: font index ; { index into font info }
file opened : boolean ; {was tfm file successfully opened? }
lf , lh , bc , ec ,nw ,nh ,nd ,ni ,nl ,nk ,ne ,np : halfword ; { sizes of subfiles }
f : internal font number ; { the new font’s number }
g: internal font number ; { the number to return }
a, b, c, d: eight bits ; { byte variables }
qw : four quarters ; sw : scaled ; { accumulators }
bch label : integer ; { left boundary start location, or infinity }
bchar : 0 . . 256; { boundary character, or 256 }
z: scaled ; { the design size or the “at” size }
alpha : integer ; beta : 1 . . 16; { auxiliary quantities used in fixed-point multiplication }

begin g ← null font ;
file opened ← false ; pack file name (nom , aire , cur ext);
if XeTeX tracing fonts state > 0 then
begin begin diagnostic ; print nl ("Requested␣font␣"""); print c string (stringcast (name of file + 1));
print (´"´);
if s < 0 then
begin print ("␣scaled␣"); print int (−s);
end

else begin print ("␣at␣"); print scaled (s); print ("pt");
end;

end diagnostic(false);
end;

if quoted filename then
begin { quoted name, so try for a native font }
g ← load native font (u,nom , aire , s);
if g ̸= null font then goto done ;
end; { it was an unquoted name, or not found as an installed font, so try for a TFM file }
⟨Read and check the font data if file exists; abort if the TFM file is malformed; if there’s no room for this

font, say so and goto done ; otherwise incr (font ptr) and goto done 597 ⟩;
if g ̸= null font then goto done ;
if ¬quoted filename then
begin { we failed to find a TFM file, so try for a native font }
g ← load native font (u,nom , aire , s);
if g ̸= null font then goto done
end;

bad tfm : if suppress fontnotfound error = 0 then
begin ⟨Report that the font won’t be loaded 596 ⟩;

252 PART 30: FONT METRIC DATA X ETEX §595

end;
done : if file opened then b close (tfm file);
if XeTeX tracing fonts state > 0 then
begin if g = null font then
begin begin diagnostic ; print nl ("␣−>␣font␣not␣found,␣using␣""nullfont""");
end diagnostic(false);
end

else if file opened then
begin begin diagnostic ; print nl ("␣−>␣"); print c string (stringcast (name of file + 1));
end diagnostic(false);
end;

end;
read font info ← g;
end;

596. There are programs called TFtoPL and PLtoTF that convert between the TFM format and a symbolic
property-list format that can be easily edited. These programs contain extensive diagnostic information, so
TEX does not have to bother giving precise details about why it rejects a particular TFM file.

define start font error message ≡ print err ("Font␣"); sprint cs (u); print char ("=");
if file name quote char ̸= 0 then print char (file name quote char);
print file name (nom , aire , cur ext);
if file name quote char ̸= 0 then print char (file name quote char);
if s ≥ 0 then
begin print ("␣at␣"); print scaled (s); print ("pt");
end

else if s ̸= −1000 then
begin print ("␣scaled␣"); print int (−s);
end

⟨Report that the font won’t be loaded 596 ⟩ ≡
start font error message ;
if file opened then print ("␣not␣loadable:␣Bad␣metric␣(TFM)␣file")
else print ("␣not␣loadable:␣Metric␣(TFM)␣file␣not␣found");
help5 ("I␣wasn´t␣able␣to␣read␣the␣size␣data␣for␣this␣font,")
("so␣I␣will␣ignore␣the␣font␣specification.")
("[Wizards␣can␣fix␣TFM␣files␣using␣TFtoPL/PLtoTF.]")
("You␣might␣try␣inserting␣a␣different␣font␣spec;")
("e.g.,␣type␣`I\font<same␣font␣id>=<substitute␣font␣name>´."); error

This code is used in section 595.

§597 X ETEX PART 30: FONT METRIC DATA 253

597. ⟨Read and check the font data if file exists; abort if the TFM file is malformed; if there’s no room for
this font, say so and goto done ; otherwise incr (font ptr) and goto done 597 ⟩ ≡

⟨Open tfm file for input and begin 598 ⟩;
⟨Read the TFM size fields 600 ⟩;
⟨Use size fields to allocate font information 601 ⟩;
⟨Read the TFM header 603 ⟩;
⟨Read character data 604 ⟩;
⟨Read box dimensions 606 ⟩;
⟨Read ligature/kern program 608 ⟩;
⟨Read extensible character recipes 609 ⟩;
⟨Read font parameters 610 ⟩;
⟨Make final adjustments and goto done 611 ⟩;
end

This code is used in section 595.

598. ⟨Open tfm file for input and begin 598 ⟩ ≡
if aire = "" then pack file name (nom ,TEX font area , ".tfm")
else pack file name (nom , aire , ".tfm");
check for tfm font mapping ;
if b open in (tfm file) then
begin file opened ← true

This code is used in section 597.

599. Note: A malformed TFM file might be shorter than it claims to be; thus eof (tfm file) might be true
when read font info refers to tfm file↑ or when it says get (tfm file). If such circumstances cause system error
messages, you will have to defeat them somehow, for example by defining fget to be ‘begin get (tfm file); if
eof (tfm file) then abort ; end’.

define fget ≡ get (tfm file)
define fbyte ≡ tfm file↑
define read sixteen (#) ≡

begin #← fbyte ;
if # > 127 then abort ;
fget ; #← # ∗ 4́00 + fbyte ;
end

define store four quarters (#) ≡
begin fget ; a← fbyte ; qw .b0 ← qi (a); fget ; b← fbyte ; qw .b1 ← qi (b); fget ; c← fbyte ;
qw .b2 ← qi (c); fget ; d← fbyte ; qw .b3 ← qi (d); #← qw ;
end

600. ⟨Read the TFM size fields 600 ⟩ ≡
begin read sixteen (lf); fget ; read sixteen (lh); fget ; read sixteen (bc); fget ; read sixteen (ec);
if (bc > ec + 1) ∨ (ec > 255) then abort ;
if bc > 255 then { bc = 256 and ec = 255 }
begin bc ← 1; ec ← 0;
end;

fget ; read sixteen (nw); fget ; read sixteen (nh); fget ; read sixteen (nd); fget ; read sixteen (ni); fget ;
read sixteen (nl); fget ; read sixteen (nk); fget ; read sixteen (ne); fget ; read sixteen (np);
if lf ̸= 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np then abort ;
if (nw = 0) ∨ (nh = 0) ∨ (nd = 0) ∨ (ni = 0) then abort ;
end

This code is used in section 597.

254 PART 30: FONT METRIC DATA X ETEX §601

601. The preliminary settings of the index-offset variables char base , width base , lig kern base , kern base ,
and exten base will be corrected later by subtracting min quarterword from them; and we will subtract 1
from param base too. It’s best to forget about such anomalies until later.

⟨Use size fields to allocate font information 601 ⟩ ≡
lf ← lf − 6− lh ; { lf words should be loaded into font info }
if np < 7 then lf ← lf + 7− np ; { at least seven parameters will appear }
if (font ptr = font max) ∨ (fmem ptr + lf > font mem size) then
⟨Apologize for not loading the font, goto done 602 ⟩;

f ← font ptr + 1; char base [f]← fmem ptr − bc ; width base [f]← char base [f] + ec + 1;
height base [f]← width base [f] + nw ; depth base [f]← height base [f] + nh ;
italic base [f]← depth base [f] + nd ; lig kern base [f]← italic base [f] + ni ;
kern base [f]← lig kern base [f] + nl − kern base offset ;
exten base [f]← kern base [f] + kern base offset + nk ; param base [f]← exten base [f] + ne

This code is used in section 597.

602. ⟨Apologize for not loading the font, goto done 602 ⟩ ≡
begin start font error message ; print ("␣not␣loaded:␣Not␣enough␣room␣left");
help4 ("I´m␣afraid␣I␣won´t␣be␣able␣to␣make␣use␣of␣this␣font,")
("because␣my␣memory␣for␣character−size␣data␣is␣too␣small.")
("If␣you´re␣really␣stuck,␣ask␣a␣wizard␣to␣enlarge␣me.")
("Or␣maybe␣try␣`I\font<same␣font␣id>=<name␣of␣loaded␣font>´."); error ; goto done ;
end

This code is used in sections 601 and 744.

603. Only the first two words of the header are needed by TEX82.

⟨Read the TFM header 603 ⟩ ≡
begin if lh < 2 then abort ;
store four quarters (font check [f]); fget ; read sixteen (z); { this rejects a negative design size }
fget ; z ← z ∗ 4́00 + fbyte ; fget ; z ← (z ∗ 2́0) + (fbyte div 2́0);
if z < unity then abort ;
while lh > 2 do
begin fget ; fget ; fget ; fget ; decr (lh); { ignore the rest of the header }
end;

font dsize [f]← z;
if s ̸= −1000 then
if s ≥ 0 then z ← s
else z ← xn over d (z,−s, 1000);

font size [f]← z;
end

This code is used in section 597.

§604 X ETEX PART 30: FONT METRIC DATA 255

604. ⟨Read character data 604 ⟩ ≡
for k ← fmem ptr to width base [f]− 1 do
begin store four quarters (font info [k].qqqq);
if (a ≥ nw) ∨ (b div 2́0 ≥ nh) ∨ (bmod 2́0 ≥ nd) ∨ (c div 4 ≥ ni) then abort ;
case cmod 4 of
lig tag : if d ≥ nl then abort ;
ext tag : if d ≥ ne then abort ;
list tag : ⟨Check for charlist cycle 605 ⟩;
othercases do nothing {no tag }
endcases;
end

This code is used in section 597.

605. We want to make sure that there is no cycle of characters linked together by list tag entries, since
such a cycle would get TEX into an endless loop. If such a cycle exists, the routine here detects it when
processing the largest character code in the cycle.

define check byte range (#) ≡
begin if (# < bc) ∨ (# > ec) then abort
end

define current character being worked on ≡ k + bc − fmem ptr

⟨Check for charlist cycle 605 ⟩ ≡
begin check byte range (d);
while d < current character being worked on do
begin qw ← char info(f)(d); {N.B.: not qi (d), since char base [f] hasn’t been adjusted yet }
if char tag (qw) ̸= list tag then goto not found ;
d← qo(rem byte (qw)); { next character on the list }
end;

if d = current character being worked on then abort ; { yes, there’s a cycle }
not found : end

This code is used in section 604.

256 PART 30: FONT METRIC DATA X ETEX §606

606. A fix word whose four bytes are (a, b, c, d) from left to right represents the number

x =

{
b · 2−4 + c · 2−12 + d · 2−20, if a = 0;
−16 + b · 2−4 + c · 2−12 + d · 2−20, if a = 255.

(No other choices of a are allowed, since the magnitude of a number in design-size units must be less than
16.) We want to multiply this quantity by the integer z, which is known to be less than 227. If z < 223, the
individual multiplications b · z, c · z, d · z cannot overflow; otherwise we will divide z by 2, 4, 8, or 16, to
obtain a multiplier less than 223, and we can compensate for this later. If z has thereby been replaced by
z′ = z/2e, let β = 24−e; we shall compute

⌊(b+ c · 2−8 + d · 2−16) z′/β⌋

if a = 0, or the same quantity minus α = 24+ez′ if a = 255. This calculation must be done exactly, in order
to guarantee portability of TEX between computers.

define store scaled (#) ≡
begin fget ; a← fbyte ; fget ; b← fbyte ; fget ; c← fbyte ; fget ; d← fbyte ;
sw ← (((((d ∗ z) div 4́00) + (c ∗ z)) div 4́00) + (b ∗ z)) div beta ;
if a = 0 then #← sw else if a = 255 then #← sw − alpha else abort ;
end

⟨Read box dimensions 606 ⟩ ≡
begin ⟨Replace z by z′ and compute α, β 607 ⟩;
for k ← width base [f] to lig kern base [f]− 1 do store scaled (font info [k].sc);
if font info [width base [f]].sc ̸= 0 then abort ; {width [0] must be zero }
if font info [height base [f]].sc ̸= 0 then abort ; { height [0] must be zero }
if font info [depth base [f]].sc ̸= 0 then abort ; { depth [0] must be zero }
if font info [italic base [f]].sc ̸= 0 then abort ; { italic [0] must be zero }
end

This code is used in section 597.

607. ⟨Replace z by z′ and compute α, β 607 ⟩ ≡
begin alpha ← 16;
while z ≥ 4́0000000 do
begin z ← z div 2; alpha ← alpha + alpha ;
end;

beta ← 256 div alpha ; alpha ← alpha ∗ z;
end

This code is used in section 606.

§608 X ETEX PART 30: FONT METRIC DATA 257

608. define check existence (#) ≡
begin check byte range (#); qw ← char info(f)(#); {N.B.: not qi (#) }
if ¬char exists (qw) then abort ;
end

⟨Read ligature/kern program 608 ⟩ ≡
bch label ← 7́7777 ; bchar ← 256;
if nl > 0 then
begin for k ← lig kern base [f] to kern base [f] + kern base offset − 1 do

begin store four quarters (font info [k].qqqq);
if a > 128 then
begin if 256 ∗ c+ d ≥ nl then abort ;
if a = 255 then
if k = lig kern base [f] then bchar ← b;

end
else begin if b ̸= bchar then check existence (b);
if c < 128 then check existence (d) { check ligature }
else if 256 ∗ (c− 128) + d ≥ nk then abort ; { check kern }
if a < 128 then
if k − lig kern base [f] + a+ 1 ≥ nl then abort ;

end;
end;

if a = 255 then bch label ← 256 ∗ c+ d;
end;

for k ← kern base [f] + kern base offset to exten base [f]− 1 do store scaled (font info [k].sc);

This code is used in section 597.

609. ⟨Read extensible character recipes 609 ⟩ ≡
for k ← exten base [f] to param base [f]− 1 do
begin store four quarters (font info [k].qqqq);
if a ̸= 0 then check existence (a);
if b ̸= 0 then check existence (b);
if c ̸= 0 then check existence (c);
check existence (d);
end

This code is used in section 597.

610. We check to see that the TFM file doesn’t end prematurely; but no error message is given for files
having more than lf words.

⟨Read font parameters 610 ⟩ ≡
begin for k ← 1 to np do
if k = 1 then { the slant parameter is a pure number }

begin fget ; sw ← fbyte ;
if sw > 127 then sw ← sw − 256;
fget ; sw ← sw ∗ 4́00 + fbyte ; fget ; sw ← sw ∗ 4́00 + fbyte ; fget ;
font info [param base [f]].sc ← (sw ∗ 2́0) + (fbyte div 2́0);
end

else store scaled (font info [param base [f] + k − 1].sc);
if eof (tfm file) then abort ;
for k ← np + 1 to 7 do font info [param base [f] + k − 1].sc ← 0;
end

This code is used in section 597.

258 PART 30: FONT METRIC DATA X ETEX §611

611. Now to wrap it up, we have checked all the necessary things about the TFM file, and all we need to
do is put the finishing touches on the data for the new font.

define adjust (#) ≡ #[f]← qo(#[f]) { correct for the excess min quarterword that was added }
⟨Make final adjustments and goto done 611 ⟩ ≡

if np ≥ 7 then font params [f]← np else font params [f]← 7;
hyphen char [f]← default hyphen char ; skew char [f]← default skew char ;
if bch label < nl then bchar label [f]← bch label + lig kern base [f]
else bchar label [f]← non address ;
font bchar [f]← qi (bchar); font false bchar [f]← qi (bchar);
if bchar ≤ ec then
if bchar ≥ bc then
begin qw ← char info(f)(bchar); {N.B.: not qi (bchar) }
if char exists (qw) then font false bchar [f]← non char ;
end;

font name [f]← nom ; font area [f]← aire ; font bc [f]← bc ; font ec [f]← ec ; font glue [f]← null ;
adjust (char base); adjust (width base); adjust (lig kern base); adjust (kern base); adjust (exten base);
decr (param base [f]); fmem ptr ← fmem ptr + lf ; font ptr ← f ; g ← f ;
font mapping [f]← load tfm font mapping ; goto done

This code is used in section 597.

612. Before we forget about the format of these tables, let’s deal with two of TEX’s basic scanning routines
related to font information.

⟨Declare procedures that scan font-related stuff 612 ⟩ ≡
procedure scan font ident ;
var f : internal font number ; m: halfword ;
begin ⟨Get the next non-blank non-call token 440 ⟩;
if cur cmd = def font then f ← cur font
else if cur cmd = set font then f ← cur chr
else if cur cmd = def family then

begin m← cur chr ; scan math fam int ; f ← equiv (m+ cur val);
end

else begin print err ("Missing␣font␣identifier");
help2 ("I␣was␣looking␣for␣a␣control␣sequence␣whose")
("current␣meaning␣has␣been␣defined␣by␣\font."); back error ; f ← null font ;
end;

cur val ← f ;
end;

See also section 613.

This code is used in section 443.

§613 X ETEX PART 30: FONT METRIC DATA 259

613. The following routine is used to implement ‘\fontdimen n f ’. The boolean parameter writing is set
true if the calling program intends to change the parameter value.

⟨Declare procedures that scan font-related stuff 612 ⟩ +≡
procedure find font dimen (writing : boolean); { sets cur val to font info location }
var f : internal font number ; n: integer ; { the parameter number }
begin scan int ; n← cur val ; scan font ident ; f ← cur val ;
if n ≤ 0 then cur val ← fmem ptr
else begin if writing ∧ (n ≤ space shrink code) ∧ (n ≥ space code) ∧ (font glue [f] ̸= null) then

begin delete glue ref (font glue [f]); font glue [f]← null ;
end;

if n > font params [f] then
if f < font ptr then cur val ← fmem ptr
else ⟨ Increase the number of parameters in the last font 615 ⟩

else cur val ← n+ param base [f];
end;
⟨ Issue an error message if cur val = fmem ptr 614 ⟩;
end;

614. ⟨ Issue an error message if cur val = fmem ptr 614 ⟩ ≡
if cur val = fmem ptr then
begin print err ("Font␣"); print esc(font id text (f)); print ("␣has␣only␣");
print int (font params [f]); print ("␣fontdimen␣parameters");
help2 ("To␣increase␣the␣number␣of␣font␣parameters,␣you␣must")
("use␣\fontdimen␣immediately␣after␣the␣\font␣is␣loaded."); error ;
end

This code is used in section 613.

615. ⟨ Increase the number of parameters in the last font 615 ⟩ ≡
begin repeat if fmem ptr = font mem size then overflow ("font␣memory", font mem size);
font info [fmem ptr].sc ← 0; incr (fmem ptr); incr (font params [f]);

until n = font params [f];
cur val ← fmem ptr − 1; { this equals param base [f] + font params [f] }
end

This code is used in section 613.

260 PART 30: FONT METRIC DATA X ETEX §616

616. When TEX wants to typeset a character that doesn’t exist, the character node is not created; thus
the output routine can assume that characters exist when it sees them. The following procedure prints a
warning message unless the user has suppressed it.

⟨Declare subroutines for new character 616 ⟩ ≡
procedure char warning (f : internal font number ; c : integer);

var old setting : integer ; { saved value of tracing online }
begin if tracing lost chars > 0 then
begin old setting ← tracing online ;
if eTeX ex ∧ (tracing lost chars > 1) then tracing online ← 1;
begin begin diagnostic ; print nl ("Missing␣character:␣There␣is␣no␣");
if c < ˝10000 then print ASCII (c)
else print char (c); { non-Plane 0 Unicodes can’t be sent through print ASCII }
print ("␣in␣font␣"); slow print (font name [f]); print char ("!"); end diagnostic(false);
end; tracing online ← old setting ;
end;

end;

See also section 744.

This code is used in section 617.

617. We need a few subroutines for new character .

⟨Declare subroutines for new character 616 ⟩

618. Here is a function that returns a pointer to a character node for a given character in a given font. If
that character doesn’t exist, null is returned instead.

function new character (f : internal font number ; c : eight bits): pointer ;
label exit ;
var p: pointer ; { newly allocated node }
begin if font bc [f] ≤ c then
if font ec [f] ≥ c then
if char exists (char info(f)(qi (c))) then
begin p← get avail ; font (p)← f ; character (p)← qi (c); new character ← p; return;
end;

char warning (f, c); new character ← null ;
exit : end;

§619 X ETEX PART 31: DEVICE-INDEPENDENT FILE FORMAT 261

619. Device-independent file format. The most important output produced by a run of TEX is the
“device independent” (DVI) file that specifies where characters and rules are to appear on printed pages.
The form of these files was designed by David R. Fuchs in 1979. Almost any reasonable typesetting device
can be driven by a program that takes DVI files as input, and dozens of such DVI-to-whatever programs have
been written. Thus, it is possible to print the output of TEX on many different kinds of equipment, using
TEX as a device-independent “front end.”
A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-like

language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set rule ’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between −215 and
215 − 1. As in TFM files, numbers that occupy more than one byte position appear in BigEndian order.

X ETEX extends the format of DVI with its own commands, and thus produced “extended device indepen-
dent” (XDV) files.
A DVI file consists of a “preamble,” followed by a sequence of one or more “pages,” followed by a

“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that TEX generated them. If we ignore nop commands and fnt def commands
(which are allowed between any two commands in the file), each eop command is immediately followed by
a bop command, or by a post command; in the latter case, there are no more pages in the file, and the
remaining bytes form the postamble. Further details about the postamble will be explained later.
Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location

number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop ; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points
to 100 and the bop that starts in byte 2000 points to 1000. (The very first bop , i.e., the one starting in byte
100, has a pointer of −1.)

620. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer;
this value is changed only by fnt and fnt num commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, h and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h, v) would be (h,−v). (c) The current
spacing amounts are given by four numbers w, x, y, and z, where w and x are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (h, v, w, x, y, z) values; the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.
The values of h, v, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since they

represent physical distances, there is a small unit of measurement such that increasing h by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below; TEX sets
things up so that its DVI output is in sp units, i.e., scaled points, in agreement with all the scaled dimensions
in TEX’s data structures.

262 PART 31: DEVICE-INDEPENDENT FILE FORMAT X ETEX §621

621. Here is a list of all the commands that may appear in a XDV file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4]’ means that
parameter p is four bytes long.

set char 0 0. Typeset character number 0 from font f such that the reference point of the character is
at (h, v). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that h will advance after this command; but h usually does
increase.

set char 1 through set char 127 (opcodes 1 to 127). Do the operations of set char 0 ; but use the character
whose number matches the opcode, instead of character 0.

set1 128 c[1]. Same as set char 0 , except that character number c is typeset. TEX82 uses this command for
characters in the range 128 ≤ c < 256.

set2 129 c[2]. Same as set1 , except that c is two bytes long, so it is in the range 0 ≤ c < 65536. TEX82
never uses this command, but it should come in handy for extensions of TEX that deal with oriental
languages.

set3 130 c[3]. Same as set1 , except that c is three bytes long, so it can be as large as 224 − 1. Not even
the Chinese language has this many characters, but this command might prove useful in some yet
unforeseen extension.

set4 131 c[4]. Same as set1 , except that c is four bytes long. Imagine that.

set rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner at
(h, v). Then set h ← h + b. If either a ≤ 0 or b ≤ 0, nothing should be typeset. Note that if b < 0,
the value of h will decrease even though nothing else happens. See below for details about how to
typeset rules so that consistency with METAFONT is guaranteed.

put1 133 c[1]. Typeset character number c from font f such that the reference point of the character is at
(h, v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2]. Same as set2 , except that h is not changed.

put3 135 c[3]. Same as set3 , except that h is not changed.

put4 136 c[4]. Same as set4 , except that h is not changed.

put rule 137 a[4] b[4]. Same as set rule , except that h is not changed.

nop 138. No operation, do nothing. Any number of nop ’s may occur between DVI commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

bop 139 c0[4] c1[4] . . . c9[4] p[4]. Beginning of a page: Set (h, v, w, x, y, z) ← (0, 0, 0, 0, 0, 0) and set the
stack empty. Set the current font f to an undefined value. The ten ci parameters hold the values of
\count0 . . . \count9 in TEX at the time \shipout was invoked for this page; they can be used to
identify pages, if a user wants to print only part of a DVI file. The parameter p points to the previous
bop in the file; the first bop has p = −1.

eop 140. End of page: Print what you have read since the previous bop . At this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely, in
order by v coordinate and (for fixed v) by h coordinate; so it usually needs to be sorted into some
order that is appropriate for the device in question.)

push 141. Push the current values of (h, v, w, x, y, z) onto the top of the stack; do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them respectively to (h, v, w, x, y, z). The number
of pops should never exceed the number of pushes, since it would be highly embarrassing if the stack
were empty at the time of a pop command.

right1 143 b[1]. Set h← h+b, i.e., move right b units. The parameter is a signed number in two’s complement
notation, −128 ≤ b < 128; if b < 0, the reference point moves left.

§621 X ETEX PART 31: DEVICE-INDEPENDENT FILE FORMAT 263

right2 144 b[2]. Same as right1 , except that b is a two-byte quantity in the range −32768 ≤ b < 32768.

right3 145 b[3]. Same as right1 , except that b is a three-byte quantity in the range −223 ≤ b < 223.

right4 146 b[4]. Same as right1 , except that b is a four-byte quantity in the range −231 ≤ b < 231.

w0 147. Set h← h+w; i.e., move right w units. With luck, this parameterless command will usually suffice,
because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

w1 148 b[1]. Set w ← b and h ← h + b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as w1 , but b is two bytes long, −32768 ≤ b < 32768.

w3 150 b[3]. Same as w1 , but b is three bytes long, −223 ≤ b < 223.

w4 151 b[4]. Same as w1 , but b is four bytes long, −231 ≤ b < 231.

x0 152. Set h ← h + x; i.e., move right x units. The ‘x’ commands are like the ‘w’ commands except that
they involve x instead of w.

x1 153 b[1]. Set x ← b and h ← h + b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current x spacing and moves right by b.

x2 154 b[2]. Same as x1 , but b is two bytes long, −32768 ≤ b < 32768.

x3 155 b[3]. Same as x1 , but b is three bytes long, −223 ≤ b < 223.

x4 156 b[4]. Same as x1 , but b is four bytes long, −231 ≤ b < 231.

down1 157 a[1]. Set v ← v + a, i.e., move down a units. The parameter is a signed number in two’s
complement notation, −128 ≤ a < 128; if a < 0, the reference point moves up.

down2 158 a[2]. Same as down1 , except that a is a two-byte quantity in the range −32768 ≤ a < 32768.

down3 159 a[3]. Same as down1 , except that a is a three-byte quantity in the range −223 ≤ a < 223.

down4 160 a[4]. Same as down1 , except that a is a four-byte quantity in the range −231 ≤ a < 231.

y0 161. Set v ← v+ y; i.e., move down y units. With luck, this parameterless command will usually suffice,
because the same kind of motion will occur several times in succession; the following commands
explain how y gets particular values.

y1 162 a[1]. Set y ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as y1 , but a is two bytes long, −32768 ≤ a < 32768.

y3 164 a[3]. Same as y1 , but a is three bytes long, −223 ≤ a < 223.

y4 165 a[4]. Same as y1 , but a is four bytes long, −231 ≤ a < 231.

z0 166. Set v ← v + z; i.e., move down z units. The ‘z’ commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 a[1]. Set z ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current z spacing and moves down by a.

z2 168 a[2]. Same as z1 , but a is two bytes long, −32768 ≤ a < 32768.

z3 169 a[3]. Same as z1 , but a is three bytes long, −223 ≤ a < 223.

z4 170 a[4]. Same as z1 , but a is four bytes long, −231 ≤ a < 231.

fnt num 0 171. Set f ← 0. Font 0 must previously have been defined by a fnt def instruction, as explained
below.

fnt num 1 through fnt num 63 (opcodes 172 to 234). Set f ← 1, . . . , f ← 63, respectively.

fnt1 235 k[1]. Set f ← k. TEX82 uses this command for font numbers in the range 64 ≤ k < 256.

fnt2 236 k[2]. Same as fnt1 , except that k is two bytes long, so it is in the range 0 ≤ k < 65536. TEX82
never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed numbers in some external coding
scheme.

264 PART 31: DEVICE-INDEPENDENT FILE FORMAT X ETEX §621

fnt3 237 k[3]. Same as fnt1 , except that k is three bytes long, so it can be as large as 224 − 1.

fnt4 238 k[4]. Same as fnt1 , except that k is four bytes long; this is for the really big font numbers (and for
the negative ones).

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte nop unless special
DVI-reading programs are being used. TEX82 generates xxx1 when a short enough \special appears,
setting k to the number of bytes being sent. It is recommended that x be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224.

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large. TEX82 uses xxx4 when sending a string of
length 256 or more.

fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a + l]. Define font k, where 0 ≤ k < 256; font definitions will be
explained shortly.

fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 65536.

fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 224.

fnt def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where −231 ≤ k < 231.

pre 247 i[1] num [4] den [4] mag [4] k[1] x[k]. Beginning of the preamble; this must come at the very beginning
of the file. Parameters i, num , den , mag , k, and x are explained below.

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined in normal DVI files, but the following commands are used in XDV files.

define native font 252 k[4] s[4] flags [2] l[1] n[l] i[4]
if (flags ∧ COLORED) then rgba [4]
if (flags ∧ EXTEND) then extend [4]
if (flags ∧ SLANT) then slant [4]
if (flags ∧ EMBOLDEN) then embolden [4]

set glyphs 253 w[4] k[2] xy [8k] g[2k].

set text and glyphs 254 l[2] t[2l] w[4] k[2] xy [8k] g[2k].

Commands 250 and 255 are undefined in normal XDV files.

§622 X ETEX PART 31: DEVICE-INDEPENDENT FILE FORMAT 265

622. define set char 0 = 0 { typeset character 0 and move right }
define set1 = 128 { typeset a character and move right }
define set rule = 132 { typeset a rule and move right }
define put rule = 137 { typeset a rule }
define nop = 138 { no operation }
define bop = 139 { beginning of page }
define eop = 140 { ending of page }
define push = 141 { save the current positions }
define pop = 142 { restore previous positions }
define right1 = 143 {move right }
define w0 = 147 {move right by w }
define w1 = 148 {move right and set w }
define x0 = 152 {move right by x }
define x1 = 153 {move right and set x }
define down1 = 157 {move down }
define y0 = 161 {move down by y }
define y1 = 162 {move down and set y }
define z0 = 166 {move down by z }
define z1 = 167 {move down and set z }
define fnt num 0 = 171 { set current font to 0 }
define fnt1 = 235 { set current font }
define xxx1 = 239 { extension to DVI primitives }
define xxx4 = 242 { potentially long extension to DVI primitives }
define fnt def1 = 243 { define the meaning of a font number }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 { postamble ending }
define define native font = 252 { define native font }
define set glyphs = 253 { sequence of glyphs with individual x-y coordinates }
define set text and glyphs = 254 { run of Unicode (UTF16) text followed by positioned glyphs }

623. The preamble contains basic information about the file as a whole. As stated above, there are six
parameters:

i[1] num [4] den [4] mag [4] k[1] x[k].

The i byte identifies DVI format; in X ETEX this byte is set to 7, as we have new DVI opcodes, while in TEX82
it is always set to 2. (The value i = 3 is used for an extended format that allows a mixture of right-to-left
and left-to-right typesetting. Older versions of X ETEX used i = 4, i = 5 and i = 6.)

The next two parameters, num and den , are positive integers that define the units of measurement; they
are the numerator and denominator of a fraction by which all dimensions in the DVI file could be multiplied
in order to get lengths in units of 10−7 meters. Since 7227pt = 254cm, and since TEX works with scaled
points where there are 216 sp in a point, TEX sets num/den = (254 ·105)/(7227 ·216) = 25400000/473628672.
The mag parameter is what TEX calls \mag, i.e., 1000 times the desired magnification. The actual fraction

by which dimensions are multiplied is therefore mag · num/1000den . Note that if a TEX source document
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag setting, the
DVI file that TEX creates will be completely unchanged except for the value of mag in the preamble and
postamble. (Fancy DVI-reading programs allow users to override the mag setting when a DVI file is being
printed.)
Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length

of comment x is k, where 0 ≤ k < 256.

define id byte = 7 { identifies the kind of DVI files described here }

266 PART 31: DEVICE-INDEPENDENT FILE FORMAT X ETEX §624

624. Font definitions for a given font number k contain further parameters

c[4] s[4] d[4] a[1] l[1] n[a+ l].

The four-byte value c is the check sum that TEX found in the TFM file for this font; c should match the check
sum of the font found by programs that read this DVI file.
Parameter s contains a fixed-point scale factor that is applied to the character widths in font k; font

dimensions in TFM files and other font files are relative to this quantity, which is called the “at size” elsewhere
in this documentation. The value of s is always positive and less than 227. It is given in the same units as
the other DVI dimensions, i.e., in sp when TEX82 has made the file. Parameter d is similar to s; it is the
“design size,” and (like s) it is given in DVI units. Thus, font k is to be used at mag · s/1000d times its
normal size.
The remaining part of a font definition gives the external name of the font, which is an ASCII string of

length a + l. The number a is the length of the “area” or directory, and l is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.
Font definitions must appear before the first use of a particular font number. Once font k is defined, it

must not be defined again; however, we shall see below that font definitions appear in the postamble as well
as in the pages, so in this sense each font number is defined exactly twice, if at all. Like nop commands,
font definitions can appear before the first bop , or between an eop and a bop .

625. Sometimes it is desirable to make horizontal or vertical rules line up precisely with certain features in
characters of a font. It is possible to guarantee the correct matching between DVI output and the characters
generated by METAFONT by adhering to the following principles: (1) The METAFONT characters should be
positioned so that a bottom edge or left edge that is supposed to line up with the bottom or left edge of
a rule appears at the reference point, i.e., in row 0 and column 0 of the METAFONT raster. This ensures
that the position of the rule will not be rounded differently when the pixel size is not a perfect multiple of
the units of measurement in the DVI file. (2) A typeset rule of height a > 0 and width b > 0 should be
equivalent to a METAFONT-generated character having black pixels in precisely those raster positions whose
METAFONT coordinates satisfy 0 ≤ x < αb and 0 ≤ y < αa, where α is the number of pixels per DVI unit.

626. The last page in a DVI file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[4] num [4] den [4] mag [4] l[4] u[4] s[2] t[2]
⟨ font definitions ⟩
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the final bop in the file. The next three parameters, num , den , and mag , are duplicates
of the quantities that appeared in the preamble.
Parameters l and u give respectively the height-plus-depth of the tallest page and the width of the widest

page, in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper; however, the standard convention
for output on normal size paper is to position each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output; a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore l and u are often ignored.
Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)

needed to process this file. Then comes t, the total number of pages (bop commands) present.
The postamble continues with font definitions, which are any number of fnt def commands as described

above, possibly interspersed with nop commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.

§627 X ETEX PART 31: DEVICE-INDEPENDENT FILE FORMAT 267

627. The last part of the postamble, following the post post byte that signifies the end of the font
definitions, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 2, as in the preamble.
The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in

octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.
This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble

first, on most computers, even though TEX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader can discover all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.
Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,

or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so DVI format has been designed to work most efficiently with modern operating systems. But if DVI files
have to be processed under the restrictions of standard Pascal, one can simply read them from front to back,
since the necessary header information is present in the preamble and in the font definitions. (The l and u
and s and t parameters, which appear only in the postamble, are “frills” that are handy but not absolutely
necessary.)

268 PART 32: SHIPPING PAGES OUT X ETEX §628

628. Shipping pages out. After considering TEX’s eyes and stomach, we come now to the bowels.
The ship out procedure is given a pointer to a box; its mission is to describe that box in DVI form,

outputting a “page” to dvi file . The DVI coordinates (h, v) = (0, 0) should correspond to the upper left
corner of the box being shipped.
Since boxes can be inside of boxes inside of boxes, the main work of ship out is done by two mutually

recursive routines, hlist out and vlist out , which traverse the hlists and vlists inside of horizontal and vertical
boxes.
As individual pages are being processed, we need to accumulate information about the entire set of pages,

since such statistics must be reported in the postamble. The global variables total pages , max v , max h ,
max push , and last bop are used to record this information.
The variable doing leaders is true while leaders are being output. The variable dead cycles contains the

number of times an output routine has been initiated since the last ship out .
A few additional global variables are also defined here for use in vlist out and hlist out . They could have

been local variables, but that would waste stack space when boxes are deeply nested, since the values of
these variables are not needed during recursive calls.

⟨Global variables 13 ⟩ +≡
total pages : integer ; { the number of pages that have been shipped out }
max v : scaled ; {maximum height-plus-depth of pages shipped so far }
max h : scaled ; {maximum width of pages shipped so far }
max push : integer ; { deepest nesting of push commands encountered so far }
last bop : integer ; { location of previous bop in the DVI output }
dead cycles : integer ; { recent outputs that didn’t ship anything out }
doing leaders : boolean ; { are we inside a leader box? }
c, f : quarterword ; { character and font in current char node }
rule ht , rule dp , rule wd : scaled ; { size of current rule being output }
g: pointer ; { current glue specification }
lq , lr : integer ; { quantities used in calculations for leaders }

629. ⟨ Set initial values of key variables 23 ⟩ +≡
total pages ← 0; max v ← 0; max h ← 0; max push ← 0; last bop ← −1; doing leaders ← false ;
dead cycles ← 0; cur s ← −1;

630. The DVI bytes are output to a buffer instead of being written directly to the output file. This makes it
possible to reduce the overhead of subroutine calls, thereby measurably speeding up the computation, since
output of DVI bytes is part of TEX’s inner loop. And it has another advantage as well, since we can change
instructions in the buffer in order to make the output more compact. For example, a ‘down2 ’ command can
be changed to a ‘y2 ’, thereby making a subsequent ‘y0 ’ command possible, saving two bytes.

The output buffer is divided into two parts of equal size; the bytes found in dvi buf [0 . . half buf − 1]
constitute the first half, and those in dvi buf [half buf . . dvi buf size − 1] constitute the second. The global
variable dvi ptr points to the position that will receive the next output byte. When dvi ptr reaches dvi limit ,
which is always equal to one of the two values half buf or dvi buf size , the half buffer that is about to be
invaded next is sent to the output and dvi limit is changed to its other value. Thus, there is always at least
a half buffer’s worth of information present, except at the very beginning of the job.
Bytes of the DVI file are numbered sequentially starting with 0; the next byte to be generated will be

number dvi offset + dvi ptr . A byte is present in the buffer only if its number is ≥ dvi gone .

⟨Types in the outer block 18 ⟩ +≡
dvi index = 0 . . dvi buf size ; { an index into the output buffer }

§631 X ETEX PART 32: SHIPPING PAGES OUT 269

631. Some systems may find it more efficient to make dvi buf a packed array, since output of four bytes
at once may be facilitated.

⟨Global variables 13 ⟩ +≡
dvi buf : array [dvi index] of eight bits ; { buffer for DVI output }
half buf : dvi index ; { half of dvi buf size }
dvi limit : dvi index ; { end of the current half buffer }
dvi ptr : dvi index ; { the next available buffer address }
dvi offset : integer ; { dvi buf size times the number of times the output buffer has been fully emptied }
dvi gone : integer ; { the number of bytes already output to dvi file }

632. Initially the buffer is all in one piece; we will output half of it only after it first fills up.

⟨ Set initial values of key variables 23 ⟩ +≡
half buf ← dvi buf size div 2; dvi limit ← dvi buf size ; dvi ptr ← 0; dvi offset ← 0; dvi gone ← 0;

633. The actual output of dvi buf [a . . b] to dvi file is performed by calling write dvi (a, b). For best results,
this procedure should be optimized to run as fast as possible on each particular system, since it is part of
TEX’s inner loop. It is safe to assume that a and b + 1 will both be multiples of 4 when write dvi (a, b) is
called; therefore it is possible on many machines to use efficient methods to pack four bytes per word and
to output an array of words with one system call.

procedure write dvi (a, b : dvi index);
var k: dvi index ;
begin for k ← a to b do write (dvi file , dvi buf [k]);
end;

634. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the
macro dvi out .

define dvi out (#) ≡ begin dvi buf [dvi ptr]← #; incr (dvi ptr);
if dvi ptr = dvi limit then dvi swap ;
end

procedure dvi swap ; { outputs half of the buffer }
begin if dvi limit = dvi buf size then
begin write dvi (0, half buf − 1); dvi limit ← half buf ; dvi offset ← dvi offset + dvi buf size ;
dvi ptr ← 0;
end

else begin write dvi (half buf , dvi buf size − 1); dvi limit ← dvi buf size ;
end;

dvi gone ← dvi gone + half buf ;
end;

635. Here is how we clean out the buffer when TEX is all through; dvi ptr will be a multiple of 4.

⟨Empty the last bytes out of dvi buf 635 ⟩ ≡
if dvi limit = half buf then write dvi (half buf , dvi buf size − 1);
if dvi ptr > 0 then write dvi (0, dvi ptr − 1)

This code is used in section 680.

270 PART 32: SHIPPING PAGES OUT X ETEX §636

636. The dvi four procedure outputs four bytes in two’s complement notation, without risking arithmetic
overflow.

procedure dvi four (x : integer);
begin if x ≥ 0 then dvi out (x div 1́00000000)
else begin x← x+ 1́0000000000 ; x← x+ 1́0000000000 ; dvi out ((x div 1́00000000) + 128);
end;

x← xmod 1́00000000 ; dvi out (x div 2́00000); x← xmod 2́00000 ; dvi out (x div 4́00);
dvi out (xmod 4́00);
end;

procedure dvi two(s : UTF16 code);
begin dvi out (s div 4́00); dvi out (smod 4́00);
end;

637. A mild optimization of the output is performed by the dvi pop routine, which issues a pop unless it
is possible to cancel a ‘push pop ’ pair. The parameter to dvi pop is the byte address following the old push
that matches the new pop .

procedure dvi pop(l : integer);
begin if (l = dvi offset + dvi ptr) ∧ (dvi ptr > 0) then decr (dvi ptr)
else dvi out (pop);
end;

638. Here’s a procedure that outputs a font definition. Since TEX82 uses at most 256 different fonts per
job, fnt def1 is always used as the command code.

procedure dvi native font def (f : internal font number);
var font def length , i: integer ;
begin dvi out (define native font); dvi four (f − font base − 1); font def length ← make font def (f);
for i← 0 to font def length − 1 do dvi out (xdv buffer [i]);
end;

procedure dvi font def (f : internal font number);
var k: pool pointer ; { index into str pool }
l: integer ; { length of name without mapping option }
begin if is native font (f) then dvi native font def (f)
else begin dvi out (fnt def1); dvi out (f − font base − 1);

dvi out (qo(font check [f].b0)); dvi out (qo(font check [f].b1)); dvi out (qo(font check [f].b2));
dvi out (qo(font check [f].b3));
dvi four (font size [f]); dvi four (font dsize [f]);
dvi out (length (font area [f])); ⟨Output the font name whose internal number is f 639 ⟩;
end;

§639 X ETEX PART 32: SHIPPING PAGES OUT 271

639. ⟨Output the font name whose internal number is f 639 ⟩ ≡
l← 0; k ← str start macro(font name [f]); { search for colon; we will truncate the name there }
while (l = 0) ∧ (k < str start macro(font name [f] + 1)) do
begin if so(str pool [k]) = ":" then l← k − str start macro(font name [f]);
incr (k);
end;

if l = 0 then l← length (font name [f]); { no colon found }
dvi out (l);
for k ← str start macro(font area [f]) to str start macro(font area [f] + 1)− 1 do
dvi out (so(str pool [k]));

for k ← str start macro(font name [f]) to str start macro(font name [f]) + l − 1 do
dvi out (so(str pool [k]));

end ;

This code is used in section 638.

640. Versions of TEX intended for small computers might well choose to omit the ideas in the next few
parts of this program, since it is not really necessary to optimize the DVI code by making use of the w0 , x0 ,
y0 , and z0 commands. Furthermore, the algorithm that we are about to describe does not pretend to give
an optimum reduction in the length of the DVI code; after all, speed is more important than compactness.
But the method is surprisingly effective, and it takes comparatively little time.
We can best understand the basic idea by first considering a simpler problem that has the same essential

characteristics. Given a sequence of digits, say 3 1 4 1 5 9 2 6 5 3 5 8 9, we want to assign subscripts d, y, or z to
each digit so as to maximize the number of “y-hits” and “z-hits”; a y-hit is an instance of two appearances
of the same digit with the subscript y, where no y’s intervene between the two appearances, and a z-hit is
defined similarly. For example, the sequence above could be decorated with subscripts as follows:

3z 1y 4d 1y 5y 9d 2d 6d 5y 3z 5y 8d 9d.

There are three y-hits (1y . . . 1y and 5y . . . 5y . . . 5y) and one z-hit (3z . . . 3z); there are no d-hits, since the
two appearances of 9d have d’s between them, but we don’t count d-hits so it doesn’t matter how many
there are. These subscripts are analogous to the DVI commands called down , y, and z, and the digits are
analogous to different amounts of vertical motion; a y-hit or z-hit corresponds to the opportunity to use the
one-byte commands y0 or z0 in a DVI file.
TEX’s method of assigning subscripts works like this: Append a new digit, say δ, to the right of the

sequence. Now look back through the sequence until one of the following things happens: (a) You see δy or
δz, and this was the first time you encountered a y or z subscript, respectively. Then assign y or z to the
new δ; you have scored a hit. (b) You see δd, and no y subscripts have been encountered so far during this
search. Then change the previous δd to δy (this corresponds to changing a command in the output buffer),
and assign y to the new δ; it’s another hit. (c) You see δd, and a y subscript has been seen but not a z.
Change the previous δd to δz and assign z to the new δ. (d) You encounter both y and z subscripts before
encountering a suitable δ, or you scan all the way to the front of the sequence. Assign d to the new δ; this
assignment may be changed later.
The subscripts 3z 1y 4d . . . in the example above were, in fact, produced by this procedure, as the reader

can verify. (Go ahead and try it.)

272 PART 32: SHIPPING PAGES OUT X ETEX §641

641. In order to implement such an idea, TEX maintains a stack of pointers to the down , y, and z commands
that have been generated for the current page. And there is a similar stack for right , w, and x commands.
These stacks are called the down stack and right stack, and their top elements are maintained in the variables
down ptr and right ptr .

Each entry in these stacks contains four fields: The width field is the amount of motion down or to the
right; the location field is the byte number of the DVI command in question (including the appropriate
dvi offset); the link field points to the next item below this one on the stack; and the info field encodes the
options for possible change in the DVI command.

define movement node size = 3 { number of words per entry in the down and right stacks }
define location (#) ≡ mem [#+ 2].int { DVI byte number for a movement command }

⟨Global variables 13 ⟩ +≡
down ptr , right ptr : pointer ; { heads of the down and right stacks }

642. ⟨ Set initial values of key variables 23 ⟩ +≡
down ptr ← null ; right ptr ← null ;

643. Here is a subroutine that produces a DVI command for some specified downward or rightward
motion. It has two parameters: w is the amount of motion, and o is either down1 or right1 . We use
the fact that the command codes have convenient arithmetic properties: y1 − down1 = w1 − right1 and
z1 − down1 = x1 − right1 .

procedure movement (w : scaled ; o : eight bits);
label exit , found ,not found , 2, 1;
var mstate : small number ; { have we seen a y or z? }
p, q: pointer ; { current and top nodes on the stack }
k: integer ; { index into dvi buf , modulo dvi buf size }

begin q ← get node (movement node size); { new node for the top of the stack }
width (q)← w; location (q)← dvi offset + dvi ptr ;
if o = down1 then
begin link (q)← down ptr ; down ptr ← q;
end

else begin link (q)← right ptr ; right ptr ← q;
end;
⟨Look at the other stack entries until deciding what sort of DVI command to generate; goto found if

node p is a “hit” 647 ⟩;
⟨Generate a down or right command for w and return 646 ⟩;

found : ⟨Generate a y0 or z0 command in order to reuse a previous appearance of w 645 ⟩;
exit : end;

§644 X ETEX PART 32: SHIPPING PAGES OUT 273

644. The info fields in the entries of the down stack or the right stack have six possible settings: y here
or z here mean that the DVI command refers to y or z, respectively (or to w or x, in the case of horizontal
motion); yz OK means that the DVI command is down (or right) but can be changed to either y or z (or to
either w or x); y OK means that it is down and can be changed to y but not z; z OK is similar; and d fixed
means it must stay down .

The four settings yz OK , y OK , z OK , d fixed would not need to be distinguished from each other
if we were simply solving the digit-subscripting problem mentioned above. But in TEX’s case there is a
complication because of the nested structure of push and pop commands. Suppose we add parentheses to
the digit-subscripting problem, redefining hits so that δy . . . δy is a hit if all y’s between the δ’s are enclosed
in properly nested parentheses, and if the parenthesis level of the right-hand δy is deeper than or equal to
that of the left-hand one. Thus, ‘(’ and ‘)’ correspond to ‘push ’ and ‘pop ’. Now if we want to assign a
subscript to the final 1 in the sequence

2y 7d 1d (8z 2y 8z) 1

we cannot change the previous 1d to 1y, since that would invalidate the 2y . . . 2y hit. But we can change it
to 1z, scoring a hit since the intervening 8z’s are enclosed in parentheses.
The program below removes movement nodes that are introduced after a push , before it outputs the

corresponding pop .

define y here = 1 { info when the movement entry points to a y command }
define z here = 2 { info when the movement entry points to a z command }
define yz OK = 3 { info corresponding to an unconstrained down command }
define y OK = 4 { info corresponding to a down that can’t become a z }
define z OK = 5 { info corresponding to a down that can’t become a y }
define d fixed = 6 { info corresponding to a down that can’t change }

645. When the movement procedure gets to the label found , the value of info(p) will be either y here or
z here . If it is, say, y here , the procedure generates a y0 command (or a w0 command), and marks all info
fields between q and p so that y is not OK in that range.

⟨Generate a y0 or z0 command in order to reuse a previous appearance of w 645 ⟩ ≡
info(q)← info(p);
if info(q) = y here then
begin dvi out (o+ y0 − down1); { y0 or w0 }
while link (q) ̸= p do
begin q ← link (q);
case info(q) of
yz OK : info(q)← z OK ;
y OK : info(q)← d fixed ;
othercases do nothing
endcases;
end;

end
else begin dvi out (o+ z0 − down1); { z0 or x0 }
while link (q) ̸= p do
begin q ← link (q);
case info(q) of
yz OK : info(q)← y OK ;
z OK : info(q)← d fixed ;
othercases do nothing
endcases;
end;

end

This code is used in section 643.

274 PART 32: SHIPPING PAGES OUT X ETEX §646

646. ⟨Generate a down or right command for w and return 646 ⟩ ≡
info(q)← yz OK ;
if abs (w) ≥ 4́0000000 then
begin dvi out (o+ 3); { down4 or right4 }
dvi four (w); return;
end;

if abs (w) ≥ 1́00000 then
begin dvi out (o+ 2); { down3 or right3 }
if w < 0 then w ← w + 1́00000000 ;
dvi out (w div 2́00000); w ← w mod 2́00000 ; goto 2;
end;

if abs (w) ≥ 2́00 then
begin dvi out (o+ 1); { down2 or right2 }
if w < 0 then w ← w + 2́00000 ;
goto 2;
end;

dvi out (o); { down1 or right1 }
if w < 0 then w ← w + 4́00 ;
goto 1;

2: dvi out (w div 4́00);
1: dvi out (w mod 4́00); return

This code is used in section 643.

647. As we search through the stack, we are in one of three states, y seen , z seen , or none seen , depending
on whether we have encountered y here or z here nodes. These states are encoded as multiples of 6, so that
they can be added to the info fields for quick decision-making.

define none seen = 0 { no y here or z here nodes have been encountered yet }
define y seen = 6 {we have seen y here but not z here }
define z seen = 12 {we have seen z here but not y here }

⟨Look at the other stack entries until deciding what sort of DVI command to generate; goto found if node
p is a “hit” 647 ⟩ ≡

p← link (q); mstate ← none seen ;
while p ̸= null do
begin if width (p) = w then ⟨Consider a node with matching width; goto found if it’s a hit 648 ⟩
else case mstate + info(p) of
none seen + y here : mstate ← y seen ;
none seen + z here : mstate ← z seen ;
y seen + z here , z seen + y here : goto not found ;
othercases do nothing
endcases;

p← link (p);
end;

not found :

This code is used in section 643.

§648 X ETEX PART 32: SHIPPING PAGES OUT 275

648. We might find a valid hit in a y or z byte that is already gone from the buffer. But we can’t change
bytes that are gone forever; “the moving finger writes,”

⟨Consider a node with matching width; goto found if it’s a hit 648 ⟩ ≡
case mstate + info(p) of
none seen + yz OK ,none seen + y OK , z seen + yz OK , z seen + y OK :
if location (p) < dvi gone then goto not found
else ⟨Change buffered instruction to y or w and goto found 649 ⟩;

none seen + z OK , y seen + yz OK , y seen + z OK :
if location (p) < dvi gone then goto not found
else ⟨Change buffered instruction to z or x and goto found 650 ⟩;

none seen + y here ,none seen + z here , y seen + z here , z seen + y here : goto found ;
othercases do nothing
endcases

This code is used in section 647.

649. ⟨Change buffered instruction to y or w and goto found 649 ⟩ ≡
begin k ← location (p)− dvi offset ;
if k < 0 then k ← k + dvi buf size ;
dvi buf [k]← dvi buf [k] + y1 − down1 ; info(p)← y here ; goto found ;
end

This code is used in section 648.

650. ⟨Change buffered instruction to z or x and goto found 650 ⟩ ≡
begin k ← location (p)− dvi offset ;
if k < 0 then k ← k + dvi buf size ;
dvi buf [k]← dvi buf [k] + z1 − down1 ; info(p)← z here ; goto found ;
end

This code is used in section 648.

651. In case you are wondering when all the movement nodes are removed from TEX’s memory, the answer
is that they are recycled just before hlist out and vlist out finish outputting a box. This restores the down
and right stacks to the state they were in before the box was output, except that some info ’s may have
become more restrictive.

procedure prune movements (l : integer); { delete movement nodes with location ≥ l }
label done , exit ;
var p: pointer ; { node being deleted }
begin while down ptr ̸= null do
begin if location (down ptr) < l then goto done ;
p← down ptr ; down ptr ← link (p); free node (p,movement node size);
end;

done : while right ptr ̸= null do
begin if location (right ptr) < l then return;
p← right ptr ; right ptr ← link (p); free node (p,movement node size);
end;

exit : end;

276 PART 32: SHIPPING PAGES OUT X ETEX §652

652. The actual distances by which we want to move might be computed as the sum of several separate
movements. For example, there might be several glue nodes in succession, or we might want to move right by
the width of some box plus some amount of glue. More importantly, the baselineskip distances are computed
in terms of glue together with the depth and height of adjacent boxes, and we want the DVI file to lump
these three quantities together into a single motion.
Therefore, TEX maintains two pairs of global variables: dvi h and dvi v are the h and v coordinates

corresponding to the commands actually output to the DVI file, while cur h and cur v are the coordinates
corresponding to the current state of the output routines. Coordinate changes will accumulate in cur h and
cur v without being reflected in the output, until such a change becomes necessary or desirable; we can call
the movement procedure whenever we want to make dvi h = cur h or dvi v = cur v .

The current font reflected in the DVI output is called dvi f ; there is no need for a ‘cur f ’ variable.
The depth of nesting of hlist out and vlist out is called cur s ; this is essentially the depth of push commands

in the DVI output.
For mixed direction text (TEX--XET) the current text direction is called cur dir . As the box being

shipped out will never be used again and soon be recycled, we can simply reverse any R-text (i.e., right-to-
left) segments of hlist nodes as well as complete hlist nodes embedded in such segments. Moreover this can
be done iteratively rather than recursively. There are, however, two complications related to leaders that
require some additional bookkeeping: (1) One and the same hlist node might be used more than once (but
never inside both L- and R-text); and (2) leader boxes inside hlists must be aligned with respect to the left
edge of the original hlist.
A math node is changed into a kern node whenever the text direction remains the same, it is replaced

by an edge node if the text direction changes; the subtype of an an hlist node inside R-text is changed to
reversed once its hlist has been reversed.

define reversed = 1 { subtype for an hlist node whose hlist has been reversed }
define dlist = 2 { subtype for an hlist node from display math mode }
define box lr (#) ≡ (qo(subtype (#))) { direction mode of a box }
define set box lr (#) ≡ subtype (#)← set box lr end
define set box lr end (#) ≡ qi (#)

define left to right = 0
define right to left = 1
define reflected ≡ 1− cur dir { the opposite of cur dir }
define synch h ≡

if cur h ̸= dvi h then
begin movement (cur h − dvi h , right1); dvi h ← cur h ;
end

define synch v ≡
if cur v ̸= dvi v then
begin movement (cur v − dvi v , down1); dvi v ← cur v ;
end

⟨Global variables 13 ⟩ +≡
dvi h , dvi v : scaled ; { a DVI reader program thinks we are here }
cur h , cur v : scaled ; {TEX thinks we are here }
dvi f : internal font number ; { the current font }
cur s : integer ; { current depth of output box nesting, initially −1 }

§653 X ETEX PART 32: SHIPPING PAGES OUT 277

653. ⟨ Initialize variables as ship out begins 653 ⟩ ≡
dvi h ← 0; dvi v ← 0; cur h ← h offset ; dvi f ← null font ;
⟨Calculate page dimensions and margins 1428 ⟩;
ensure dvi open ;
if total pages = 0 then
begin dvi out (pre); dvi out (id byte); { output the preamble }
dvi four (25400000); dvi four (473628672); { conversion ratio for sp }
prepare mag ; dvi four (mag); {magnification factor is frozen }
old setting ← selector ; selector ← new string ; print ("␣XeTeX␣output␣"); print int (year);
print char ("."); print two(month); print char ("."); print two(day); print char (":");
print two(time div 60); print two(time mod 60); selector ← old setting ; dvi out (cur length);
for s← str start macro(str ptr) to pool ptr − 1 do dvi out (so(str pool [s]));
pool ptr ← str start macro(str ptr); { flush the current string }
end

This code is used in section 678.

654. When hlist out is called, its duty is to output the box represented by the hlist node pointed to by
temp ptr . The reference point of that box has coordinates (cur h , cur v).

Similarly, when vlist out is called, its duty is to output the box represented by the vlist node pointed to
by temp ptr . The reference point of that box has coordinates (cur h , cur v).

procedure vlist out ; forward ; { hlist out and vlist out are mutually recursive }

278 PART 32: SHIPPING PAGES OUT X ETEX §655

655. The recursive procedures hlist out and vlist out each have local variables save h and save v to hold
the values of dvi h and dvi v just before entering a new level of recursion. In effect, the values of save h and
save v on TEX’s run-time stack correspond to the values of h and v that a DVI-reading program will push
onto its coordinate stack.

define move past = 13 { go to this label when advancing past glue or a rule }
define fin rule = 14 { go to this label to finish processing a rule }
define next p = 15 { go to this label when finished with node p }
define check next = 1236
define end node run = 1237

⟨Declare procedures needed in hlist out , vlist out 1431 ⟩
procedure hlist out ; { output an hlist node box }
label reswitch ,move past ,fin rule ,next p ;
var base line : scaled ; { the baseline coordinate for this box }
left edge : scaled ; { the left coordinate for this box }
save h , save v : scaled ; {what dvi h and dvi v should pop to }
this box : pointer ; { pointer to containing box }
g order : glue ord ; { applicable order of infinity for glue }
g sign : normal . . shrinking ; { selects type of glue }
p: pointer ; { current position in the hlist }
save loc : integer ; { DVI byte location upon entry }
leader box : pointer ; { the leader box being replicated }
leader wd : scaled ; {width of leader box being replicated }
lx : scaled ; { extra space between leader boxes }
outer doing leaders : boolean ; {were we doing leaders? }
edge : scaled ; { right edge of sub-box or leader space }
prev p : pointer ; { one step behind p }
len : integer ; { length of scratch string for native word output }
q, r: pointer ; k, j: integer ; glue temp : real ; { glue value before rounding }
cur glue : real ; { glue seen so far }
cur g : scaled ; { rounded equivalent of cur glue times the glue ratio }

begin cur g ← 0; cur glue ← float constant (0); this box ← temp ptr ; g order ← glue order (this box);
g sign ← glue sign (this box);
if XeTeX interword space shaping state > 1 then
begin ⟨Merge sequences of words using native fonts and inter-word spaces into single nodes 656 ⟩;
end;

p← list ptr (this box); incr (cur s);
if cur s > 0 then dvi out (push);
if cur s > max push then max push ← cur s ;
save loc ← dvi offset + dvi ptr ; base line ← cur v ; prev p ← this box + list offset ;
⟨ Initialize hlist out for mixed direction typesetting 1524 ⟩;
left edge ← cur h ;
while p ̸= null do ⟨Output node p for hlist out and move to the next node, maintaining the condition

cur v = base line 658 ⟩;
⟨Finish hlist out for mixed direction typesetting 1525 ⟩;
prune movements (save loc);
if cur s > 0 then dvi pop(save loc);
decr (cur s);
end;

§656 X ETEX PART 32: SHIPPING PAGES OUT 279

656. Extra stuff for justifiable AAT text; need to merge runs of words and normal spaces.

define is native word node (#) ≡ (((#) ̸= null) ∧ (¬is char node (#)) ∧ (type (#) =
whatsit node) ∧ (is native word subtype (#)))

define is glyph node (#) ≡ (((#) ̸= null ∧ (¬is char node (#)) ∧ (type (#) = whatsit node) ∧ (subtype (#) =
glyph node)))

define
node is invisible to interword space (#) ≡ ¬is char node (#) ∧ ((type (#) =
penalty node) ∨ (type (#) = ins node) ∨ (type (#) = mark node) ∨ (type (#) =
adjust node) ∨ ((type (#) = whatsit node) ∧ (subtype (#) ≤ 4)))
{ This checks for subtype s in the range open/write/close/special/language, but the definitions
haven’t appeared yet in the .web file so we cheat. }

⟨Merge sequences of words using native fonts and inter-word spaces into single nodes 656 ⟩ ≡
p← list ptr (this box); prev p ← this box + list offset ;
while p ̸= null do
begin if link (p) ̸= null then
begin { not worth looking ahead at the end }
if is native word node (p) ∧ (font letter space [native font (p)] = 0) then

begin { got a word in an AAT font, might be the start of a run }
r ← p; { r is start of possible run }
k ← native length (r); q ← link (p);

check next : ⟨Advance q past ignorable nodes 657 ⟩;
if (q ̸= null) ∧ ¬is char node (q) then
begin if (type (q) = glue node) ∧ (subtype (q) = normal) then
begin if (glue ptr (q) = font glue [native font (r)]) then

begin { found a normal space; if the next node is another word in the same font, we’ll
merge }

q ← link (q); ⟨Advance q past ignorable nodes 657 ⟩;
if is native word node (q) ∧ (native font (q) = native font (r)) then
begin p← q; { record new tail of run in p }
k ← k + 1 + native length (q); q ← link (q); goto check next ;
end

end
else q ← link (q); {we’ll also merge if if space-adjustment was applied at this glue, even if it

wasn’t the font’s standard inter-word space }
if (q ̸= null) ∧ ¬is char node (q) ∧ (type (q) = kern node) ∧ (subtype (q) = space adjustment)

then
begin q ← link (q); ⟨Advance q past ignorable nodes 657 ⟩;
if is native word node (q) ∧ (native font (q) = native font (r)) then
begin p← q; { record new tail of run in p }
k ← k + 1 + native length (q); q ← link (q); goto check next ;
end

end;
goto end node run ;
end;

if is native word node (q) ∧ (native font (q) = native font (r)) then
begin p← q; { record new tail of run in p }
q ← link (q); goto check next ;
end

end;
end node run : { now r points to first native word node of the run, and p to the last }
if p ̸= r then
begin {merge nodes from r to p inclusive; total text length is k }

280 PART 32: SHIPPING PAGES OUT X ETEX §656

str room (k); k ← 0; { now we’ll use this as accumulator for total width }
q ← r;
loop

begin if type (q) = whatsit node then
begin if (is native word subtype (q)) then
begin for j ← 0 to native length (q)− 1 do append char (get native char (q, j));
k ← k + width (q);
end

end
else if type (q) = glue node then

begin append char ("␣"); g ← glue ptr (q); k ← k + width (g);
if g sign ̸= normal then

begin if g sign = stretching then
begin if stretch order (g) = g order then
begin k ← k + round (float (glue set (this box)) ∗ stretch (g))
end

end
else begin if shrink order (g) = g order then

begin k ← k − round (float (glue set (this box)) ∗ shrink (g))
end

end
end

end
else if type (q) = kern node then

begin k ← k + width (q);
end; { discretionary and deleted nodes can be discarded here }

if q = p then break
else q ← link (q);
end; { create the new merged node q }

q ← new native word node (native font (r), cur length); subtype (q)← subtype (r);
for j ← 0 to cur length − 1 do set native char (q, j, str pool [str start macro(str ptr) + j]);

{ impose the required width on q, and shape its text accordingly }
width (q)← k; set justified native glyphs (q); { link q into the list in place of r..p }
link (prev p)← q; link (q)← link (p); link (p)← null ; { Extract any ”invisible” nodes from the

old list and insert them after the new node, so we don’t lose them altogether. Note that the
first node cannot be one of these, as we always start merging at a native word node. }

prev p ← r; p← link (r);
while p ̸= null do
begin if node is invisible to interword space (p) then
begin link (prev p)← link (p); link (p)← link (q); link (q)← p; q ← p;
end;

prev p ← p; p← link (p);
end; { discard the remains of the old list }

flush node list (r); { clean up and prepare for the next round }
pool ptr ← str start macro(str ptr); { flush the temporary string data }
p← q;
end

end;
prev p ← p;
end;

p← link (p);
end

§656 X ETEX PART 32: SHIPPING PAGES OUT 281

This code is used in section 655.

657. ⟨Advance q past ignorable nodes 657 ⟩ ≡
while (q ̸= null) ∧ node is invisible to interword space (q) do q ← link (q)

This code is used in sections 656, 656, and 656.

658. We ought to give special care to the efficiency of one part of hlist out , since it belongs to TEX’s inner
loop. When a char node is encountered, we save a little time by processing several nodes in succession until
reaching a non-char node . The program uses the fact that set char 0 = 0.

⟨Output node p for hlist out and move to the next node, maintaining the condition cur v = base line 658 ⟩ ≡
reswitch : if is char node (p) then

begin synch h ; synch v ;
repeat f ← font (p); c← character (p);

if (p ̸= lig trick) ∧ (font mapping [f] ̸= nil) then c← apply tfm font mapping (font mapping [f], c);
if f ̸= dvi f then ⟨Change font dvi f to f 659 ⟩;
if c ≥ qi (128) then dvi out (set1);
dvi out (qo(c));
cur h ← cur h + char width (f)(char info(f)(c)); prev p ← link (prev p);
{N.B.: not prev p ← p, p might be lig trick }

p← link (p);
until ¬is char node (p);
dvi h ← cur h ;
end

else ⟨Output the non-char node p for hlist out and move to the next node 660 ⟩
This code is used in section 655.

659. ⟨Change font dvi f to f 659 ⟩ ≡
begin if ¬font used [f] then
begin dvi font def (f); font used [f]← true ;
end;

if f ≤ 64 + font base then dvi out (f − font base − 1 + fnt num 0)
else begin dvi out (fnt1); dvi out (f − font base − 1);
end;

dvi f ← f ;
end

This code is used in sections 658, 1426, and 1430.

282 PART 32: SHIPPING PAGES OUT X ETEX §660

660. ⟨Output the non-char node p for hlist out and move to the next node 660 ⟩ ≡
begin case type (p) of
hlist node , vlist node : ⟨Output a box in an hlist 661 ⟩;
rule node : begin rule ht ← height (p); rule dp ← depth (p); rule wd ← width (p); goto fin rule ;
end;

whatsit node : ⟨Output the whatsit node p in an hlist 1430 ⟩;
glue node : ⟨Move right or output leaders 663 ⟩;
margin kern node : begin cur h ← cur h + width (p);
end;

kern node : cur h ← cur h + width (p);
math node : ⟨Handle a math node in hlist out 1526 ⟩;
ligature node : ⟨Make node p look like a char node and goto reswitch 692 ⟩;
⟨Cases of hlist out that arise in mixed direction text only 1530 ⟩

othercases do nothing
endcases;
goto next p ;

fin rule : ⟨Output a rule in an hlist 662 ⟩;
move past : cur h ← cur h + rule wd ;
next p : prev p ← p; p← link (p);
end

This code is used in section 658.

661. ⟨Output a box in an hlist 661 ⟩ ≡
if list ptr (p) = null then cur h ← cur h + width (p)
else begin save h ← dvi h ; save v ← dvi v ; cur v ← base line + shift amount (p);

{ shift the box down }
temp ptr ← p; edge ← cur h + width (p);
if cur dir = right to left then cur h ← edge ;
if type (p) = vlist node then vlist out else hlist out ;
dvi h ← save h ; dvi v ← save v ; cur h ← edge ; cur v ← base line ;
end

This code is used in section 660.

662. ⟨Output a rule in an hlist 662 ⟩ ≡
if is running (rule ht) then rule ht ← height (this box);
if is running (rule dp) then rule dp ← depth (this box);
rule ht ← rule ht + rule dp ; { this is the rule thickness }
if (rule ht > 0) ∧ (rule wd > 0) then {we don’t output empty rules }
begin synch h ; cur v ← base line + rule dp ; synch v ; dvi out (set rule); dvi four (rule ht);
dvi four (rule wd); cur v ← base line ; dvi h ← dvi h + rule wd ;
end

This code is used in section 660.

§663 X ETEX PART 32: SHIPPING PAGES OUT 283

663. define billion ≡ float constant (1000000000)
define vet glue (#) ≡ glue temp ← #;

if glue temp > billion then glue temp ← billion
else if glue temp < −billion then glue temp ← −billion

define round glue ≡ g ← glue ptr (p); rule wd ← width (g)− cur g ;
if g sign ̸= normal then
begin if g sign = stretching then

begin if stretch order (g) = g order then
begin cur glue ← cur glue + stretch (g); vet glue (float (glue set (this box)) ∗ cur glue);
cur g ← round (glue temp);
end;

end
else if shrink order (g) = g order then

begin cur glue ← cur glue − shrink (g); vet glue (float (glue set (this box)) ∗ cur glue);
cur g ← round (glue temp);
end;

end;
rule wd ← rule wd + cur g

⟨Move right or output leaders 663 ⟩ ≡
begin round glue ;
if eTeX ex then ⟨Handle a glue node for mixed direction typesetting 1509 ⟩;
if subtype (p) ≥ a leaders then
⟨Output leaders in an hlist, goto fin rule if a rule or to next p if done 664 ⟩;

goto move past ;
end

This code is used in section 660.

664. ⟨Output leaders in an hlist, goto fin rule if a rule or to next p if done 664 ⟩ ≡
begin leader box ← leader ptr (p);
if type (leader box) = rule node then
begin rule ht ← height (leader box); rule dp ← depth (leader box); goto fin rule ;
end;

leader wd ← width (leader box);
if (leader wd > 0) ∧ (rule wd > 0) then
begin rule wd ← rule wd + 10; { compensate for floating-point rounding }
if cur dir = right to left then cur h ← cur h − 10;
edge ← cur h + rule wd ; lx ← 0; ⟨Let cur h be the position of the first box, and set leader wd + lx to

the spacing between corresponding parts of boxes 665 ⟩;
while cur h + leader wd ≤ edge do
⟨Output a leader box at cur h , then advance cur h by leader wd + lx 666 ⟩;

if cur dir = right to left then cur h ← edge
else cur h ← edge − 10;
goto next p ;
end;

end

This code is used in section 663.

284 PART 32: SHIPPING PAGES OUT X ETEX §665

665. The calculations related to leaders require a bit of care. First, in the case of a leaders (aligned leaders),
we want to move cur h to left edge plus the smallest multiple of leader wd for which the result is not less than
the current value of cur h ; i.e., cur h should become left edge + leader wd ×⌈(cur h − left edge)/leader wd ⌉.
The program here should work in all cases even though some implementations of Pascal give nonstandard
results for the div operation when cur h is less than left edge .

In the case of c leaders (centered leaders), we want to increase cur h by half of the excess space not
occupied by the leaders; and in the case of x leaders (expanded leaders) we increase cur h by 1/(q + 1) of
this excess space, where q is the number of times the leader box will be replicated. Slight inaccuracies in the
division might accumulate; half of this rounding error is placed at each end of the leaders.

⟨Let cur h be the position of the first box, and set leader wd + lx to the spacing between corresponding
parts of boxes 665 ⟩ ≡

if subtype (p) = a leaders then
begin save h ← cur h ; cur h ← left edge + leader wd ∗ ((cur h − left edge) div leader wd);
if cur h < save h then cur h ← cur h + leader wd ;
end

else begin lq ← rule wd div leader wd ; { the number of box copies }
lr ← rule wd mod leader wd ; { the remaining space }
if subtype (p) = c leaders then cur h ← cur h + (lr div 2)
else begin lx ← lr div (lq + 1); cur h ← cur h + ((lr − (lq − 1) ∗ lx) div 2);

end;
end

This code is used in section 664.

666. The ‘synch ’ operations here are intended to decrease the number of bytes needed to specify horizontal
and vertical motion in the DVI output.

⟨Output a leader box at cur h , then advance cur h by leader wd + lx 666 ⟩ ≡
begin cur v ← base line + shift amount (leader box); synch v ; save v ← dvi v ;
synch h ; save h ← dvi h ; temp ptr ← leader box ;
if cur dir = right to left then cur h ← cur h + leader wd ;
outer doing leaders ← doing leaders ; doing leaders ← true ;
if type (leader box) = vlist node then vlist out else hlist out ;
doing leaders ← outer doing leaders ; dvi v ← save v ; dvi h ← save h ; cur v ← base line ;
cur h ← save h + leader wd + lx ;
end

This code is used in section 664.

§667 X ETEX PART 32: SHIPPING PAGES OUT 285

667. The vlist out routine is similar to hlist out , but a bit simpler.

procedure vlist out ; { output a vlist node box }
label move past ,fin rule ,next p ;
var left edge : scaled ; { the left coordinate for this box }
top edge : scaled ; { the top coordinate for this box }
save h , save v : scaled ; {what dvi h and dvi v should pop to }
this box : pointer ; { pointer to containing box }
g order : glue ord ; { applicable order of infinity for glue }
g sign : normal . . shrinking ; { selects type of glue }
p: pointer ; { current position in the vlist }
save loc : integer ; { DVI byte location upon entry }
leader box : pointer ; { the leader box being replicated }
leader ht : scaled ; { height of leader box being replicated }
lx : scaled ; { extra space between leader boxes }
outer doing leaders : boolean ; {were we doing leaders? }
edge : scaled ; { bottom boundary of leader space }
glue temp : real ; { glue value before rounding }
cur glue : real ; { glue seen so far }
cur g : scaled ; { rounded equivalent of cur glue times the glue ratio }
upwards : boolean ; {whether we’re stacking upwards }

begin cur g ← 0; cur glue ← float constant (0); this box ← temp ptr ; g order ← glue order (this box);
g sign ← glue sign (this box); p← list ptr (this box);
upwards ← (subtype (this box) = min quarterword + 1); incr (cur s);
if cur s > 0 then dvi out (push);
if cur s > max push then max push ← cur s ;
save loc ← dvi offset + dvi ptr ; left edge ← cur h ;
if upwards then cur v ← cur v + depth (this box)
else cur v ← cur v − height (this box);
top edge ← cur v ;
while p ̸= null do ⟨Output node p for vlist out and move to the next node, maintaining the condition

cur h = left edge 668 ⟩;
prune movements (save loc);
if cur s > 0 then dvi pop(save loc);
decr (cur s);
end;

668. ⟨Output node p for vlist out and move to the next node, maintaining the condition
cur h = left edge 668 ⟩ ≡

begin if is char node (p) then confusion ("vlistout")
else ⟨Output the non-char node p for vlist out 669 ⟩;

next p : p← link (p);
end

This code is used in section 667.

286 PART 32: SHIPPING PAGES OUT X ETEX §669

669. ⟨Output the non-char node p for vlist out 669 ⟩ ≡
begin case type (p) of
hlist node , vlist node : ⟨Output a box in a vlist 670 ⟩;
rule node : begin rule ht ← height (p); rule dp ← depth (p); rule wd ← width (p); goto fin rule ;
end;

whatsit node : ⟨Output the whatsit node p in a vlist 1426 ⟩;
glue node : ⟨Move down or output leaders 672 ⟩;
kern node : if upwards then cur v ← cur v − width (p)
else cur v ← cur v + width (p);

othercases do nothing
endcases;
goto next p ;

fin rule : ⟨Output a rule in a vlist, goto next p 671 ⟩;
move past : if upwards then cur v ← cur v − rule ht

else cur v ← cur v + rule ht ;
end

This code is used in section 668.

670. The synch v here allows the DVI output to use one-byte commands for adjusting v in most cases,
since the baselineskip distance will usually be constant.

⟨Output a box in a vlist 670 ⟩ ≡
if list ptr (p) = null then cur v ← cur v + height (p) + depth (p)
else begin if upwards then cur v ← cur v − depth (p)
else cur v ← cur v + height (p);
synch v ; save h ← dvi h ; save v ← dvi v ;
if cur dir = right to left then cur h ← left edge − shift amount (p)
else cur h ← left edge + shift amount (p); { shift the box right }
temp ptr ← p;
if type (p) = vlist node then vlist out else hlist out ;
dvi h ← save h ; dvi v ← save v ;
if upwards then cur v ← save v − height (p)
else cur v ← save v + depth (p);
cur h ← left edge ;
end

This code is used in section 669.

671. ⟨Output a rule in a vlist, goto next p 671 ⟩ ≡
if is running (rule wd) then rule wd ← width (this box);
rule ht ← rule ht + rule dp ; { this is the rule thickness }
if upwards then cur v ← cur v − rule ht
else cur v ← cur v + rule ht ;
if (rule ht > 0) ∧ (rule wd > 0) then {we don’t output empty rules }
begin if cur dir = right to left then cur h ← cur h − rule wd ;
synch h ; synch v ; dvi out (put rule); dvi four (rule ht); dvi four (rule wd); cur h ← left edge ;
end;

goto next p

This code is used in section 669.

§672 X ETEX PART 32: SHIPPING PAGES OUT 287

672. ⟨Move down or output leaders 672 ⟩ ≡
begin g ← glue ptr (p); rule ht ← width (g)− cur g ;
if g sign ̸= normal then
begin if g sign = stretching then
begin if stretch order (g) = g order then

begin cur glue ← cur glue + stretch (g); vet glue (float (glue set (this box)) ∗ cur glue);
cur g ← round (glue temp);
end;

end
else if shrink order (g) = g order then

begin cur glue ← cur glue − shrink (g); vet glue (float (glue set (this box)) ∗ cur glue);
cur g ← round (glue temp);
end;

end;
rule ht ← rule ht + cur g ;
if subtype (p) ≥ a leaders then
⟨Output leaders in a vlist, goto fin rule if a rule or to next p if done 673 ⟩;

goto move past ;
end

This code is used in section 669.

673. ⟨Output leaders in a vlist, goto fin rule if a rule or to next p if done 673 ⟩ ≡
begin leader box ← leader ptr (p);
if type (leader box) = rule node then
begin rule wd ← width (leader box); rule dp ← 0; goto fin rule ;
end;

leader ht ← height (leader box) + depth (leader box);
if (leader ht > 0) ∧ (rule ht > 0) then
begin rule ht ← rule ht + 10; { compensate for floating-point rounding }
edge ← cur v + rule ht ; lx ← 0; ⟨Let cur v be the position of the first box, and set leader ht + lx to

the spacing between corresponding parts of boxes 674 ⟩;
while cur v + leader ht ≤ edge do
⟨Output a leader box at cur v , then advance cur v by leader ht + lx 675 ⟩;

cur v ← edge − 10; goto next p ;
end;

end

This code is used in section 672.

674. ⟨Let cur v be the position of the first box, and set leader ht + lx to the spacing between
corresponding parts of boxes 674 ⟩ ≡

if subtype (p) = a leaders then
begin save v ← cur v ; cur v ← top edge + leader ht ∗ ((cur v − top edge) div leader ht);
if cur v < save v then cur v ← cur v + leader ht ;
end

else begin lq ← rule ht div leader ht ; { the number of box copies }
lr ← rule ht mod leader ht ; { the remaining space }
if subtype (p) = c leaders then cur v ← cur v + (lr div 2)
else begin lx ← lr div (lq + 1); cur v ← cur v + ((lr − (lq − 1) ∗ lx) div 2);

end;
end

This code is used in section 673.

288 PART 32: SHIPPING PAGES OUT X ETEX §675

675. When we reach this part of the program, cur v indicates the top of a leader box, not its baseline.

⟨Output a leader box at cur v , then advance cur v by leader ht + lx 675 ⟩ ≡
begin if cur dir = right to left then cur h ← left edge − shift amount (leader box)
else cur h ← left edge + shift amount (leader box);
synch h ; save h ← dvi h ;
cur v ← cur v + height (leader box); synch v ; save v ← dvi v ; temp ptr ← leader box ;
outer doing leaders ← doing leaders ; doing leaders ← true ;
if type (leader box) = vlist node then vlist out else hlist out ;
doing leaders ← outer doing leaders ; dvi v ← save v ; dvi h ← save h ; cur h ← left edge ;
cur v ← save v − height (leader box) + leader ht + lx ;
end

This code is used in section 673.

676. The hlist out and vlist out procedures are now complete, so we are ready for the ship out routine
that gets them started in the first place.

procedure ship out (p : pointer); { output the box p }
label done ;
var page loc : integer ; { location of the current bop }
j, k: 0 . . 9; { indices to first ten count registers }
s: pool pointer ; { index into str pool }
old setting : 0 . . max selector ; { saved selector setting }

begin if job name = 0 then open log file ;
if tracing output > 0 then
begin print nl (""); print ln ; print ("Completed␣box␣being␣shipped␣out");
end;

if term offset > max print line − 9 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char ("␣");
print char ("["); j ← 9;
while (count (j) = 0) ∧ (j > 0) do decr (j);
for k ← 0 to j do
begin print int (count (k));
if k < j then print char (".");
end;

update terminal ;
if tracing output > 0 then
begin print char ("]"); begin diagnostic ; show box (p); end diagnostic(true);
end;
⟨ Ship box p out 678 ⟩;
if eTeX ex then ⟨Check for LR anomalies at the end of ship out 1541 ⟩;
if tracing output ≤ 0 then print char ("]");
dead cycles ← 0; update terminal ; { progress report }
⟨Flush the box from memory, showing statistics if requested 677 ⟩;
end;

§677 X ETEX PART 32: SHIPPING PAGES OUT 289

677. ⟨Flush the box from memory, showing statistics if requested 677 ⟩ ≡
stat if tracing stats > 1 then
begin print nl ("Memory␣usage␣before:␣"); print int (var used); print char ("&");
print int (dyn used); print char (";");
end;

tats
flush node list (p);
stat if tracing stats > 1 then
begin print ("␣after:␣"); print int (var used); print char ("&"); print int (dyn used);
print (";␣still␣untouched:␣"); print int (hi mem min − lo mem max − 1); print ln ;
end;

tats

This code is used in section 676.

678. ⟨ Ship box p out 678 ⟩ ≡
⟨Update the values of max h and max v ; but if the page is too large, goto done 679 ⟩;
⟨ Initialize variables as ship out begins 653 ⟩;
page loc ← dvi offset + dvi ptr ; dvi out (bop);
for k ← 0 to 9 do dvi four (count (k));
dvi four (last bop); last bop ← page loc ; { generate a pagesize special at start of page }
old setting ← selector ; selector ← new string ; print ("pdf:pagesize␣");
if (pdf page width > 0) ∧ (pdf page height > 0) then
begin print ("width"); print ("␣"); print scaled (pdf page width); print ("pt"); print ("␣");
print ("height"); print ("␣"); print scaled (pdf page height); print ("pt");
end

else print ("default");
selector ← old setting ; dvi out (xxx1); dvi out (cur length);
for s← str start macro(str ptr) to pool ptr − 1 do dvi out (so(str pool [s]));
pool ptr ← str start macro(str ptr); { erase the string }
cur v ← height (p) + v offset ; { does this need changing for upwards mode ???? }
temp ptr ← p;
if type (p) = vlist node then vlist out else hlist out ;
dvi out (eop); incr (total pages); cur s ← −1;
if ¬no pdf output then fflush (dvi file);

done :

This code is used in section 676.

290 PART 32: SHIPPING PAGES OUT X ETEX §679

679. Sometimes the user will generate a huge page because other error messages are being ignored. Such
pages are not output to the dvi file, since they may confuse the printing software.

⟨Update the values of max h and max v ; but if the page is too large, goto done 679 ⟩ ≡
if (height (p) > max dimen) ∨ (depth (p) > max dimen) ∨

(height (p) + depth (p) + v offset > max dimen) ∨ (width (p) + h offset > max dimen) then
begin print err ("Huge␣page␣cannot␣be␣shipped␣out");
help2 ("The␣page␣just␣created␣is␣more␣than␣18␣feet␣tall␣or")
("more␣than␣18␣feet␣wide,␣so␣I␣suspect␣something␣went␣wrong."); error ;
if tracing output ≤ 0 then

begin begin diagnostic ; print nl ("The␣following␣box␣has␣been␣deleted:"); show box (p);
end diagnostic(true);
end;

goto done ;
end;

if height (p) + depth (p) + v offset > max v then max v ← height (p) + depth (p) + v offset ;
if width (p) + h offset > max h then max h ← width (p) + h offset

This code is used in section 678.

680. At the end of the program, we must finish things off by writing the postamble. If total pages = 0,
the DVI file was never opened. If total pages ≥ 65536, the DVI file will lie. And if max push ≥ 65536, the
user deserves whatever chaos might ensue.
An integer variable k will be declared for use by this routine.

⟨Finish the DVI file 680 ⟩ ≡
while cur s > −1 do
begin if cur s > 0 then dvi out (pop)
else begin dvi out (eop); incr (total pages);

end;
decr (cur s);
end;

if total pages = 0 then print nl ("No␣pages␣of␣output.")
else begin dvi out (post); { beginning of the postamble }
dvi four (last bop); last bop ← dvi offset + dvi ptr − 5; { post location }
dvi four (25400000); dvi four (473628672); { conversion ratio for sp }
prepare mag ; dvi four (mag); {magnification factor }
dvi four (max v); dvi four (max h);
dvi out (max push div 256); dvi out (max push mod 256);
dvi out ((total pages div 256)mod 256); dvi out (total pages mod 256);
⟨Output the font definitions for all fonts that were used 681 ⟩;
dvi out (post post); dvi four (last bop); dvi out (id byte);
k ← 4 + ((dvi buf size − dvi ptr)mod 4); { the number of 223’s }
while k > 0 do
begin dvi out (223); decr (k);
end;

⟨Empty the last bytes out of dvi buf 635 ⟩;
print nl ("Output␣written␣on␣"); slow print (output file name); print ("␣("); print int (total pages);
print ("␣page");
if total pages ̸= 1 then print char ("s");
print (",␣"); print int (dvi offset + dvi ptr); print ("␣bytes)."); b close (dvi file);
end

This code is used in section 1387.

§681 X ETEX PART 32: SHIPPING PAGES OUT 291

681. ⟨Output the font definitions for all fonts that were used 681 ⟩ ≡
while font ptr > font base do
begin if font used [font ptr] then dvi font def (font ptr);
decr (font ptr);
end

This code is used in section 680.

292 PART 32B: pdfTEX OUTPUT LOW-LEVEL SUBROUTINES (EQUIVALENTS) X ETEX §682

682. pdfTEX output low-level subroutines (equivalents).

⟨Global variables 13 ⟩ +≡
epochseconds : integer ;
microseconds : integer ;

§683 X ETEX PART 33: PACKAGING 293

683. Packaging. We’re essentially done with the parts of TEX that are concerned with the input
(get next) and the output (ship out). So it’s time to get heavily into the remaining part, which does
the real work of typesetting.
After lists are constructed, TEX wraps them up and puts them into boxes. Two major subroutines are

given the responsibility for this task: hpack applies to horizontal lists (hlists) and vpack applies to vertical
lists (vlists). The main duty of hpack and vpack is to compute the dimensions of the resulting boxes, and
to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the
material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or
if a \vbox includes other boxes that have been shifted left.
The subroutine call hpack (p, w,m) returns a pointer to an hlist node for a box containing the hlist that

starts at p. Parameter w specifies a width; and parameter m is either ‘exactly ’ or ‘additional ’. Thus,
hpack (p, w, exactly) produces a box whose width is exactly w, while hpack (p, w, additional) yields a box
whose width is the natural width plus w. It is convenient to define a macro called ‘natural ’ to cover the
most common case, so that we can say hpack (p,natural) to get a box that has the natural width of list p.

Similarly, vpack (p, w,m) returns a pointer to a vlist node for a box containing the vlist that starts at p.
In this case w represents a height instead of a width; the parameter m is interpreted as in hpack .

define exactly = 0 { a box dimension is pre-specified }
define additional = 1 { a box dimension is increased from the natural one }
define natural ≡ 0, additional { shorthand for parameters to hpack and vpack }

684. The parameters to hpack and vpack correspond to TEX’s primitives like ‘\hbox to 300pt’, ‘\hbox
spread 10pt’; note that ‘\hbox’ with no dimension following it is equivalent to ‘\hbox spread 0pt’. The
scan spec subroutine scans such constructions in the user’s input, including the mandatory left brace that
follows them, and it puts the specification onto save stack so that the desired box can later be obtained by
executing the following code:

save ptr ← save ptr − 2;
hpack (p, saved (1), saved (0)).

Special care is necessary to ensure that the special save stack codes are placed just below the new group
code, because scanning can change save stack when \csname appears.

procedure scan spec(c : group code ; three codes : boolean); { scans a box specification and left brace }
label found ;
var s: integer ; { temporarily saved value }
spec code : exactly . . additional ;

begin if three codes then s← saved (0);
if scan keyword ("to") then spec code ← exactly
else if scan keyword ("spread") then spec code ← additional
else begin spec code ← additional ; cur val ← 0; goto found ;
end;

scan normal dimen ;
found : if three codes then

begin saved (0)← s; incr (save ptr);
end;

saved (0)← spec code ; saved (1)← cur val ; save ptr ← save ptr + 2; new save level (c); scan left brace ;
end;

294 PART 33: PACKAGING X ETEX §685

685. To figure out the glue setting, hpack and vpack determine how much stretchability and shrinkability
are present, considering all four orders of infinity. The highest order of infinity that has a nonzero coefficient
is then used as if no other orders were present.
For example, suppose that the given list contains six glue nodes with the respective stretchabilities 3pt,

8fill, 5fil, 6pt, −3fil, −8fill. Then the total is essentially 2fil; and if a total additional space of 6pt is to be
achieved by stretching, the actual amounts of stretch will be 0pt, 0pt, 15pt, 0pt, −9pt, and 0pt, since only
‘fil’ glue will be considered. (The ‘fill’ glue is therefore not really stretching infinitely with respect to ‘fil’;
nobody would actually want that to happen.)
The arrays total stretch and total shrink are used to determine how much glue of each kind is present. A

global variable last badness is used to implement \badness.

⟨Global variables 13 ⟩ +≡
total stretch , total shrink : array [glue ord] of scaled ; { glue found by hpack or vpack }
last badness : integer ; { badness of the most recently packaged box }

686. If the global variable adjust tail is non-null, the hpack routine also removes all occurrences of ins node ,
mark node , and adjust node items and appends the resulting material onto the list that ends at location
adjust tail .

⟨Global variables 13 ⟩ +≡
adjust tail : pointer ; { tail of adjustment list }

687. ⟨ Set initial values of key variables 23 ⟩ +≡
adjust tail ← null ; last badness ← 0;

§688 X ETEX PART 33: PACKAGING 295

688. Some stuff for character protrusion.

define left pw (#) ≡ char pw (#, left side)
define right pw (#) ≡ char pw (#, right side)

function char pw (p : pointer ; side : small number): scaled ;
var f : internal font number ; c: integer ;
begin char pw ← 0;
if side = left side then last leftmost char ← null
else last rightmost char ← null ;
if p = null then return; { native word }
if is native word node (p) then
begin if native glyph info ptr (p) ̸= null ptr then

begin f ← native font (p); char pw ← round xn over d (quad (f), get native word cp(p, side), 1000);
end;

return;
end; { glyph node }

if is glyph node (p) then
begin f ← native font (p);
char pw ← round xn over d (quad (f), get cp code (f, native glyph (p), side), 1000); return;
end; { char node or ligature; same like pdftex }

if ¬is char node (p) then
begin if type (p) = ligature node then p← lig char (p)
else return;
end;

f ← font (p); c← get cp code (f, character (p), side);
case side of
left side : last leftmost char ← p;
right side : last rightmost char ← p;
endcases;
if c = 0 then return;
char pw ← round xn over d (quad (f), c, 1000);
end;

function new margin kern (w : scaled ; p : pointer ; side : small number): pointer ;
var k: pointer ;
begin k ← get node (margin kern node size); type (k)← margin kern node ; subtype (k)← side ;
width (k)← w; new margin kern ← k;
end;

296 PART 33: PACKAGING X ETEX §689

689. Here now is hpack , which contains few if any surprises.

function hpack (p : pointer ; w : scaled ; m : small number): pointer ;
label reswitch , common ending , exit , restart ;
var r: pointer ; { the box node that will be returned }
q: pointer ; { trails behind p }
h, d, x: scaled ; { height, depth, and natural width }
s: scaled ; { shift amount }
g: pointer ; { points to a glue specification }
o: glue ord ; { order of infinity }
f : internal font number ; { the font in a char node }
i: four quarters ; { font information about a char node }
hd : eight bits ; { height and depth indices for a character }
pp , ppp : pointer ; total chars , k: integer ;

begin last badness ← 0; r ← get node (box node size); type (r)← hlist node ;
subtype (r)← min quarterword ; shift amount (r)← 0; q ← r + list offset ; link (q)← p;
h← 0; ⟨Clear dimensions to zero 690 ⟩;
if TeXXeT en then ⟨ Initialize the LR stack 1520 ⟩;
while p ̸= null do ⟨Examine node p in the hlist, taking account of its effect on the dimensions of the

new box, or moving it to the adjustment list; then advance p to the next node 691 ⟩;
if adjust tail ̸= null then link (adjust tail)← null ;
if pre adjust tail ̸= null then link (pre adjust tail)← null ;
height (r)← h; depth (r)← d;
⟨Determine the value of width (r) and the appropriate glue setting; then return or goto

common ending 699 ⟩;
common ending : ⟨Finish issuing a diagnostic message for an overfull or underfull hbox 705 ⟩;
exit : if TeXXeT en then ⟨Check for LR anomalies at the end of hpack 1522 ⟩;
hpack ← r;
end;

690. ⟨Clear dimensions to zero 690 ⟩ ≡
d← 0; x← 0; total stretch [normal]← 0; total shrink [normal]← 0; total stretch [fil]← 0;
total shrink [fil]← 0; total stretch [fill]← 0; total shrink [fill]← 0; total stretch [filll]← 0;
total shrink [filll]← 0

This code is used in sections 689 and 710.

§691 X ETEX PART 33: PACKAGING 297

691. ⟨Examine node p in the hlist, taking account of its effect on the dimensions of the new box, or
moving it to the adjustment list; then advance p to the next node 691 ⟩ ≡

begin reswitch : while is char node (p) do ⟨ Incorporate character dimensions into the dimensions of the
hbox that will contain it, then move to the next node 694 ⟩;

if p ̸= null then
begin case type (p) of
hlist node , vlist node , rule node , unset node : ⟨ Incorporate box dimensions into the dimensions of the

hbox that will contain it 693 ⟩;
ins node ,mark node , adjust node : if (adjust tail ̸= null) ∨ (pre adjust tail ̸= null) then

⟨Transfer node p to the adjustment list 697 ⟩;
whatsit node : ⟨ Incorporate a whatsit node into an hbox 1420 ⟩;
glue node : ⟨ Incorporate glue into the horizontal totals 698 ⟩;
kern node : x← x+ width (p);
margin kern node : x← x+ width (p);
math node : begin x← x+ width (p);
if TeXXeT en then ⟨Adjust the LR stack for the hpack routine 1521 ⟩;
end;

ligature node : ⟨Make node p look like a char node and goto reswitch 692 ⟩;
othercases do nothing
endcases;
p← link (p);
end;

end

This code is used in section 689.

692. ⟨Make node p look like a char node and goto reswitch 692 ⟩ ≡
begin mem [lig trick]← mem [lig char (p)]; link (lig trick)← link (p); p← lig trick ;
xtx ligature present ← true ; goto reswitch ;
end

This code is used in sections 660, 691, and 1201.

693. The code here implicitly uses the fact that running dimensions are indicated by null flag , which will
be ignored in the calculations because it is a highly negative number.

⟨ Incorporate box dimensions into the dimensions of the hbox that will contain it 693 ⟩ ≡
begin x← x+ width (p);
if type (p) ≥ rule node then s← 0 else s← shift amount (p);
if height (p)− s > h then h← height (p)− s;
if depth (p) + s > d then d← depth (p) + s;
end

This code is used in section 691.

694. The following code is part of TEX’s inner loop; i.e., adding another character of text to the user’s
input will cause each of these instructions to be exercised one more time.

⟨ Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to the
next node 694 ⟩ ≡

begin f ← font (p); i← char info(f)(character (p)); hd ← height depth (i); x← x+ char width (f)(i);
s← char height (f)(hd); if s > h then h← s;
s← char depth (f)(hd); if s > d then d← s;
p← link (p);
end

This code is used in section 691.

298 PART 33: PACKAGING X ETEX §695

695. Although node q is not necessarily the immediate predecessor of node p, it always points to some
node in the list preceding p. Thus, we can delete nodes by moving q when necessary. The algorithm takes
linear time, and the extra computation does not intrude on the inner loop unless it is necessary to make a
deletion.

⟨Global variables 13 ⟩ +≡
pre adjust tail : pointer ;

696. ⟨ Set initial values of key variables 23 ⟩ +≡
pre adjust tail ← null ;

697. Materials in \vadjust used with pre keyword will be appended to pre adjust tail instead of
adjust tail .

define update adjust list (#) ≡
begin if # = null then confusion ("pre␣vadjust");
link (#)← adjust ptr (p);
while link (#) ̸= null do #← link (#);
end

⟨Transfer node p to the adjustment list 697 ⟩ ≡
begin while link (q) ̸= p do q ← link (q);
if type (p) = adjust node then
begin if adjust pre (p) ̸= 0 then update adjust list (pre adjust tail)
else update adjust list (adjust tail);
p← link (p); free node (link (q), small node size);
end

else begin link (adjust tail)← p; adjust tail ← p; p← link (p);
end;

link (q)← p; p← q;
end

This code is used in section 691.

698. ⟨ Incorporate glue into the horizontal totals 698 ⟩ ≡
begin g ← glue ptr (p); x← x+ width (g);
o← stretch order (g); total stretch [o]← total stretch [o] + stretch (g); o← shrink order (g);
total shrink [o]← total shrink [o] + shrink (g);
if subtype (p) ≥ a leaders then
begin g ← leader ptr (p);
if height (g) > h then h← height (g);
if depth (g) > d then d← depth (g);
end;

end

This code is used in section 691.

§699 X ETEX PART 33: PACKAGING 299

699. When we get to the present part of the program, x is the natural width of the box being packaged.

⟨Determine the value of width (r) and the appropriate glue setting; then return or goto
common ending 699 ⟩ ≡

if m = additional then w ← x+ w;
width (r)← w; x← w − x; { now x is the excess to be made up }
if x = 0 then
begin glue sign (r)← normal ; glue order (r)← normal ; set glue ratio zero(glue set (r)); return;
end

else if x > 0 then
⟨Determine horizontal glue stretch setting, then return or goto common ending 700 ⟩

else ⟨Determine horizontal glue shrink setting, then return or goto common ending 706 ⟩
This code is used in section 689.

700. ⟨Determine horizontal glue stretch setting, then return or goto common ending 700 ⟩ ≡
begin ⟨Determine the stretch order 701 ⟩;
glue order (r)← o; glue sign (r)← stretching ;
if total stretch [o] ̸= 0 then glue set (r)← unfloat (x/total stretch [o])
else begin glue sign (r)← normal ; set glue ratio zero(glue set (r)); { there’s nothing to stretch }
end;

if o = normal then
if list ptr (r) ̸= null then
⟨Report an underfull hbox and goto common ending , if this box is sufficiently bad 702 ⟩;

return;
end

This code is used in section 699.

701. ⟨Determine the stretch order 701 ⟩ ≡
if total stretch [filll] ̸= 0 then o← filll
else if total stretch [fill] ̸= 0 then o← fill
else if total stretch [fil] ̸= 0 then o← fil
else o← normal

This code is used in sections 700, 715, and 844.

702. ⟨Report an underfull hbox and goto common ending , if this box is sufficiently bad 702 ⟩ ≡
begin last badness ← badness (x, total stretch [normal]);
if last badness > hbadness then
begin print ln ;
if last badness > 100 then print nl ("Underfull") else print nl ("Loose");
print ("␣\hbox␣(badness␣"); print int (last badness); goto common ending ;
end;

end

This code is used in section 700.

703. In order to provide a decent indication of where an overfull or underfull box originated, we use a
global variable pack begin line that is set nonzero only when hpack is being called by the paragraph builder
or the alignment finishing routine.

⟨Global variables 13 ⟩ +≡
pack begin line : integer ; { source file line where the current paragraph or alignment began; a negative

value denotes alignment }

300 PART 33: PACKAGING X ETEX §704

704. ⟨ Set initial values of key variables 23 ⟩ +≡
pack begin line ← 0;

705. ⟨Finish issuing a diagnostic message for an overfull or underfull hbox 705 ⟩ ≡
if output active then print (")␣has␣occurred␣while␣\output␣is␣active")
else begin if pack begin line ̸= 0 then

begin if pack begin line > 0 then print (")␣in␣paragraph␣at␣lines␣")
else print (")␣in␣alignment␣at␣lines␣");
print int (abs (pack begin line)); print ("−−");
end

else print (")␣detected␣at␣line␣");
print int (line);
end;

print ln ;
font in short display ← null font ; short display (list ptr (r)); print ln ;
begin diagnostic ; show box (r); end diagnostic(true)

This code is used in section 689.

706. ⟨Determine horizontal glue shrink setting, then return or goto common ending 706 ⟩ ≡
begin ⟨Determine the shrink order 707 ⟩;
glue order (r)← o; glue sign (r)← shrinking ;
if total shrink [o] ̸= 0 then glue set (r)← unfloat ((−x)/total shrink [o])
else begin glue sign (r)← normal ; set glue ratio zero(glue set (r)); { there’s nothing to shrink }
end;

if (total shrink [o] < −x) ∧ (o = normal) ∧ (list ptr (r) ̸= null) then
begin last badness ← 1000000; set glue ratio one (glue set (r)); { use the maximum shrinkage }
⟨Report an overfull hbox and goto common ending , if this box is sufficiently bad 708 ⟩;
end

else if o = normal then
if list ptr (r) ̸= null then
⟨Report a tight hbox and goto common ending , if this box is sufficiently bad 709 ⟩;

return;
end

This code is used in section 699.

707. ⟨Determine the shrink order 707 ⟩ ≡
if total shrink [filll] ̸= 0 then o← filll
else if total shrink [fill] ̸= 0 then o← fill
else if total shrink [fil] ̸= 0 then o← fil

else o← normal

This code is used in sections 706, 718, and 844.

708. ⟨Report an overfull hbox and goto common ending , if this box is sufficiently bad 708 ⟩ ≡
if (−x− total shrink [normal] > hfuzz) ∨ (hbadness < 100) then
begin if (overfull rule > 0) ∧ (−x− total shrink [normal] > hfuzz) then
begin while link (q) ̸= null do q ← link (q);
link (q)← new rule ; width (link (q))← overfull rule ;
end;

print ln ; print nl ("Overfull␣\hbox␣("); print scaled (−x− total shrink [normal]);
print ("pt␣too␣wide"); goto common ending ;
end

This code is used in section 706.

§709 X ETEX PART 33: PACKAGING 301

709. ⟨Report a tight hbox and goto common ending , if this box is sufficiently bad 709 ⟩ ≡
begin last badness ← badness (−x, total shrink [normal]);
if last badness > hbadness then
begin print ln ; print nl ("Tight␣\hbox␣(badness␣"); print int (last badness); goto common ending ;
end;

end

This code is used in section 706.

710. The vpack subroutine is actually a special case of a slightly more general routine called vpackage ,
which has four parameters. The fourth parameter, which is max dimen in the case of vpack , specifies the
maximum depth of the page box that is constructed. The depth is first computed by the normal rules; if it
exceeds this limit, the reference point is simply moved down until the limiting depth is attained.

define vpack (#) ≡ vpackage (#,max dimen) { special case of unconstrained depth }
function vpackage (p : pointer ; h : scaled ; m : small number ; l : scaled): pointer ;

label common ending , exit ;
var r: pointer ; { the box node that will be returned }
w, d, x: scaled ; {width, depth, and natural height }
s: scaled ; { shift amount }
g: pointer ; { points to a glue specification }
o: glue ord ; { order of infinity }

begin last badness ← 0; r ← get node (box node size); type (r)← vlist node ;
if XeTeX upwards then subtype (r)← min quarterword + 1
else subtype (r)← min quarterword ;
shift amount (r)← 0; list ptr (r)← p;
w ← 0; ⟨Clear dimensions to zero 690 ⟩;
while p ̸= null do ⟨Examine node p in the vlist, taking account of its effect on the dimensions of the

new box; then advance p to the next node 711 ⟩;
width (r)← w;
if d > l then
begin x← x+ d− l; depth (r)← l;
end

else depth (r)← d;
⟨Determine the value of height (r) and the appropriate glue setting; then return or goto

common ending 714 ⟩;
common ending : ⟨Finish issuing a diagnostic message for an overfull or underfull vbox 717 ⟩;
exit : vpackage ← r;
end;

302 PART 33: PACKAGING X ETEX §711

711. ⟨Examine node p in the vlist, taking account of its effect on the dimensions of the new box; then
advance p to the next node 711 ⟩ ≡

begin if is char node (p) then confusion ("vpack")
else case type (p) of
hlist node , vlist node , rule node , unset node : ⟨ Incorporate box dimensions into the dimensions of the

vbox that will contain it 712 ⟩;
whatsit node : ⟨ Incorporate a whatsit node into a vbox 1419 ⟩;
glue node : ⟨ Incorporate glue into the vertical totals 713 ⟩;
kern node : begin x← x+ d+ width (p); d← 0;
end;

othercases do nothing
endcases;

p← link (p);
end

This code is used in section 710.

712. ⟨ Incorporate box dimensions into the dimensions of the vbox that will contain it 712 ⟩ ≡
begin x← x+ d+ height (p); d← depth (p);
if type (p) ≥ rule node then s← 0 else s← shift amount (p);
if width (p) + s > w then w ← width (p) + s;
end

This code is used in section 711.

713. ⟨ Incorporate glue into the vertical totals 713 ⟩ ≡
begin x← x+ d; d← 0;
g ← glue ptr (p); x← x+ width (g);
o← stretch order (g); total stretch [o]← total stretch [o] + stretch (g); o← shrink order (g);
total shrink [o]← total shrink [o] + shrink (g);
if subtype (p) ≥ a leaders then
begin g ← leader ptr (p);
if width (g) > w then w ← width (g);
end;

end

This code is used in section 711.

714. When we get to the present part of the program, x is the natural height of the box being packaged.

⟨Determine the value of height (r) and the appropriate glue setting; then return or goto
common ending 714 ⟩ ≡

if m = additional then h← x+ h;
height (r)← h; x← h− x; { now x is the excess to be made up }
if x = 0 then
begin glue sign (r)← normal ; glue order (r)← normal ; set glue ratio zero(glue set (r)); return;
end

else if x > 0 then ⟨Determine vertical glue stretch setting, then return or goto common ending 715 ⟩
else ⟨Determine vertical glue shrink setting, then return or goto common ending 718 ⟩

This code is used in section 710.

§715 X ETEX PART 33: PACKAGING 303

715. ⟨Determine vertical glue stretch setting, then return or goto common ending 715 ⟩ ≡
begin ⟨Determine the stretch order 701 ⟩;
glue order (r)← o; glue sign (r)← stretching ;
if total stretch [o] ̸= 0 then glue set (r)← unfloat (x/total stretch [o])
else begin glue sign (r)← normal ; set glue ratio zero(glue set (r)); { there’s nothing to stretch }
end;

if o = normal then
if list ptr (r) ̸= null then
⟨Report an underfull vbox and goto common ending , if this box is sufficiently bad 716 ⟩;

return;
end

This code is used in section 714.

716. ⟨Report an underfull vbox and goto common ending , if this box is sufficiently bad 716 ⟩ ≡
begin last badness ← badness (x, total stretch [normal]);
if last badness > vbadness then
begin print ln ;
if last badness > 100 then print nl ("Underfull") else print nl ("Loose");
print ("␣\vbox␣(badness␣"); print int (last badness); goto common ending ;
end;

end

This code is used in section 715.

717. ⟨Finish issuing a diagnostic message for an overfull or underfull vbox 717 ⟩ ≡
if output active then print (")␣has␣occurred␣while␣\output␣is␣active")
else begin if pack begin line ̸= 0 then { it’s actually negative }

begin print (")␣in␣alignment␣at␣lines␣"); print int (abs (pack begin line)); print ("−−");
end

else print (")␣detected␣at␣line␣");
print int (line); print ln ;
end;

begin diagnostic ; show box (r); end diagnostic(true)

This code is used in section 710.

718. ⟨Determine vertical glue shrink setting, then return or goto common ending 718 ⟩ ≡
begin ⟨Determine the shrink order 707 ⟩;
glue order (r)← o; glue sign (r)← shrinking ;
if total shrink [o] ̸= 0 then glue set (r)← unfloat ((−x)/total shrink [o])
else begin glue sign (r)← normal ; set glue ratio zero(glue set (r)); { there’s nothing to shrink }
end;

if (total shrink [o] < −x) ∧ (o = normal) ∧ (list ptr (r) ̸= null) then
begin last badness ← 1000000; set glue ratio one (glue set (r)); { use the maximum shrinkage }
⟨Report an overfull vbox and goto common ending , if this box is sufficiently bad 719 ⟩;
end

else if o = normal then
if list ptr (r) ̸= null then
⟨Report a tight vbox and goto common ending , if this box is sufficiently bad 720 ⟩;

return;
end

This code is used in section 714.

304 PART 33: PACKAGING X ETEX §719

719. ⟨Report an overfull vbox and goto common ending , if this box is sufficiently bad 719 ⟩ ≡
if (−x− total shrink [normal] > vfuzz) ∨ (vbadness < 100) then
begin print ln ; print nl ("Overfull␣\vbox␣("); print scaled (−x− total shrink [normal]);
print ("pt␣too␣high"); goto common ending ;
end

This code is used in section 718.

720. ⟨Report a tight vbox and goto common ending , if this box is sufficiently bad 720 ⟩ ≡
begin last badness ← badness (−x, total shrink [normal]);
if last badness > vbadness then
begin print ln ; print nl ("Tight␣\vbox␣(badness␣"); print int (last badness); goto common ending ;
end;

end

This code is used in section 718.

721. When a box is being appended to the current vertical list, the baselineskip calculation is handled by
the append to vlist routine.

procedure append to vlist (b : pointer);
var d: scaled ; { deficiency of space between baselines }
p: pointer ; { a new glue node }
upwards : boolean ;

begin upwards ← XeTeX upwards ;
if prev depth > ignore depth then
begin if upwards then d← width (baseline skip)− prev depth − depth (b)
else d← width (baseline skip)− prev depth − height (b);
if d < line skip limit then p← new param glue (line skip code)
else begin p← new skip param (baseline skip code); width (temp ptr)← d;

{ temp ptr = glue ptr (p) }
end;

link (tail)← p; tail ← p;
end;

link (tail)← b; tail ← b;
if upwards then prev depth ← height (b)
else prev depth ← depth (b);
end;

§722 X ETEX PART 34: DATA STRUCTURES FOR MATH MODE 305

722. Data structures for math mode. When TEX reads a formula that is enclosed between $’s, it
constructs an mlist, which is essentially a tree structure representing that formula. An mlist is a linear
sequence of items, but we can regard it as a tree structure because mlists can appear within mlists. For
example, many of the entries can be subscripted or superscripted, and such “scripts” are mlists in their own
right.
An entire formula is parsed into such a tree before any of the actual typesetting is done, because the

current style of type is usually not known until the formula has been fully scanned. For example, when the
formula ‘$a+b \over c+d$’ is being read, there is no way to tell that ‘a+b’ will be in script size until ‘\over’
has appeared.
During the scanning process, each element of the mlist being built is classified as a relation, a binary

operator, an open parenthesis, etc., or as a construct like ‘\sqrt’ that must be built up. This classification
appears in the mlist data structure.
After a formula has been fully scanned, the mlist is converted to an hlist so that it can be incorporated

into the surrounding text. This conversion is controlled by a recursive procedure that decides all of the
appropriate styles by a “top-down” process starting at the outermost level and working in towards the
subformulas. The formula is ultimately pasted together using combinations of horizontal and vertical boxes,
with glue and penalty nodes inserted as necessary.
An mlist is represented internally as a linked list consisting chiefly of “noads” (pronounced “no-adds”), to

distinguish them from the somewhat similar “nodes” in hlists and vlists. Certain kinds of ordinary nodes
are allowed to appear in mlists together with the noads; TEX tells the difference by means of the type field,
since a noad’s type is always greater than that of a node. An mlist does not contain character nodes, hlist
nodes, vlist nodes, math nodes, ligature nodes, or unset nodes; in particular, each mlist item appears in the
variable-size part of mem , so the type field is always present.

306 PART 34: DATA STRUCTURES FOR MATH MODE X ETEX §723

723. Each noad is four or more words long. The first word contains the type and subtype and link fields
that are already so familiar to us; the second, third, and fourth words are called the noad’s nucleus , subscr ,
and supscr fields.
Consider, for example, the simple formula ‘x^2’, which would be parsed into an mlist containing a single

element called an ord noad . The nucleus of this noad is a representation of ‘x’, the subscr is empty, and the
supscr is a representation of ‘2’.
The nucleus , subscr , and supscr fields are further broken into subfields. If p points to a noad, and if q is

one of its principal fields (e.g., q = subscr (p)), there are several possibilities for the subfields, depending on
the math type of q.

math type (q) = math char means that fam (q) refers to one of the sixteen font families, and character (q) is
the number of a character within a font of that family, as in a character node.

math type (q) = math text char is similar, but the character is unsubscripted and unsuperscripted and it is
followed immediately by another character from the same font. (This math type setting appears only
briefly during the processing; it is used to suppress unwanted italic corrections.)

math type (q) = empty indicates a field with no value (the corresponding attribute of noad p is not present).

math type (q) = sub box means that info(q) points to a box node (either an hlist node or a vlist node) that
should be used as the value of the field. The shift amount in the subsidiary box node is the amount
by which that box will be shifted downward.

math type (q) = sub mlist means that info(q) points to an mlist; the mlist must be converted to an hlist in
order to obtain the value of this field.

In the latter case, we might have info(q) = null . This is not the same as math type (q) = empty ; for example,
‘$P_{}$’ and ‘P’ produce different results (the former will not have the “italic correction” added to the
width of P , but the “script skip” will be added).

The definitions of subfields given here are evidently wasteful of space, since a halfword is being used for
the math type although only three bits would be needed. However, there are hardly ever many noads present
at once, since they are soon converted to nodes that take up even more space, so we can afford to represent
them in whatever way simplifies the programming.

define noad size = 4 { number of words in a normal noad }
define nucleus (#) ≡ #+ 1 { the nucleus field of a noad }
define supscr (#) ≡ #+ 2 { the supscr field of a noad }
define subscr (#) ≡ #+ 3 { the subscr field of a noad }
define math type ≡ link { a halfword in mem }
define plane and fam field ≡ font { a quarterword in mem }
define fam (#) ≡ (plane and fam field (#)mod ˝100)
define math char = 1 {math type when the attribute is simple }
define sub box = 2 {math type when the attribute is a box }
define sub mlist = 3 {math type when the attribute is a formula }
define math text char = 4 {math type when italic correction is dubious }

§724 X ETEX PART 34: DATA STRUCTURES FOR MATH MODE 307

724. Each portion of a formula is classified as Ord, Op, Bin, Rel, Open, Close, Punct, or Inner, for
purposes of spacing and line breaking. An ord noad , op noad , bin noad , rel noad , open noad , close noad ,
punct noad , or inner noad is used to represent portions of the various types. For example, an ‘=’ sign in a
formula leads to the creation of a rel noad whose nucleus field is a representation of an equals sign (usually
fam = 0, character = 7́5). A formula preceded by \mathrel also results in a rel noad . When a rel noad is
followed by an op noad , say, and possibly separated by one or more ordinary nodes (not noads), TEX will
insert a penalty node (with the current rel penalty) just after the formula that corresponds to the rel noad ,
unless there already was a penalty immediately following; and a “thick space” will be inserted just before
the formula that corresponds to the op noad .
A noad of type ord noad , op noad , . . . , inner noad usually has a subtype = normal . The only exception

is that an op noad might have subtype = limits or no limits , if the normal positioning of limits has been
overridden for this operator.

define ord noad = unset node + 3 { type of a noad classified Ord }
define op noad = ord noad + 1 { type of a noad classified Op }
define bin noad = ord noad + 2 { type of a noad classified Bin }
define rel noad = ord noad + 3 { type of a noad classified Rel }
define open noad = ord noad + 4 { type of a noad classified Open }
define close noad = ord noad + 5 { type of a noad classified Close }
define punct noad = ord noad + 6 { type of a noad classified Punct }
define inner noad = ord noad + 7 { type of a noad classified Inner }
define limits = 1 { subtype of op noad whose scripts are to be above, below }
define no limits = 2 { subtype of op noad whose scripts are to be normal }

308 PART 34: DATA STRUCTURES FOR MATH MODE X ETEX §725

725. A radical noad is five words long; the fifth word is the left delimiter field, which usually represents a
square root sign.
A fraction noad is six words long; it has a right delimiter field as well as a left delimiter .
Delimiter fields are of type four quarters , and they have four subfields called small fam , small char ,

large fam , large char . These subfields represent variable-size delimiters by giving the “small” and “large”
starting characters, as explained in Chapter 17 of The TEXbook.
A fraction noad is actually quite different from all other noads. Not only does it have six words, it has

thickness , denominator , and numerator fields instead of nucleus , subscr , and supscr . The thickness is a
scaled value that tells how thick to make a fraction rule; however, the special value default code is used to
stand for the default rule thickness of the current size. The numerator and denominator point to mlists
that define a fraction; we always have

math type (numerator) = math type (denominator) = sub mlist .

The left delimiter and right delimiter fields specify delimiters that will be placed at the left and right of
the fraction. In this way, a fraction noad is able to represent all of TEX’s operators \over, \atop, \above,
\overwithdelims, \atopwithdelims, and \abovewithdelims.

define left delimiter (#) ≡ #+ 4 { first delimiter field of a noad }
define right delimiter (#) ≡ #+ 5 { second delimiter field of a fraction noad }
define radical noad = inner noad + 1 { type of a noad for square roots }
define radical noad size = 5 { number of mem words in a radical noad }
define fraction noad = radical noad + 1 { type of a noad for generalized fractions }
define fraction noad size = 6 { number of mem words in a fraction noad }
define small fam (#) ≡ (mem [#].qqqq .b0 mod ˝100) { fam for “small” delimiter }
define small char (#) ≡ (mem [#].qqqq .b1 + (mem [#].qqqq .b0 div ˝100) ∗ ˝10000)

{ character for “small” delimiter }
define large fam (#) ≡ (mem [#].qqqq .b2 mod ˝100) { fam for “large” delimiter }
define large char (#) ≡ (mem [#].qqqq .b3 + (mem [#].qqqq .b2 div ˝100) ∗ ˝10000)

{ character for “large” delimiter }
define small plane and fam field (#) ≡ mem [#].qqqq .b0
define small char field (#) ≡ mem [#].qqqq .b1
define large plane and fam field (#) ≡ mem [#].qqqq .b2
define large char field (#) ≡ mem [#].qqqq .b3
define thickness ≡ width { thickness field in a fraction noad }
define default code ≡ 1́0000000000 { denotes default rule thickness }
define numerator ≡ supscr {numerator field in a fraction noad }
define denominator ≡ subscr { denominator field in a fraction noad }

726. The global variable empty field is set up for initialization of empty fields in new noads. Similarly,
null delimiter is for the initialization of delimiter fields.

⟨Global variables 13 ⟩ +≡
empty field : two halves ;
null delimiter : four quarters ;

727. ⟨ Set initial values of key variables 23 ⟩ +≡
empty field .rh ← empty ; empty field .lh ← null ;
null delimiter .b0 ← 0; null delimiter .b1 ← min quarterword ;
null delimiter .b2 ← 0; null delimiter .b3 ← min quarterword ;

§728 X ETEX PART 34: DATA STRUCTURES FOR MATH MODE 309

728. The new noad function creates an ord noad that is completely null.

function new noad : pointer ;
var p: pointer ;
begin p← get node (noad size); type (p)← ord noad ; subtype (p)← normal ;
mem [nucleus (p)].hh ← empty field ; mem [subscr (p)].hh ← empty field ;
mem [supscr (p)].hh ← empty field ; new noad ← p;
end;

729. A few more kinds of noads will complete the set: An under noad has its nucleus underlined; an
over noad has it overlined. An accent noad places an accent over its nucleus; the accent character appears
as fam (accent chr (p)) and character (accent chr (p)). A vcenter noad centers its nucleus vertically with
respect to the axis of the formula; in such noads we always have math type (nucleus (p)) = sub box .
And finally, we have left noad and right noad types, to implement TEX’s \left and \right as well as

ε-TEX’s \middle. The nucleus of such noads is replaced by a delimiter field; thus, for example, ‘\left(’
produces a left noad such that delimiter (p) holds the family and character codes for all left parentheses. A
left noad never appears in an mlist except as the first element, and a right noad never appears in an mlist
except as the last element; furthermore, we either have both a left noad and a right noad , or neither one is
present. The subscr and supscr fields are always empty in a left noad and a right noad .

define under noad = fraction noad + 1 { type of a noad for underlining }
define over noad = under noad + 1 { type of a noad for overlining }
define accent noad = over noad + 1 { type of a noad for accented subformulas }
define fixed acc = 1 { subtype for non growing math accents }
define bottom acc = 2 { subtype for bottom math accents }
define is bottom acc(#) ≡ ((subtype (#) = bottom acc) ∨ (subtype (#) = bottom acc + fixed acc))
define accent noad size = 5 { number of mem words in an accent noad }
define accent chr (#) ≡ #+ 4 { the accent chr field of an accent noad }
define vcenter noad = accent noad + 1 { type of a noad for \vcenter }
define left noad = vcenter noad + 1 { type of a noad for \left }
define right noad = left noad + 1 { type of a noad for \right }
define delimiter ≡ nucleus { delimiter field in left and right noads }
define middle noad ≡ 1 { subtype of right noad representing \middle }
define scripts allowed (#) ≡ (type (#) ≥ ord noad) ∧ (type (#) < left noad)

310 PART 34: DATA STRUCTURES FOR MATH MODE X ETEX §730

730. Math formulas can also contain instructions like \textstyle that override TEX’s normal style rules.
A style node is inserted into the data structure to record such instructions; it is three words long, so it
is considered a node instead of a noad. The subtype is either display style or text style or script style or
script script style . The second and third words of a style node are not used, but they are present because a
choice node is converted to a style node .
TEX uses even numbers 0, 2, 4, 6 to encode the basic styles display style , . . . , script script style , and

adds 1 to get the “cramped” versions of these styles. This gives a numerical order that is backwards from
the convention of Appendix G in The TEXbook; i.e., a smaller style has a larger numerical value.

define style node = unset node + 1 { type of a style node }
define style node size = 3 { number of words in a style node }
define display style = 0 { subtype for \displaystyle }
define text style = 2 { subtype for \textstyle }
define script style = 4 { subtype for \scriptstyle }
define script script style = 6 { subtype for \scriptscriptstyle }
define cramped = 1 { add this to an uncramped style if you want to cramp it }

function new style (s : small number): pointer ; { create a style node }
var p: pointer ; { the new node }
begin p← get node (style node size); type (p)← style node ; subtype (p)← s; width (p)← 0;
depth (p)← 0; { the width and depth are not used }
new style ← p;
end;

731. Finally, the \mathchoice primitive creates a choice node , which has special subfields display mlist ,
text mlist , script mlist , and script script mlist pointing to the mlists for each style.

define choice node = unset node + 2 { type of a choice node }
define display mlist (#) ≡ info(#+ 1) {mlist to be used in display style }
define text mlist (#) ≡ link (#+ 1) {mlist to be used in text style }
define script mlist (#) ≡ info(#+ 2) {mlist to be used in script style }
define script script mlist (#) ≡ link (#+ 2) {mlist to be used in scriptscript style }

function new choice : pointer ; { create a choice node }
var p: pointer ; { the new node }
begin p← get node (style node size); type (p)← choice node ; subtype (p)← 0;

{ the subtype is not used }
display mlist (p)← null ; text mlist (p)← null ; script mlist (p)← null ; script script mlist (p)← null ;
new choice ← p;
end;

§732 X ETEX PART 34: DATA STRUCTURES FOR MATH MODE 311

732. Let’s consider now the previously unwritten part of show node list that displays the things that can
only be present in mlists; this program illustrates how to access the data structures just defined.
In the context of the following program, p points to a node or noad that should be displayed, and the

current string contains the “recursion history” that leads to this point. The recursion history consists of a
dot for each outer level in which p is subsidiary to some node, or in which p is subsidiary to the nucleus
field of some noad; the dot is replaced by ‘_’ or ‘^’ or ‘/’ or ‘\’ if p is descended from the subscr or supscr
or denominator or numerator fields of noads. For example, the current string would be ‘.^._/’ if p points
to the ord noad for x in the (ridiculous) formula ‘$\sqrt{a^{\mathinner{b_{c\over x+y}}}}$’.

⟨Cases of show node list that arise in mlists only 732 ⟩ ≡
style node : print style (subtype (p));
choice node : ⟨Display choice node p 737 ⟩;
ord noad , op noad , bin noad , rel noad , open noad , close noad , punct noad ,

inner noad , radical noad , over noad , under noad , vcenter noad , accent noad , left noad , right noad :
⟨Display normal noad p 738 ⟩;

fraction noad : ⟨Display fraction noad p 739 ⟩;
This code is used in section 209.

733. Here are some simple routines used in the display of noads.

⟨Declare procedures needed for displaying the elements of mlists 733 ⟩ ≡
procedure print fam and char (p : pointer); { prints family and character }

var c: integer ;
begin print esc("fam"); print int (fam (p)mod ˝100); print char ("␣");
c← (cast to ushort (character (p)) + ((plane and fam field (p) div ˝100) ∗ ˝10000));
if c < ˝10000 then print ASCII (c)
else print char (c); { non-Plane 0 Unicodes can’t be sent through print ASCII }
end;

procedure print delimiter (p : pointer); { prints a delimiter as 24-bit hex value }
var a: integer ; { accumulator }
begin a← small fam (p) ∗ 256 + qo(small char (p));
a← a ∗ ˝1000+ large fam (p) ∗ 256 + qo(large char (p));
if a < 0 then print int (a) { this should never happen }
else print hex (a);
end;

See also sections 734 and 736.

This code is used in section 205.

312 PART 34: DATA STRUCTURES FOR MATH MODE X ETEX §734

734. The next subroutine will descend to another level of recursion when a subsidiary mlist needs to be
displayed. The parameter c indicates what character is to become part of the recursion history. An empty
mlist is distinguished from a field with math type (p) = empty , because these are not equivalent (as explained
above).

⟨Declare procedures needed for displaying the elements of mlists 733 ⟩ +≡
procedure show info ; forward ; { show node list (info(temp ptr)) }
procedure print subsidiary data (p : pointer ; c : ASCII code); { display a noad field }

begin if cur length ≥ depth threshold then
begin if math type (p) ̸= empty then print ("␣[]");
end

else begin append char (c); { include c in the recursion history }
temp ptr ← p; { prepare for show info if recursion is needed }
case math type (p) of
math char : begin print ln ; print current string ; print fam and char (p);

end;
sub box : show info ; { recursive call }
sub mlist : if info(p) = null then

begin print ln ; print current string ; print ("{}");
end

else show info ; { recursive call }
othercases do nothing { empty }
endcases;
flush char ; { remove c from the recursion history }
end;

end;

735. The inelegant introduction of show info in the code above seems better than the alternative of using
Pascal’s strange forward declaration for a procedure with parameters. The Pascal convention about dropping
parameters from a post-forward procedure is, frankly, so intolerable to the author of TEX that he would
rather stoop to communication via a global temporary variable. (A similar stoopidity occurred with respect
to hlist out and vlist out above, and it will occur with respect to mlist to hlist below.)

procedure show info ; { the reader will kindly forgive this }
begin show node list (info(temp ptr));
end;

736. ⟨Declare procedures needed for displaying the elements of mlists 733 ⟩ +≡
procedure print style (c : integer);

begin case c div 2 of
0: print esc("displaystyle"); { display style = 0 }
1: print esc("textstyle"); { text style = 2 }
2: print esc("scriptstyle"); { script style = 4 }
3: print esc("scriptscriptstyle"); { script script style = 6 }
othercases print ("Unknown␣style!")
endcases;
end;

§737 X ETEX PART 34: DATA STRUCTURES FOR MATH MODE 313

737. ⟨Display choice node p 737 ⟩ ≡
begin print esc("mathchoice"); append char ("D"); show node list (display mlist (p)); flush char ;
append char ("T"); show node list (text mlist (p)); flush char ; append char ("S");
show node list (script mlist (p)); flush char ; append char ("s"); show node list (script script mlist (p));
flush char ;
end

This code is used in section 732.

738. ⟨Display normal noad p 738 ⟩ ≡
begin case type (p) of
ord noad : print esc("mathord");
op noad : print esc("mathop");
bin noad : print esc("mathbin");
rel noad : print esc("mathrel");
open noad : print esc("mathopen");
close noad : print esc("mathclose");
punct noad : print esc("mathpunct");
inner noad : print esc("mathinner");
over noad : print esc("overline");
under noad : print esc("underline");
vcenter noad : print esc("vcenter");
radical noad : begin print esc("radical"); print delimiter (left delimiter (p));
end;

accent noad : begin print esc("accent"); print fam and char (accent chr (p));
end;

left noad : begin print esc("left"); print delimiter (delimiter (p));
end;

right noad : begin if subtype (p) = normal then print esc("right")
else print esc("middle");
print delimiter (delimiter (p));
end;

end;
if type (p) < left noad then
begin if subtype (p) ̸= normal then

if subtype (p) = limits then print esc("limits")
else print esc("nolimits");

print subsidiary data (nucleus (p), ".");
end;

print subsidiary data (supscr (p), "^"); print subsidiary data (subscr (p), "_");
end

This code is used in section 732.

314 PART 34: DATA STRUCTURES FOR MATH MODE X ETEX §739

739. ⟨Display fraction noad p 739 ⟩ ≡
begin print esc("fraction,␣thickness␣");
if thickness (p) = default code then print ("=␣default")
else print scaled (thickness (p));
if (small fam (left delimiter (p)) ̸= 0)∨ (small char (left delimiter (p)) ̸= min quarterword) ∨

(large fam (left delimiter (p)) ̸= 0) ∨ (large char (left delimiter (p)) ̸= min quarterword) then
begin print (",␣left−delimiter␣"); print delimiter (left delimiter (p));
end;
if (small fam (right delimiter (p)) ̸= 0) ∨ (small char (right delimiter (p)) ̸= min quarterword) ∨

(large fam (right delimiter (p)) ̸= 0) ∨ (large char (right delimiter (p)) ̸= min quarterword) then
begin print (",␣right−delimiter␣"); print delimiter (right delimiter (p));
end;

print subsidiary data (numerator (p), "\"); print subsidiary data (denominator (p), "/");
end

This code is used in section 732.

740. That which can be displayed can also be destroyed.

⟨Cases of flush node list that arise in mlists only 740 ⟩ ≡
style node : begin free node (p, style node size); goto done ;

end;
choice node : begin flush node list (display mlist (p)); flush node list (text mlist (p));
flush node list (script mlist (p)); flush node list (script script mlist (p)); free node (p, style node size);
goto done ;
end;

ord noad , op noad , bin noad , rel noad , open noad , close noad , punct noad , inner noad , radical noad ,
over noad , under noad , vcenter noad , accent noad :

begin if math type (nucleus (p)) ≥ sub box then flush node list (info(nucleus (p)));
if math type (supscr (p)) ≥ sub box then flush node list (info(supscr (p)));
if math type (subscr (p)) ≥ sub box then flush node list (info(subscr (p)));
if type (p) = radical noad then free node (p, radical noad size)
else if type (p) = accent noad then free node (p, accent noad size)
else free node (p,noad size);

goto done ;
end;

left noad , right noad : begin free node (p,noad size); goto done ;
end;

fraction noad : begin flush node list (info(numerator (p))); flush node list (info(denominator (p)));
free node (p, fraction noad size); goto done ;
end;

This code is used in section 228.

§741 X ETEX PART 35: SUBROUTINES FOR MATH MODE 315

741. Subroutines for math mode. In order to convert mlists to hlists, i.e., noads to nodes, we need
several subroutines that are conveniently dealt with now.
Let us first introduce the macros that make it easy to get at the parameters and other font information. A

size code, which is a multiple of 16, is added to a family number to get an index into the table of internal font
numbers for each combination of family and size. (Be alert: Size codes get larger as the type gets smaller.)

⟨Basic printing procedures 57 ⟩ +≡
procedure print size (s : integer);
begin if s = text size then print esc("textfont")
else if s = script size then print esc("scriptfont")
else print esc("scriptscriptfont");

end;

316 PART 35: SUBROUTINES FOR MATH MODE X ETEX §742

742. Before an mlist is converted to an hlist, TEX makes sure that the fonts in family 2 have enough
parameters to be math-symbol fonts, and that the fonts in family 3 have enough parameters to be math-
extension fonts. The math-symbol parameters are referred to by using the following macros, which take a
size code as their parameter; for example, num1 (cur size) gives the value of the num1 parameter for the
current size.
NB: the access functions here must all put the font # into /f/ for mathsy().
The accessors are defined with define mathsy accessor (NAME)(fontdimen − number)(NAME) because I

can’t see how to only give the name once, with WEB’s limited macro capabilities. This seems a bit ugly,
but it works.

define total mathsy params = 22
{ the following are OpenType MATH constant indices for use with OT math fonts }

define scriptPercentScaleDown = 0
define scriptScriptPercentScaleDown = 1
define delimitedSubFormulaMinHeight = 2
define displayOperatorMinHeight = 3
define mathLeading = 4
define firstMathValueRecord = mathLeading
define axisHeight = 5
define accentBaseHeight = 6
define flattenedAccentBaseHeight = 7
define subscriptShiftDown = 8
define subscriptTopMax = 9
define subscriptBaselineDropMin = 10
define superscriptShiftUp = 11
define superscriptShiftUpCramped = 12
define superscriptBottomMin = 13
define superscriptBaselineDropMax = 14
define subSuperscriptGapMin = 15
define superscriptBottomMaxWithSubscript = 16
define spaceAfterScript = 17
define upperLimitGapMin = 18
define upperLimitBaselineRiseMin = 19
define lowerLimitGapMin = 20
define lowerLimitBaselineDropMin = 21
define stackTopShiftUp = 22
define stackTopDisplayStyleShiftUp = 23
define stackBottomShiftDown = 24
define stackBottomDisplayStyleShiftDown = 25
define stackGapMin = 26
define stackDisplayStyleGapMin = 27
define stretchStackTopShiftUp = 28
define stretchStackBottomShiftDown = 29
define stretchStackGapAboveMin = 30
define stretchStackGapBelowMin = 31
define fractionNumeratorShiftUp = 32
define fractionNumeratorDisplayStyleShiftUp = 33
define fractionDenominatorShiftDown = 34
define fractionDenominatorDisplayStyleShiftDown = 35
define fractionNumeratorGapMin = 36
define fractionNumDisplayStyleGapMin = 37
define fractionRuleThickness = 38
define fractionDenominatorGapMin = 39

§742 X ETEX PART 35: SUBROUTINES FOR MATH MODE 317

define fractionDenomDisplayStyleGapMin = 40
define skewedFractionHorizontalGap = 41
define skewedFractionVerticalGap = 42
define overbarVerticalGap = 43
define overbarRuleThickness = 44
define overbarExtraAscender = 45
define underbarVerticalGap = 46
define underbarRuleThickness = 47
define underbarExtraDescender = 48
define radicalVerticalGap = 49
define radicalDisplayStyleVerticalGap = 50
define radicalRuleThickness = 51
define radicalExtraAscender = 52
define radicalKernBeforeDegree = 53
define radicalKernAfterDegree = 54
define lastMathValueRecord = radicalKernAfterDegree
define radicalDegreeBottomRaisePercent = 55
define lastMathConstant = radicalDegreeBottomRaisePercent
define mathsy (#) ≡ font info [#+ param base [f]].sc
define define mathsy end (#) ≡ #← rval ;

end
define define mathsy body (#) ≡

var f : integer ; rval : scaled ;
begin f ← fam fnt (2 + size code);
if is new mathfont (f) then rval ← get native mathsy param (f, #)
else rval ← mathsy (#);
define mathsy end

define define mathsy accessor (#) ≡
function #(size code : integer): scaled ; define mathsy body

define mathsy accessor (math x height)(5)(math x height);
define mathsy accessor (math quad)(6)(math quad); define mathsy accessor (num1)(8)(num1);
define mathsy accessor (num2)(9)(num2); define mathsy accessor (num3)(10)(num3);
define mathsy accessor (denom1)(11)(denom1); define mathsy accessor (denom2)(12)(denom2);
define mathsy accessor (sup1)(13)(sup1); define mathsy accessor (sup2)(14)(sup2);
define mathsy accessor (sup3)(15)(sup3); define mathsy accessor (sub1)(16)(sub1);
define mathsy accessor (sub2)(17)(sub2); define mathsy accessor (sup drop)(18)(sup drop);
define mathsy accessor (sub drop)(19)(sub drop); define mathsy accessor (delim1)(20)(delim1);
define mathsy accessor (delim2)(21)(delim2); define mathsy accessor (axis height)(22)(axis height);

318 PART 35: SUBROUTINES FOR MATH MODE X ETEX §743

743. The math-extension parameters have similar macros, but the size code is omitted (since it is always
cur size when we refer to such parameters).

define total mathex params = 13
define mathex (#) ≡ font info [#+ param base [f]].sc
define define mathex end (#) ≡ #← rval ;

end
define define mathex body (#) ≡

var f : integer ; rval : scaled ;
begin f ← fam fnt (3 + cur size);
if is new mathfont (f) then rval ← get native mathex param (f, #)
else rval ← mathex (#);
define mathex end

define define mathex accessor (#) ≡
function #: scaled ; define mathex body

define mathex accessor (default rule thickness)(8)(default rule thickness);
define mathex accessor (big op spacing1)(9)(big op spacing1);
define mathex accessor (big op spacing2)(10)(big op spacing2);
define mathex accessor (big op spacing3)(11)(big op spacing3);
define mathex accessor (big op spacing4)(12)(big op spacing4);
define mathex accessor (big op spacing5)(13)(big op spacing5);

§744 X ETEX PART 35: SUBROUTINES FOR MATH MODE 319

744. Native font support requires these additional subroutines.
new native word node creates the node, but does not actually set its metrics; call set native metrics (node)

if that is required.

⟨Declare subroutines for new character 616 ⟩ +≡
function new native word node (f : internal font number ; n : integer): pointer ;

var l: integer ; q: pointer ;
begin l← native node size+(n∗sizeof (UTF16 code)+sizeof (memory word)−1)divsizeof (memory word);
q ← get node (l); type (q)← whatsit node ;
if XeTeX generate actual text en then subtype (q)← native word node AT
else subtype (q)← native word node ;
native size (q)← l; native font (q)← f ; native length (q)← n; native glyph count (q)← 0;
native glyph info ptr (q)← null ptr ; new native word node ← q;
end;

function new native character (f : internal font number ; c : UnicodeScalar): pointer ;
var p: pointer ; i, len : integer ;
begin if font mapping [f] ̸= 0 then
begin if (c > ˝FFFF) then str room (2)
else str room (1);
append char (c);
len ← apply mapping (font mapping [f], addressof (str pool [str start macro(str ptr)]), cur length);
pool ptr ← str start macro(str ptr); { flush the string, as we’ll be using the mapped text instead }
i← 0;
while i < len do
begin if (mapped text [i] ≥ ˝D800) ∧ (mapped text [i] < ˝DC00) then
begin c← (mapped text [i]− ˝D800) ∗ 1024 +mapped text [i+ 1]− ˝DC00+ ˝10000;
if map char to glyph (f, c) = 0 then
begin char warning (f, c);
end;

i← i+ 2;
end

else begin if map char to glyph (f,mapped text [i]) = 0 then
begin char warning (f,mapped text [i]);
end;

i← i+ 1;
end;

end;
p← new native word node (f, len);
for i← 0 to len − 1 do
begin set native char (p, i,mapped text [i]);
end

end
else begin if tracing lost chars > 0 then

if map char to glyph (f, c) = 0 then
begin char warning (f, c);
end;

p← get node (native node size + 1); type (p)← whatsit node ; subtype (p)← native word node ;
native size (p)← native node size + 1; native glyph count (p)← 0; native glyph info ptr (p)← null ptr ;
native font (p)← f ;
if c > ˝FFFF then

begin native length (p)← 2; set native char (p, 0, (c− ˝10000) div 1024 + ˝D800);
set native char (p, 1, (c− ˝10000)mod 1024 + ˝DC00);
end

320 PART 35: SUBROUTINES FOR MATH MODE X ETEX §744

else begin native length (p)← 1; set native char (p, 0, c);
end;

end;
set native metrics (p,XeTeX use glyph metrics); new native character ← p;
end;

procedure font feature warning (featureNameP : void pointer ; featLen : integer ;
settingNameP : void pointer ; setLen : integer);

var i: integer ;
begin begin diagnostic ; print nl ("Unknown␣");
if setLen > 0 then
begin print ("selector␣`"); print utf8 str (settingNameP , setLen); print ("´␣for␣");
end;

print ("feature␣`"); print utf8 str (featureNameP , featLen); print ("´␣in␣font␣`"); i← 1;
while ord (name of file [i]) ̸= 0 do
begin print visible char (name of file [i]); { this is already UTF-8 }
incr (i);
end;

print ("´."); end diagnostic(false);
end;

procedure font mapping warning (mappingNameP : void pointer ; mappingNameLen : integer ;
warningType : integer); { 0: just logging; 1: file not found; 2: can’t load }

var i: integer ;
begin begin diagnostic ;
if warningType = 0 then print nl ("Loaded␣mapping␣`")
else print nl ("Font␣mapping␣`");
print utf8 str (mappingNameP ,mappingNameLen); print ("´␣for␣font␣`"); i← 1;
while ord (name of file [i]) ̸= 0 do
begin print visible char (name of file [i]); { this is already UTF-8 }
incr (i);
end;

case warningType of
1: print ("´␣not␣found.");
2: begin print ("´␣not␣usable;"); print nl ("bad␣mapping␣file␣or␣incorrect␣mapping␣type.");
end;

othercases print ("´.")
endcases; end diagnostic(false);
end;

procedure graphite warning ;
var i: integer ;
begin begin diagnostic ; print nl ("Font␣`"); i← 1;
while ord (name of file [i]) ̸= 0 do
begin print visible char (name of file [i]); { this is already UTF-8 }
incr (i);
end;

print ("´␣does␣not␣support␣Graphite.␣Trying␣OpenType␣layout␣instead."); end diagnostic(false);
end;

function load native font (u : pointer ; nom , aire : str number ; s : scaled): internal font number ;
label done ;
const first math fontdimen = 10;
var k,num font dimens : integer ; font engine : void pointer ;

{ really an CFDictionaryRef or XeTeXLayoutEngine }
actual size : scaled ; { s converted to real size, if it was negative }

§744 X ETEX PART 35: SUBROUTINES FOR MATH MODE 321

p: pointer ; { for temporary native char node we’ll create }
ascent , descent , font slant , x ht , cap ht : scaled ; f : internal font number ; full name : str number ;

begin { on entry here, the full name is packed into name of file in UTF8 form }
load native font ← null font ; font engine ← find native font (name of file + 1, s);
if font engine = 0 then goto done ;
if s ≥ 0 then actual size ← s
else begin if (s ̸= −1000) then actual size ← xn over d (loaded font design size ,−s, 1000)
else actual size ← loaded font design size ;
end; { look again to see if the font is already loaded, now that we know its canonical name }

str room (name length);
for k ← 1 to name length do append char (name of file [k]);
full name ← make string ; { not slow make string because we’ll flush it if the font was already loaded }
for f ← font base + 1 to font ptr do
if (font area [f] = native font type flag)∧str eq str (font name [f], full name)∧(font size [f] = actual size)

then
begin release font engine (font engine ,native font type flag); flush string ; load native font ← f ;
goto done ;
end;

if (native font type flag = otgr font flag) ∧ isOpenTypeMathFont (font engine) then
num font dimens ← first math fontdimen + lastMathConstant

else num font dimens ← 8;
if (font ptr = font max) ∨ (fmem ptr + num font dimens > font mem size) then
begin ⟨Apologize for not loading the font, goto done 602 ⟩;
end; { we’ve found a valid installed font, and have room }

incr (font ptr); font area [font ptr]← native font type flag ;
{ set by find native font to either aat font flag or ot font flag }

{ store the canonical name }
font name [font ptr]← full name ; font check [font ptr].b0 ← 0; font check [font ptr].b1 ← 0;
font check [font ptr].b2 ← 0; font check [font ptr].b3 ← 0; font glue [font ptr]← null ;
font dsize [font ptr]← loaded font design size ; font size [font ptr]← actual size ;
if (native font type flag = aat font flag) then
begin aat get font metrics (font engine , addressof (ascent), addressof (descent), addressof (x ht),

addressof (cap ht), addressof (font slant))
end

else begin ot get font metrics (font engine , addressof (ascent), addressof (descent), addressof (x ht),
addressof (cap ht), addressof (font slant));

end;
height base [font ptr]← ascent ; depth base [font ptr]← −descent ;
font params [font ptr]← num font dimens ;

{we add an extra \fontdimen8 ← cap height ; then OT math fonts have a bunch more }
font bc [font ptr]← 0; font ec [font ptr]← 65535; font used [font ptr]← false ;
hyphen char [font ptr]← default hyphen char ; skew char [font ptr]← default skew char ;
param base [font ptr]← fmem ptr − 1; font layout engine [font ptr]← font engine ;
font mapping [font ptr]← 0; { don’t use the mapping, if any, when measuring space here }
font letter space [font ptr]← loaded font letter space ;

{measure the width of the space character and set up font parameters }
p← new native character (font ptr , "␣"); s← width (p) + loaded font letter space ;
free node (p,native size (p)); font info [fmem ptr].sc ← font slant ; { slant }
incr (fmem ptr); font info [fmem ptr].sc ← s; { space = width of space character }
incr (fmem ptr); font info [fmem ptr].sc ← s div 2; { space stretch = 1/2 * space }
incr (fmem ptr); font info [fmem ptr].sc ← s div 3; { space shrink = 1/3 * space }
incr (fmem ptr); font info [fmem ptr].sc ← x ht ; { x height }

322 PART 35: SUBROUTINES FOR MATH MODE X ETEX §744

incr (fmem ptr); font info [fmem ptr].sc ← font size [font ptr]; { quad = font size }
incr (fmem ptr); font info [fmem ptr].sc ← s div 3; { extra space = 1/3 * space }
incr (fmem ptr); font info [fmem ptr].sc ← cap ht ; { cap height }
incr (fmem ptr);
if num font dimens = first math fontdimen + lastMathConstant then
begin font info [fmem ptr].int ← num font dimens ;

{ \fontdimen9 ← number of assigned fontdimens }
incr (fmem ptr);
for k ← 0 to lastMathConstant do

begin font info [fmem ptr].sc ← get ot math constant (font ptr , k); incr (fmem ptr);
end;

end;
font mapping [font ptr]← loaded font mapping ; font flags [font ptr]← loaded font flags ;
load native font ← font ptr ;

done : end;
procedure do locale linebreaks (s : integer ; len : integer);
var offs , prevOffs , i: integer ; use penalty , use skip : boolean ;
begin if (XeTeX linebreak locale = 0) ∨ (len = 1) then
begin link (tail)← new native word node (main f , len); tail ← link (tail);
for i← 0 to len − 1 do set native char (tail , i, native text [s+ i]);
set native metrics (tail ,XeTeX use glyph metrics);
end

else begin use skip ← XeTeX linebreak skip ̸= zero glue ;
use penalty ← XeTeX linebreak penalty ̸= 0 ∨ ¬use skip ;
linebreak start (main f ,XeTeX linebreak locale ,native text + s, len); offs ← 0;
repeat prevOffs ← offs ; offs ← linebreak next ;
if offs > 0 then

begin if prevOffs ̸= 0 then
begin if use penalty then tail append (new penalty (XeTeX linebreak penalty));
if use skip then tail append (new param glue (XeTeX linebreak skip code));
end;

link (tail)← new native word node (main f , offs − prevOffs); tail ← link (tail);
for i← prevOffs to offs − 1 do set native char (tail , i− prevOffs ,native text [s+ i]);
set native metrics (tail ,XeTeX use glyph metrics);
end;

until offs < 0;
end

end;
procedure bad utf8 warning ;
begin begin diagnostic ; print nl ("Invalid␣UTF−8␣byte␣or␣sequence");
if terminal input then print ("␣in␣terminal␣input")
else begin print ("␣at␣line␣"); print int (line);
end;

print ("␣replaced␣by␣U+FFFD."); end diagnostic(false);
end;

function get input normalization state : integer ;
begin if eqtb = nil then get input normalization state ← 0 { may be called before eqtb is initialized }
else get input normalization state ← XeTeX input normalization state ;
end;

function get tracing fonts state : integer ;
begin get tracing fonts state ← XeTeX tracing fonts state ;
end;

§745 X ETEX PART 35: SUBROUTINES FOR MATH MODE 323

745. We also need to compute the change in style between mlists and their subsidiaries. The following
macros define the subsidiary style for an overlined nucleus (cramped style), for a subscript or a superscript
(sub style or sup style), or for a numerator or denominator (num style or denom style).

define cramped style (#) ≡ 2 ∗ (# div 2) + cramped { cramp the style }
define sub style (#) ≡ 2 ∗ (# div 4) + script style + cramped { smaller and cramped }
define sup style (#) ≡ 2 ∗ (# div 4) + script style + (#mod 2) { smaller }
define num style (#) ≡ #+ 2− 2 ∗ (# div 6) { smaller unless already script-script }
define denom style (#) ≡ 2 ∗ (# div 2) + cramped + 2− 2 ∗ (# div 6) { smaller, cramped }

746. When the style changes, the following piece of program computes associated information:

⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩ ≡
begin if cur style < script style then cur size ← text size
else cur size ← script size ∗ ((cur style − text style) div 2);
cur mu ← x over n (math quad (cur size), 18);
end

This code is used in sections 763, 769, 770, 773, 798, 805, 805, 808, 810, and 811.

747. Here is a function that returns a pointer to a rule node having a given thickness t. The rule will
extend horizontally to the boundary of the vlist that eventually contains it.

function fraction rule (t : scaled): pointer ; { construct the bar for a fraction }
var p: pointer ; { the new node }
begin p← new rule ; height (p)← t; depth (p)← 0; fraction rule ← p;
end;

748. The overbar function returns a pointer to a vlist box that consists of a given box b, above which has
been placed a kern of height k under a fraction rule of thickness t under additional space of height t.

function overbar (b : pointer ; k, t : scaled): pointer ;
var p, q: pointer ; { nodes being constructed }
begin p← new kern (k); link (p)← b; q ← fraction rule (t); link (q)← p; p← new kern (t); link (p)← q;
overbar ← vpack (p,natural);
end;

324 PART 35: SUBROUTINES FOR MATH MODE X ETEX §749

749. The var delimiter function, which finds or constructs a sufficiently large delimiter, is the most
interesting of the auxiliary functions that currently concern us. Given a pointer d to a delimiter field in
some noad, together with a size code s and a vertical distance v, this function returns a pointer to a box that
contains the smallest variant of d whose height plus depth is v or more. (And if no variant is large enough,
it returns the largest available variant.) In particular, this routine will construct arbitrarily large delimiters
from extensible components, if d leads to such characters.
The value returned is a box whose shift amount has been set so that the box is vertically centered with

respect to the axis in the given size. If a built-up symbol is returned, the height of the box before shifting
will be the height of its topmost component.

⟨Declare subprocedures for var delimiter 752 ⟩
procedure stack glyph into box (b : pointer ; f : internal font number ; g : integer);

var p, q: pointer ;
begin p← get node (glyph node size); type (p)← whatsit node ; subtype (p)← glyph node ;
native font (p)← f ; native glyph (p)← g; set native glyph metrics (p, 1);
if type (b) = hlist node then
begin q ← list ptr (b);
if q = null then list ptr (b)← p
else begin while link (q) ̸= null do q ← link (q);
link (q)← p;
if (height (b) < height (p)) then height (b)← height (p);
if (depth (b) < depth (p)) then depth (b)← depth (p);
end;

end
else begin link (p)← list ptr (b); list ptr (b)← p; height (b)← height (p);
if (width (b) < width (p)) then width (b)← width (p);
end;

end;
procedure stack glue into box (b : pointer ; min ,max : scaled);

var p, q: pointer ;
begin q ← new spec(zero glue); width (q)← min ; stretch (q)← max −min ; p← new glue (q);
if type (b) = hlist node then
begin q ← list ptr (b);
if q = null then list ptr (b)← p
else begin while link (q) ̸= null do q ← link (q);
link (q)← p;
end;

end
else begin link (p)← list ptr (b); list ptr (b)← p; height (b)← height (p); width (b)← width (p);
end;

end;
function build opentype assembly (f : internal font number ; a : void pointer ; s : scaled ; horiz : boolean):

pointer ;
{ return a box with height/width at least s, using font f , with glyph assembly info from a }

var b: pointer ; { the box we’re constructing }
n: integer ; { the number of repetitions of each extender }
i, j: integer ; { indexes }
g: integer ; { glyph code }
p: pointer ; { temp pointer }
s max , o, oo , prev o ,min o : scaled ; no extenders : boolean ; nat , str : scaled ; { natural size, stretch }

begin b← new null box ;
if horiz then type (b)← hlist node
else type (b)← vlist node ; { figure out how many repeats of each extender to use }

§749 X ETEX PART 35: SUBROUTINES FOR MATH MODE 325

n← −1; no extenders ← true ; min o ← ot min connector overlap(f);
repeat n← n+ 1; { calc max possible size with this number of extenders }
s max ← 0; prev o ← 0;
for i← 0 to ot part count (a)− 1 do

begin if ot part is extender (a, i) then
begin no extenders ← false ;
for j ← 1 to n do
begin o← ot part start connector (f, a, i);
if min o < o then o← min o ;
if prev o < o then o← prev o ;
s max ← s max − o+ ot part full advance (f, a, i); prev o ← ot part end connector (f, a, i);
end

end
else begin o← ot part start connector (f, a, i);
if min o < o then o← min o ;
if prev o < o then o← prev o ;
s max ← s max − o+ ot part full advance (f, a, i); prev o ← ot part end connector (f, a, i);
end;

end;
until (s max ≥ s) ∨ no extenders ;

{ assemble box using n copies of each extender, with appropriate glue wherever an overlap occurs }
prev o ← 0;
for i← 0 to ot part count (a)− 1 do
begin if ot part is extender (a, i) then

begin for j ← 1 to n do
begin o← ot part start connector (f, a, i);
if prev o < o then o← prev o ;
oo ← o; {max overlap }
if min o < o then o← min o ;
if oo > 0 then stack glue into box (b,−oo ,−o);
g ← ot part glyph (a, i); stack glyph into box (b, f , g); prev o ← ot part end connector (f, a, i);
end

end
else begin o← ot part start connector (f, a, i);
if prev o < o then o← prev o ;
oo ← o; {max overlap }
if min o < o then o← min o ;
if oo > 0 then stack glue into box (b,−oo ,−o);
g ← ot part glyph (a, i); stack glyph into box (b, f , g); prev o ← ot part end connector (f, a, i);
end;

end; { find natural size and total stretch of the box }
p← list ptr (b); nat ← 0; str ← 0;
while p ̸= null do
begin if type (p) = whatsit node then

begin if horiz then nat ← nat + width (p)
else nat ← nat + height (p) + depth (p);
end

else if type (p) = glue node then
begin nat ← nat + width (glue ptr (p)); str ← str + stretch (glue ptr (p));
end;

p← link (p);
end; { set glue so as to stretch the connections if needed }

326 PART 35: SUBROUTINES FOR MATH MODE X ETEX §749

o← 0;
if (s > nat) ∧ (str > 0) then
begin o← (s− nat); { don’t stretch more than str }
if (o > str) then o← str ;
glue order (b)← normal ; glue sign (b)← stretching ; glue set (b)← unfloat (o/str);
if horiz then width (b)← nat + round (str ∗ float (glue set (b)))
else height (b)← nat + round (str ∗ float (glue set (b)));
end

else if horiz then width (b)← nat
else height (b)← nat ;

build opentype assembly ← b;
end;

function var delimiter (d : pointer ; s : integer ; v : scaled): pointer ;
label found , continue ;
var b: pointer ; { the box that will be constructed }
ot assembly ptr : void pointer ; f, g: internal font number ; { best-so-far and tentative font codes }
c, x, y: quarterword ; { best-so-far and tentative character codes }
m,n: integer ; { the number of extensible pieces }
u: scaled ; { height-plus-depth of a tentative character }
w: scaled ; { largest height-plus-depth so far }
q: four quarters ; { character info }
hd : eight bits ; { height-depth byte }
r: four quarters ; { extensible pieces }
z: integer ; { runs through font family members }
large attempt : boolean ; { are we trying the “large” variant? }

begin f ← null font ; w ← 0; large attempt ← false ; z ← small fam (d); x← small char (d);
ot assembly ptr ← nil;
loop begin ⟨Look at the variants of (z, x); set f and c whenever a better character is found; goto

found as soon as a large enough variant is encountered 750 ⟩;
if large attempt then goto found ; { there were none large enough }
large attempt ← true ; z ← large fam (d); x← large char (d);
end;

found : if f ̸= null font then
begin if ¬is ot font (f) then ⟨Make variable b point to a box for (f, c) 753 ⟩
else begin { for OT fonts, c is the glyph ID to use }
if ot assembly ptr ̸= nil then b← build opentype assembly (f, ot assembly ptr , v, 0)
else begin b← new null box ; type (b)← vlist node ; list ptr (b)← get node (glyph node size);
type (list ptr (b))← whatsit node ; subtype (list ptr (b))← glyph node ; native font (list ptr (b))← f ;
native glyph (list ptr (b))← c; set native glyph metrics (list ptr (b), 1);
width (b)← width (list ptr (b)); height (b)← height (list ptr (b)); depth (b)← depth (list ptr (b));
end

end
end

else begin b← new null box ; width (b)← null delimiter space ;
{ use this width if no delimiter was found }

end;
shift amount (b)← half (height (b)− depth (b))− axis height (s); free ot assembly (ot assembly ptr);
var delimiter ← b;
end;

§750 X ETEX PART 35: SUBROUTINES FOR MATH MODE 327

750. The search process is complicated slightly by the facts that some of the characters might not be
present in some of the fonts, and they might not be probed in increasing order of height.

⟨Look at the variants of (z, x); set f and c whenever a better character is found; goto found as soon as a
large enough variant is encountered 750 ⟩ ≡

if (z ̸= 0) ∨ (x ̸= min quarterword) then
begin z ← z + s+ script size ;
repeat z ← z − script size ; g ← fam fnt (z);
if g ̸= null font then ⟨Look at the list of characters starting with x in font g; set f and c whenever

a better character is found; goto found as soon as a large enough variant is encountered 751 ⟩;
until z < script size ;
end

This code is used in section 749.

751. ⟨Look at the list of characters starting with x in font g; set f and c whenever a better character is
found; goto found as soon as a large enough variant is encountered 751 ⟩ ≡

if is ot font (g) then
begin x← map char to glyph (g, x); f ← g; c← x; w ← 0; n← 0;
repeat y ← get ot math variant (g, x, n, addressof (u), 0);
if u > w then
begin c← y; w ← u;
if u ≥ v then goto found ;
end;

n← n+ 1;
until u < 0; { if we get here, then we didn’t find a big enough glyph; check if the char is extensible }
ot assembly ptr ← get ot assembly ptr (g, x, 0);
if ot assembly ptr ̸= nil then goto found ;
end

else begin y ← x;
if (qo(y) ≥ font bc [g]) ∧ (qo(y) ≤ font ec [g]) then
begin continue : q ← char info(g)(y);
if char exists (q) then

begin if char tag (q) = ext tag then
begin f ← g; c← y; goto found ;
end;

hd ← height depth (q); u← char height (g)(hd) + char depth (g)(hd);
if u > w then
begin f ← g; c← y; w ← u;
if u ≥ v then goto found ;
end;

if char tag (q) = list tag then
begin y ← rem byte (q); goto continue ;
end;

end;
end;

end

This code is used in section 750.

328 PART 35: SUBROUTINES FOR MATH MODE X ETEX §752

752. Here is a subroutine that creates a new box, whose list contains a single character, and whose width
includes the italic correction for that character. The height or depth of the box will be negative, if the height
or depth of the character is negative; thus, this routine may deliver a slightly different result than hpack
would produce.

⟨Declare subprocedures for var delimiter 752 ⟩ ≡
function char box (f : internal font number ; c : integer): pointer ;

var q: four quarters ; hd : eight bits ; { height depth byte }
b, p: pointer ; { the new box and its character node }

begin if is native font (f) then
begin b← new null box ; p← new native character (f, c); list ptr (b)← p; height (b)← height (p);
width (b)← width (p);
if depth (p) < 0 then depth (b)← 0
else depth (b)← depth (p);
end

else begin q ← char info(f)(c); hd ← height depth (q); b← new null box ;
width (b)← char width (f)(q) + char italic(f)(q); height (b)← char height (f)(hd);
depth (b)← char depth (f)(hd); p← get avail ; character (p)← c; font (p)← f ;
end;

list ptr (b)← p; char box ← b;
end;

See also sections 754 and 755.

This code is used in section 749.

753. When the following code is executed, char tag (q) will be equal to ext tag if and only if a built-up
symbol is supposed to be returned.

⟨Make variable b point to a box for (f, c) 753 ⟩ ≡
if char tag (q) = ext tag then
⟨Construct an extensible character in a new box b, using recipe rem byte (q) and font f 756 ⟩

else b← char box (f, c)

This code is used in section 749.

754. When we build an extensible character, it’s handy to have the following subroutine, which puts a
given character on top of the characters already in box b:

⟨Declare subprocedures for var delimiter 752 ⟩ +≡
procedure stack into box (b : pointer ; f : internal font number ; c : quarterword);

var p: pointer ; { new node placed into b }
begin p← char box (f, c); link (p)← list ptr (b); list ptr (b)← p; height (b)← height (p);
end;

755. Another handy subroutine computes the height plus depth of a given character:

⟨Declare subprocedures for var delimiter 752 ⟩ +≡
function height plus depth (f : internal font number ; c : quarterword): scaled ;

var q: four quarters ; hd : eight bits ; { height depth byte }
begin q ← char info(f)(c); hd ← height depth (q);
height plus depth ← char height (f)(hd) + char depth (f)(hd);
end;

§756 X ETEX PART 35: SUBROUTINES FOR MATH MODE 329

756. ⟨Construct an extensible character in a new box b, using recipe rem byte (q) and font f 756 ⟩ ≡
begin b← new null box ; type (b)← vlist node ; r ← font info [exten base [f] + rem byte (q)].qqqq ;
⟨Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also set

width (b) 757 ⟩;
c← ext bot (r);
if c ̸= min quarterword then stack into box (b, f , c);
c← ext rep(r);
for m← 1 to n do stack into box (b, f , c);
c← ext mid (r);
if c ̸= min quarterword then
begin stack into box (b, f , c); c← ext rep(r);
for m← 1 to n do stack into box (b, f , c);
end;

c← ext top(r);
if c ̸= min quarterword then stack into box (b, f , c);
depth (b)← w − height (b);
end

This code is used in section 753.

757. The width of an extensible character is the width of the repeatable module. If this module does not
have positive height plus depth, we don’t use any copies of it, otherwise we use as few as possible (in groups
of two if there is a middle part).

⟨Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also set
width (b) 757 ⟩ ≡

c← ext rep(r); u← height plus depth (f, c); w ← 0; q ← char info(f)(c);
width (b)← char width (f)(q) + char italic(f)(q);
c← ext bot (r); if c ̸= min quarterword then w ← w + height plus depth (f, c);
c← ext mid (r); if c ̸= min quarterword then w ← w + height plus depth (f, c);
c← ext top(r); if c ̸= min quarterword then w ← w + height plus depth (f, c);
n← 0;
if u > 0 then
while w < v do
begin w ← w + u; incr (n);
if ext mid (r) ̸= min quarterword then w ← w + u;
end

This code is used in section 756.

330 PART 35: SUBROUTINES FOR MATH MODE X ETEX §758

758. The next subroutine is much simpler; it is used for numerators and denominators of fractions as well
as for displayed operators and their limits above and below. It takes a given box b and changes it so that
the new box is centered in a box of width w. The centering is done by putting \hss glue at the left and
right of the list inside b, then packaging the new box; thus, the actual box might not really be centered, if
it already contains infinite glue.
The given box might contain a single character whose italic correction has been added to the width of the

box; in this case a compensating kern is inserted.

function rebox (b : pointer ; w : scaled): pointer ;
var p: pointer ; { temporary register for list manipulation }
f : internal font number ; { font in a one-character box }
v: scaled ; {width of a character without italic correction }

begin if (width (b) ̸= w) ∧ (list ptr (b) ̸= null) then
begin if type (b) = vlist node then b← hpack (b,natural);
p← list ptr (b);
if (is char node (p)) ∧ (link (p) = null) then
begin f ← font (p); v ← char width (f)(char info(f)(character (p)));
if v ̸= width (b) then link (p)← new kern (width (b)− v);
end;

free node (b, box node size); b← new glue (ss glue); link (b)← p;
while link (p) ̸= null do p← link (p);
link (p)← new glue (ss glue); rebox ← hpack (b, w, exactly);
end

else begin width (b)← w; rebox ← b;
end;

end;

759. Here is a subroutine that creates a new glue specification from another one that is expressed in ‘mu’,
given the value of the math unit.

define mu mult (#) ≡ nx plus y (n, #, xn over d (#, f , 2́00000))

function math glue (g : pointer ; m : scaled): pointer ;
var p: pointer ; { the new glue specification }
n: integer ; { integer part of m }
f : scaled ; { fraction part of m }

begin n← x over n (m, 2́00000); f ← remainder ;
if f < 0 then
begin decr (n); f ← f + 2́00000 ;
end;

p← get node (glue spec size); width (p)← mu mult (width (g)); { convert mu to pt }
stretch order (p)← stretch order (g);
if stretch order (p) = normal then stretch (p)← mu mult (stretch (g))
else stretch (p)← stretch (g);
shrink order (p)← shrink order (g);
if shrink order (p) = normal then shrink (p)← mu mult (shrink (g))
else shrink (p)← shrink (g);
math glue ← p;
end;

§760 X ETEX PART 35: SUBROUTINES FOR MATH MODE 331

760. The math kern subroutine removes mu glue from a kern node, given the value of the math unit.

procedure math kern (p : pointer ; m : scaled);
var n: integer ; { integer part of m }
f : scaled ; { fraction part of m }

begin if subtype (p) = mu glue then
begin n← x over n (m, 2́00000); f ← remainder ;
if f < 0 then
begin decr (n); f ← f + 2́00000 ;
end;

width (p)← mu mult (width (p)); subtype (p)← explicit ;
end;

end;

761. Sometimes it is necessary to destroy an mlist. The following subroutine empties the current list,
assuming that abs (mode) = mmode .

procedure flush math ;
begin flush node list (link (head)); flush node list (incompleat noad); link (head)← null ; tail ← head ;
incompleat noad ← null ;
end;

332 PART 36: TYPESETTING MATH FORMULAS X ETEX §762

762. Typesetting math formulas. TEX’s most important routine for dealing with formulas is called
mlist to hlist . After a formula has been scanned and represented as an mlist, this routine converts it to an
hlist that can be placed into a box or incorporated into the text of a paragraph. There are three implicit
parameters, passed in global variables: cur mlist points to the first node or noad in the given mlist (and
it might be null); cur style is a style code; and mlist penalties is true if penalty nodes for potential line
breaks are to be inserted into the resulting hlist. After mlist to hlist has acted, link (temp head) points to
the translated hlist.
Since mlists can be inside mlists, the procedure is recursive. And since this is not part of TEX’s inner

loop, the program has been written in a manner that stresses compactness over efficiency.

⟨Global variables 13 ⟩ +≡
cur mlist : pointer ; { beginning of mlist to be translated }
cur style : small number ; { style code at current place in the list }
cur size : integer ; { size code corresponding to cur style }
cur mu : scaled ; { the math unit width corresponding to cur size }
mlist penalties : boolean ; { should mlist to hlist insert penalties? }

763. The recursion in mlist to hlist is due primarily to a subroutine called clean box that puts a given
noad field into a box using a given math style; mlist to hlist can call clean box , which can call mlist to hlist .

The box returned by clean box is “clean” in the sense that its shift amount is zero.

procedure mlist to hlist ; forward ;
function clean box (p : pointer ; s : small number): pointer ;
label found ;
var q: pointer ; { beginning of a list to be boxed }
save style : small number ; { cur style to be restored }
x: pointer ; { box to be returned }
r: pointer ; { temporary pointer }

begin case math type (p) of
math char : begin cur mlist ← new noad ; mem [nucleus (cur mlist)]← mem [p];
end;

sub box : begin q ← info(p); goto found ;
end;

sub mlist : cur mlist ← info(p);
othercases begin q ← new null box ; goto found ;
end

endcases;
save style ← cur style ; cur style ← s; mlist penalties ← false ;
mlist to hlist ; q ← link (temp head); { recursive call }
cur style ← save style ; { restore the style }
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;

found : if is char node (q) ∨ (q = null) then x← hpack (q, natural)
else if (link (q) = null) ∧ (type (q) ≤ vlist node) ∧ (shift amount (q) = 0) then x← q

{ it’s already clean }
else x← hpack (q, natural);
⟨ Simplify a trivial box 764 ⟩;
clean box ← x;
end;

§764 X ETEX PART 36: TYPESETTING MATH FORMULAS 333

764. Here we save memory space in a common case.

⟨ Simplify a trivial box 764 ⟩ ≡
q ← list ptr (x);
if is char node (q) then
begin r ← link (q);
if r ̸= null then
if link (r) = null then
if ¬is char node (r) then
if type (r) = kern node then { unneeded italic correction }
begin free node (r, small node size); link (q)← null ;
end;

end

This code is used in section 763.

765. It is convenient to have a procedure that converts a math char field to an “unpacked” form. The
fetch routine sets cur f , cur c , and cur i to the font code, character code, and character information bytes
of a given noad field. It also takes care of issuing error messages for nonexistent characters; in such cases,
char exists (cur i) will be false after fetch has acted, and the field will also have been reset to empty .

procedure fetch (a : pointer); { unpack the math char field a }
begin cur c ← cast to ushort (character (a)); cur f ← fam fnt (fam (a) + cur size);
cur c ← cur c + (plane and fam field (a) div ˝100) ∗ ˝10000;
if cur f = null font then ⟨Complain about an undefined family and set cur i null 766 ⟩
else if is native font (cur f) then

begin cur i ← null character ;
end

else begin if (qo(cur c) ≥ font bc [cur f]) ∧ (qo(cur c) ≤ font ec [cur f]) then
cur i ← char info(cur f)(cur c)

else cur i ← null character ;
if ¬(char exists (cur i)) then

begin char warning (cur f , qo(cur c)); math type (a)← empty ; cur i ← null character ;
end;

end;
end;

766. ⟨Complain about an undefined family and set cur i null 766 ⟩ ≡
begin print err (""); print size (cur size); print char ("␣"); print int (fam (a));
print ("␣is␣undefined␣(character␣"); print ASCII (qo(cur c)); print char (")");
help4 ("Somewhere␣in␣the␣math␣formula␣just␣ended,␣you␣used␣the")
("stated␣character␣from␣an␣undefined␣font␣family.␣For␣example,")
("plain␣TeX␣doesn´t␣allow␣\it␣or␣\sl␣in␣subscripts.␣Proceed,")
("and␣I´ll␣try␣to␣forget␣that␣I␣needed␣that␣character."); error ; cur i ← null character ;
math type (a)← empty ;
end

This code is used in section 765.

767. The outputs of fetch are placed in global variables.

⟨Global variables 13 ⟩ +≡
cur f : internal font number ; { the font field of a math char }
cur c : integer ; { the character field of a math char }
cur i : four quarters ; { the char info of a math char , or a lig/kern instruction }

334 PART 36: TYPESETTING MATH FORMULAS X ETEX §768

768. We need to do a lot of different things, so mlist to hlist makes two passes over the given mlist.
The first pass does most of the processing: It removes “mu” spacing from glue, it recursively evaluates all

subsidiary mlists so that only the top-level mlist remains to be handled, it puts fractions and square roots
and such things into boxes, it attaches subscripts and superscripts, and it computes the overall height and
depth of the top-level mlist so that the size of delimiters for a left noad and a right noad will be known.
The hlist resulting from each noad is recorded in that noad’s new hlist field, an integer field that replaces
the nucleus or thickness .

The second pass eliminates all noads and inserts the correct glue and penalties between nodes.

define new hlist (#) ≡ mem [nucleus (#)].int { the translation of an mlist }

769. Here is the overall plan of mlist to hlist , and the list of its local variables.

define done with noad = 80 { go here when a noad has been fully translated }
define done with node = 81 { go here when a node has been fully converted }
define check dimensions = 82 { go here to update max h and max d }
define delete q = 83 { go here to delete q and move to the next node }

⟨Declare math construction procedures 777 ⟩
procedure mlist to hlist ;
label reswitch , check dimensions , done with noad , done with node , delete q , done ;
var mlist : pointer ; { beginning of the given list }
penalties : boolean ; { should penalty nodes be inserted? }
style : small number ; { the given style }
save style : small number ; { holds cur style during recursion }
q: pointer ; { runs through the mlist }
r: pointer ; { the most recent noad preceding q }
r type : small number ; { the type of noad r, or op noad if r = null }
t: small number ; { the effective type of noad q during the second pass }
p, x, y, z: pointer ; { temporary registers for list construction }
pen : integer ; { a penalty to be inserted }
s: small number ; { the size of a noad to be deleted }
max h ,max d : scaled ; {maximum height and depth of the list translated so far }
delta : scaled ; { offset between subscript and superscript }

begin mlist ← cur mlist ; penalties ← mlist penalties ; style ← cur style ;
{ tuck global parameters away as local variables }

q ← mlist ; r ← null ; r type ← op noad ; max h ← 0; max d ← 0;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
while q ̸= null do ⟨Process node-or-noad q as much as possible in preparation for the second pass of

mlist to hlist , then move to the next item in the mlist 770 ⟩;
⟨Convert a final bin noad to an ord noad 772 ⟩;
⟨Make a second pass over the mlist, removing all noads and inserting the proper spacing and

penalties 808 ⟩;
end;

§770 X ETEX PART 36: TYPESETTING MATH FORMULAS 335

770. We use the fact that no character nodes appear in an mlist, hence the field type (q) is always present.

⟨Process node-or-noad q as much as possible in preparation for the second pass of mlist to hlist , then move
to the next item in the mlist 770 ⟩ ≡

begin ⟨Do first-pass processing based on type (q); goto done with noad if a noad has been fully
processed, goto check dimensions if it has been translated into new hlist (q), or goto done with node
if a node has been fully processed 771 ⟩;

check dimensions : z ← hpack (new hlist (q),natural);
if height (z) > max h then max h ← height (z);
if depth (z) > max d then max d ← depth (z);
free node (z, box node size);

done with noad : r ← q; r type ← type (r);
if r type = right noad then
begin r type ← left noad ; cur style ← style ;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
end;

done with node : q ← link (q);
end

This code is used in section 769.

771. One of the things we must do on the first pass is change a bin noad to an ord noad if the bin noad
is not in the context of a binary operator. The values of r and r type make this fairly easy.

⟨Do first-pass processing based on type (q); goto done with noad if a noad has been fully processed, goto
check dimensions if it has been translated into new hlist (q), or goto done with node if a node has
been fully processed 771 ⟩ ≡

reswitch : delta ← 0;
case type (q) of
bin noad : case r type of
bin noad , op noad , rel noad , open noad , punct noad , left noad : begin type (q)← ord noad ;

goto reswitch ;
end;

othercases do nothing
endcases;

rel noad , close noad , punct noad , right noad : begin
⟨Convert a final bin noad to an ord noad 772 ⟩;
if type (q) = right noad then goto done with noad ;
end;
⟨Cases for noads that can follow a bin noad 776 ⟩
⟨Cases for nodes that can appear in an mlist, after which we goto done with node 773 ⟩
othercases confusion ("mlist1")
endcases;
⟨Convert nucleus (q) to an hlist and attach the sub/superscripts 798 ⟩

This code is used in section 770.

772. ⟨Convert a final bin noad to an ord noad 772 ⟩ ≡
if r type = bin noad then type (r)← ord noad

This code is used in sections 769 and 771.

336 PART 36: TYPESETTING MATH FORMULAS X ETEX §773

773. ⟨Cases for nodes that can appear in an mlist, after which we goto done with node 773 ⟩ ≡
style node : begin cur style ← subtype (q);
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
goto done with node ;
end;

choice node : ⟨Change this node to a style node followed by the correct choice, then goto
done with node 774 ⟩;

ins node ,mark node , adjust node ,whatsit node , penalty node , disc node : goto done with node ;
rule node : begin if height (q) > max h then max h ← height (q);

if depth (q) > max d then max d ← depth (q);
goto done with node ;
end;

glue node : begin ⟨Convert math glue to ordinary glue 775 ⟩;
goto done with node ;
end;

kern node : begin math kern (q, cur mu); goto done with node ;
end;

This code is used in section 771.

774. define choose mlist (#) ≡
begin p← #(q); #(q)← null ; end

⟨Change this node to a style node followed by the correct choice, then goto done with node 774 ⟩ ≡
begin case cur style div 2 of
0: choose mlist (display mlist); { display style = 0 }
1: choose mlist (text mlist); { text style = 2 }
2: choose mlist (script mlist); { script style = 4 }
3: choose mlist (script script mlist); { script script style = 6 }
end; { there are no other cases }
flush node list (display mlist (q)); flush node list (text mlist (q)); flush node list (script mlist (q));
flush node list (script script mlist (q));
type (q)← style node ; subtype (q)← cur style ; width (q)← 0; depth (q)← 0;
if p ̸= null then
begin z ← link (q); link (q)← p;
while link (p) ̸= null do p← link (p);
link (p)← z;
end;

goto done with node ;
end

This code is used in section 773.

§775 X ETEX PART 36: TYPESETTING MATH FORMULAS 337

775. Conditional math glue (‘\nonscript’) results in a glue node pointing to zero glue , with subtype (q) =
cond math glue ; in such a case the node following will be eliminated if it is a glue or kern node and if the
current size is different from text size . Unconditional math glue (‘\muskip’) is converted to normal glue by
multiplying the dimensions by cur mu .

⟨Convert math glue to ordinary glue 775 ⟩ ≡
if subtype (q) = mu glue then
begin x← glue ptr (q); y ← math glue (x, cur mu); delete glue ref (x); glue ptr (q)← y;
subtype (q)← normal ;
end

else if (cur size ̸= text size) ∧ (subtype (q) = cond math glue) then
begin p← link (q);
if p ̸= null then
if (type (p) = glue node) ∨ (type (p) = kern node) then
begin link (q)← link (p); link (p)← null ; flush node list (p);
end;

end

This code is used in section 773.

776. ⟨Cases for noads that can follow a bin noad 776 ⟩ ≡
left noad : goto done with noad ;
fraction noad : begin make fraction (q); goto check dimensions ;

end;
op noad : begin delta ← make op(q);
if subtype (q) = limits then goto check dimensions ;
end;

ord noad : make ord (q);
open noad , inner noad : do nothing ;
radical noad : make radical (q);
over noad : make over (q);
under noad : make under (q);
accent noad : make math accent (q);
vcenter noad : make vcenter (q);

This code is used in section 771.

777. Most of the actual construction work of mlist to hlist is done by procedures with names like
make fraction , make radical , etc. To illustrate the general setup of such procedures, let’s begin with a
couple of simple ones.

⟨Declare math construction procedures 777 ⟩ ≡
procedure make over (q : pointer);
begin info(nucleus (q))← overbar (clean box (nucleus (q), cramped style (cur style)),

3 ∗ default rule thickness , default rule thickness); math type (nucleus (q))← sub box ;
end;

See also sections 778, 779, 780, 781, 787, 793, 796, 800, and 810.

This code is used in section 769.

338 PART 36: TYPESETTING MATH FORMULAS X ETEX §778

778. ⟨Declare math construction procedures 777 ⟩ +≡
procedure make under (q : pointer);
var p, x, y: pointer ; { temporary registers for box construction }
delta : scaled ; { overall height plus depth }

begin x← clean box (nucleus (q), cur style); p← new kern (3 ∗ default rule thickness); link (x)← p;
link (p)← fraction rule (default rule thickness); y ← vpack (x,natural);
delta ← height (y) + depth (y) + default rule thickness ; height (y)← height (x);
depth (y)← delta − height (y); info(nucleus (q))← y; math type (nucleus (q))← sub box ;
end;

779. ⟨Declare math construction procedures 777 ⟩ +≡
procedure make vcenter (q : pointer);
var v: pointer ; { the box that should be centered vertically }
delta : scaled ; { its height plus depth }

begin v ← info(nucleus (q));
if type (v) ̸= vlist node then confusion ("vcenter");
delta ← height (v) + depth (v); height (v)← axis height (cur size) + half (delta);
depth (v)← delta − height (v);
end;

§780 X ETEX PART 36: TYPESETTING MATH FORMULAS 339

780. According to the rules in the DVI file specifications, we ensure alignment between a square root sign
and the rule above its nucleus by assuming that the baseline of the square-root symbol is the same as the
bottom of the rule. The height of the square-root symbol will be the thickness of the rule, and the depth of
the square-root symbol should exceed or equal the height-plus-depth of the nucleus plus a certain minimum
clearance clr . The symbol will be placed so that the actual clearance is clr plus half the excess.

⟨Declare math construction procedures 777 ⟩ +≡
procedure make radical (q : pointer);
var x, y: pointer ; { temporary registers for box construction }
f : internal font number ; rule thickness : scaled ; { rule thickness }
delta , clr : scaled ; { dimensions involved in the calculation }

begin f ← fam fnt (small fam (left delimiter (q)) + cur size);
if is new mathfont (f) then rule thickness ← get ot math constant (f, radicalRuleThickness)
else rule thickness ← default rule thickness ;
x← clean box (nucleus (q), cramped style (cur style));
if is new mathfont (f) then
begin if cur style < text style then { display style }
clr ← get ot math constant (f, radicalDisplayStyleVerticalGap)

else clr ← get ot math constant (f, radicalVerticalGap);
end

else begin if cur style < text style then { display style }
clr ← rule thickness + (abs (math x height (cur size)) div 4)

else begin clr ← rule thickness ; clr ← clr + (abs (clr) div 4);
end;

end;
y ← var delimiter (left delimiter (q), cur size , height (x) + depth (x) + clr + rule thickness);
if is new mathfont (f) then
begin depth (y)← height (y) + depth (y)− rule thickness ; height (y)← rule thickness ;
end;

delta ← depth (y)− (height (x) + depth (x) + clr);
if delta > 0 then clr ← clr + half (delta); { increase the actual clearance }
shift amount (y)← −(height (x) + clr); link (y)← overbar (x, clr , height (y));
info(nucleus (q))← hpack (y, natural); math type (nucleus (q))← sub box ;
end;

340 PART 36: TYPESETTING MATH FORMULAS X ETEX §781

781. Slants are not considered when placing accents in math mode. The accenter is centered over the
accentee, and the accent width is treated as zero with respect to the size of the final box.

⟨Declare math construction procedures 777 ⟩ +≡
function compute ot math accent pos (p : pointer): scaled ;
var q, r: pointer ; s, g: scaled ;
begin if (math type (nucleus (p)) = math char) then
begin fetch (nucleus (p)); q ← new native character (cur f , qo(cur c)); g ← get native glyph (q, 0);
s← get ot math accent pos (cur f , g);
end

else begin if (math type (nucleus (p)) = sub mlist) then
begin r ← info(nucleus (p));
if (r ̸= null) ∧ (type (r) = accent noad) then s← compute ot math accent pos (r)
else s← ˝7FFFFFFF;
end

else s← ˝7FFFFFFF;
end;

compute ot math accent pos ← s;
end;

procedure make math accent (q : pointer);
label done , done1 ;
var p, x, y: pointer ; { temporary registers for box construction }
a: integer ; { address of lig/kern instruction }
c, g: integer ; { accent character }
f : internal font number ; { its font }
i: four quarters ; { its char info }
s, sa : scaled ; { amount to skew the accent to the right }
h: scaled ; { height of character being accented }
delta : scaled ; { space to remove between accent and accentee }
w,w2 : scaled ; {width of the accentee, not including sub/superscripts }
ot assembly ptr : void pointer ;

begin fetch (accent chr (q)); x← null ; ot assembly ptr ← nil;
if is native font (cur f) then
begin c← cur c ; f ← cur f ;
if ¬is bottom acc(q) then s← compute ot math accent pos (q)
else s← 0;
x← clean box (nucleus (q), cramped style (cur style)); w ← width (x); h← height (x);
end

else if char exists (cur i) then
begin i← cur i ; c← cur c ; f ← cur f ;
⟨Compute the amount of skew 785 ⟩;
x← clean box (nucleus (q), cramped style (cur style)); w ← width (x); h← height (x);
⟨ Switch to a larger accent if available and appropriate 784 ⟩;
end;

if x ̸= null then
begin if is new mathfont (f) then
if is bottom acc(q) then delta ← 0
else if h < get ot math constant (f, accentBaseHeight) then

delta ← h else delta ← get ot math constant (f, accentBaseHeight)
else if h < x height (f) then delta ← h else delta ← x height (f);
if (math type (supscr (q)) ̸= empty) ∨ (math type (subscr (q)) ̸= empty) then
if math type (nucleus (q)) = math char then ⟨ Swap the subscript and superscript into box x 786 ⟩;

y ← char box (f, c);

§781 X ETEX PART 36: TYPESETTING MATH FORMULAS 341

if is native font (f) then
begin { turn the native word node into a native glyph one }
p← get node (glyph node size); type (p)← whatsit node ; subtype (p)← glyph node ;
native font (p)← f ; native glyph (p)← get native glyph (list ptr (y), 0); set native glyph metrics (p, 1);
free node (list ptr (y),native size (list ptr (y))); list ptr (y)← p; ⟨ Switch to a larger native-font accent

if available and appropriate 783 ⟩; { determine horiz positioning }
if is glyph node (p) then

begin sa ← get ot math accent pos (f,native glyph (p));
if sa = ˝7FFFFFFF then sa ← half (width (y));
end

else sa ← half (width (y));
if is bottom acc(q) ∨ (s = ˝7FFFFFFF) then s← half (w);
shift amount (y)← s− sa ;
end

else shift amount (y)← s+ half (w − width (y));
width (y)← 0;
if is bottom acc(q) then
begin link (x)← y; y ← vpack (x,natural); shift amount (y)← −(h− height (y));
end

else begin p← new kern (−delta); link (p)← x; link (y)← p; y ← vpack (y, natural);
if height (y) < h then ⟨Make the height of box y equal to h 782 ⟩;
end;

width (y)← width (x); info(nucleus (q))← y; math type (nucleus (q))← sub box ;
end;

free ot assembly (ot assembly ptr);
end;

782. ⟨Make the height of box y equal to h 782 ⟩ ≡
begin p← new kern (h− height (y)); link (p)← list ptr (y); list ptr (y)← p; height (y)← h;
end

This code is used in section 781.

342 PART 36: TYPESETTING MATH FORMULAS X ETEX §783

783. ⟨ Switch to a larger native-font accent if available and appropriate 783 ⟩ ≡
if odd (subtype (q)) then { non growing accent }
set native glyph metrics (p, 1)

else begin c← native glyph (p); a← 0;
repeat g ← get ot math variant (f, c, a, addressof (w2), 1);

if (w2 > 0) ∧ (w2 ≤ w) then
begin native glyph (p)← g; set native glyph metrics (p, 1); incr (a);
end;

until (w2 < 0) ∨ (w2 ≥ w);
if (w2 < 0) then
begin ot assembly ptr ← get ot assembly ptr (f, c, 1);
if ot assembly ptr ̸= nil then
begin free node (p, glyph node size); p← build opentype assembly (f, ot assembly ptr , w, 1);
list ptr (y)← p; goto found ;
end;

end
else set native glyph metrics (p, 1);
end;

found : width (y)← width (p); height (y)← height (p); depth (y)← depth (p);
if is bottom acc(q) then
begin if height (y) < 0 then height (y)← 0
end

else if depth (y) < 0 then depth (y)← 0;

This code is used in section 781.

784. ⟨ Switch to a larger accent if available and appropriate 784 ⟩ ≡
loop begin if char tag (i) ̸= list tag then goto done ;
y ← rem byte (i); i← char info(f)(y);
if ¬char exists (i) then goto done ;
if char width (f)(i) > w then goto done ;
c← y;
end;

done :

This code is used in section 781.

§785 X ETEX PART 36: TYPESETTING MATH FORMULAS 343

785. ⟨Compute the amount of skew 785 ⟩ ≡
s← 0;
if math type (nucleus (q)) = math char then
begin fetch (nucleus (q));
if char tag (cur i) = lig tag then

begin a← lig kern start (cur f)(cur i); cur i ← font info [a].qqqq ;
if skip byte (cur i) > stop flag then

begin a← lig kern restart (cur f)(cur i); cur i ← font info [a].qqqq ;
end;

loop begin if qo(next char (cur i)) = skew char [cur f] then
begin if op byte (cur i) ≥ kern flag then
if skip byte (cur i) ≤ stop flag then s← char kern (cur f)(cur i);

goto done1 ;
end;

if skip byte (cur i) ≥ stop flag then goto done1 ;
a← a+ qo(skip byte (cur i)) + 1; cur i ← font info [a].qqqq ;
end;

end;
end;

done1 :

This code is used in section 781.

786. ⟨ Swap the subscript and superscript into box x 786 ⟩ ≡
begin flush node list (x); x← new noad ; mem [nucleus (x)]← mem [nucleus (q)];
mem [supscr (x)]← mem [supscr (q)]; mem [subscr (x)]← mem [subscr (q)];
mem [supscr (q)].hh ← empty field ; mem [subscr (q)].hh ← empty field ;
math type (nucleus (q))← sub mlist ; info(nucleus (q))← x; x← clean box (nucleus (q), cur style);
delta ← delta + height (x)− h; h← height (x);
end

This code is used in section 781.

787. The make fraction procedure is a bit different because it sets new hlist (q) directly rather than making
a sub-box.

⟨Declare math construction procedures 777 ⟩ +≡
procedure make fraction (q : pointer);

var p, v, x, y, z: pointer ; { temporary registers for box construction }
delta , delta1 , delta2 , shift up , shift down , clr : scaled ; { dimensions for box calculations }

begin if thickness (q) = default code then thickness (q)← default rule thickness ;
⟨Create equal-width boxes x and z for the numerator and denominator, and compute the default amounts

shift up and shift down by which they are displaced from the baseline 788 ⟩;
if thickness (q) = 0 then ⟨Adjust shift up and shift down for the case of no fraction line 789 ⟩
else ⟨Adjust shift up and shift down for the case of a fraction line 790 ⟩;
⟨Construct a vlist box for the fraction, according to shift up and shift down 791 ⟩;
⟨Put the fraction into a box with its delimiters, and make new hlist (q) point to it 792 ⟩;
end;

344 PART 36: TYPESETTING MATH FORMULAS X ETEX §788

788. ⟨Create equal-width boxes x and z for the numerator and denominator, and compute the default
amounts shift up and shift down by which they are displaced from the baseline 788 ⟩ ≡

x← clean box (numerator (q),num style (cur style));
z ← clean box (denominator (q), denom style (cur style));
if width (x) < width (z) then x← rebox (x,width (z))
else z ← rebox (z,width (x));
if cur style < text style then { display style }
begin shift up ← num1 (cur size); shift down ← denom1 (cur size);
end

else begin shift down ← denom2 (cur size);
if thickness (q) ̸= 0 then shift up ← num2 (cur size)
else shift up ← num3 (cur size);
end

This code is used in section 787.

789. The numerator and denominator must be separated by a certain minimum clearance, called clr in
the following program. The difference between clr and the actual clearance is twice delta .

⟨Adjust shift up and shift down for the case of no fraction line 789 ⟩ ≡
begin if is new mathfont (cur f) then
begin if cur style < text style then clr ← get ot math constant (cur f , stackDisplayStyleGapMin)
else clr ← get ot math constant (cur f , stackGapMin);
end

else begin if cur style < text style then clr ← 7 ∗ default rule thickness
else clr ← 3 ∗ default rule thickness ;
end;

delta ← half (clr − ((shift up − depth (x))− (height (z)− shift down)));
if delta > 0 then
begin shift up ← shift up + delta ; shift down ← shift down + delta ;
end;

end

This code is used in section 787.

§790 X ETEX PART 36: TYPESETTING MATH FORMULAS 345

790. In the case of a fraction line, the minimum clearance depends on the actual thickness of the line.

⟨Adjust shift up and shift down for the case of a fraction line 790 ⟩ ≡
begin if is new mathfont (cur f) then
begin delta ← half (thickness (q));
if cur style < text style then clr ← get ot math constant (cur f , fractionNumDisplayStyleGapMin)
else clr ← get ot math constant (cur f , fractionNumeratorGapMin);
delta1 ← clr − ((shift up − depth (x))− (axis height (cur size) + delta));
if cur style < text style then clr ← get ot math constant (cur f , fractionDenomDisplayStyleGapMin)
else clr ← get ot math constant (cur f , fractionDenominatorGapMin);
delta2 ← clr − ((axis height (cur size)− delta)− (height (z)− shift down));
end

else begin if cur style < text style then clr ← 3 ∗ thickness (q)
else clr ← thickness (q);
delta ← half (thickness (q)); delta1 ← clr − ((shift up − depth (x))− (axis height (cur size) + delta));
delta2 ← clr − ((axis height (cur size)− delta)− (height (z)− shift down));
end;

if delta1 > 0 then shift up ← shift up + delta1 ;
if delta2 > 0 then shift down ← shift down + delta2 ;
end

This code is used in section 787.

791. ⟨Construct a vlist box for the fraction, according to shift up and shift down 791 ⟩ ≡
v ← new null box ; type (v)← vlist node ; height (v)← shift up + height (x);
depth (v)← depth (z) + shift down ; width (v)← width (x); { this also equals width (z) }
if thickness (q) = 0 then
begin p← new kern ((shift up − depth (x))− (height (z)− shift down)); link (p)← z;
end

else begin y ← fraction rule (thickness (q));
p← new kern ((axis height (cur size)− delta)− (height (z)− shift down));
link (y)← p; link (p)← z;
p← new kern ((shift up − depth (x))− (axis height (cur size) + delta)); link (p)← y;
end;

link (x)← p; list ptr (v)← x

This code is used in section 787.

792. ⟨Put the fraction into a box with its delimiters, and make new hlist (q) point to it 792 ⟩ ≡
if cur style < text style then delta ← delim1 (cur size)
else delta ← delim2 (cur size);
x← var delimiter (left delimiter (q), cur size , delta); link (x)← v;
z ← var delimiter (right delimiter (q), cur size , delta); link (v)← z;
new hlist (q)← hpack (x,natural)

This code is used in section 787.

346 PART 36: TYPESETTING MATH FORMULAS X ETEX §793

793. If the nucleus of an op noad is a single character, it is to be centered vertically with respect to
the axis, after first being enlarged (via a character list in the font) if we are in display style. The normal
convention for placing displayed limits is to put them above and below the operator in display style.
The italic correction is removed from the character if there is a subscript and the limits are not being

displayed. The make op routine returns the value that should be used as an offset between subscript and
superscript.
After make op has acted, subtype (q) will be limits if and only if the limits have been set above and below

the operator. In that case, new hlist (q) will already contain the desired final box.

⟨Declare math construction procedures 777 ⟩ +≡
function make op(q : pointer): scaled ;
label found ;
var delta : scaled ; { offset between subscript and superscript }
p, v, x, y, z: pointer ; { temporary registers for box construction }
c: quarterword ; i: four quarters ; { registers for character examination }
shift up , shift down : scaled ; { dimensions for box calculation }
h1 , h2 : scaled ; { height of original text-style symbol and possible replacement }
n, g: integer ; { potential variant index and glyph code }
ot assembly ptr : void pointer ; save f : internal font number ;

begin if (subtype (q) = normal) ∧ (cur style < text style) then subtype (q)← limits ;
delta ← 0; ot assembly ptr ← nil;
if math type (nucleus (q)) = math char then
begin fetch (nucleus (q));
if ¬is ot font (cur f) then

begin if (cur style < text style) ∧ (char tag (cur i) = list tag) then {make it larger }
begin c← rem byte (cur i); i← char info(cur f)(c);
if char exists (i) then
begin cur c ← c; cur i ← i; character (nucleus (q))← c;
end;

end;
delta ← char italic(cur f)(cur i);
end;

x← clean box (nucleus (q), cur style);
if is new mathfont (cur f) then
begin p← list ptr (x);
if is glyph node (p) then
begin if cur style < text style then
begin { try to replace the operator glyph with a display-size variant, ensuring it is larger

than the text size }
h1 ← get ot math constant (cur f , displayOperatorMinHeight);
if h1 < (height (p) + depth (p)) ∗ 5/4 then h1 ← (height (p) + depth (p)) ∗ 5/4;
c← native glyph (p); n← 0;
repeat g ← get ot math variant (cur f , c, n, addressof (h2), 0);
if h2 > 0 then
begin native glyph (p)← g; set native glyph metrics (p, 1);
end;

incr (n);
until (h2 < 0) ∨ (h2 ≥ h1);
if (h2 < 0) then
begin

{ if we get here, then we didn’t find a big enough glyph; check if the char is extensible }
ot assembly ptr ← get ot assembly ptr (cur f , c, 0);
if ot assembly ptr ̸= nil then

§793 X ETEX PART 36: TYPESETTING MATH FORMULAS 347

begin free node (p, glyph node size);
p← build opentype assembly (cur f , ot assembly ptr , h1 , 0); list ptr (x)← p; delta ← 0;
goto found ;
end;

end
else set native glyph metrics (p, 1);
end;

delta ← get ot math ital corr (cur f ,native glyph (p));
found : width (x)← width (p); height (x)← height (p); depth (x)← depth (p);
end

end;
if (math type (subscr (q)) ̸= empty) ∧ (subtype (q) ̸= limits) then width (x)← width (x)− delta ;

{ remove italic correction }
shift amount (x)← half (height (x)− depth (x))− axis height (cur size); { center vertically }
math type (nucleus (q))← sub box ; info(nucleus (q))← x;
end;

save f ← cur f ;
if subtype (q) = limits then ⟨Construct a box with limits above and below it, skewed by delta 794 ⟩;
free ot assembly (ot assembly ptr); make op ← delta ;
end;

794. The following program builds a vlist box v for displayed limits. The width of the box is not affected
by the fact that the limits may be skewed.

⟨Construct a box with limits above and below it, skewed by delta 794 ⟩ ≡
begin x← clean box (supscr (q), sup style (cur style)); y ← clean box (nucleus (q), cur style);
z ← clean box (subscr (q), sub style (cur style)); v ← new null box ; type (v)← vlist node ;
width (v)← width (y);
if width (x) > width (v) then width (v)← width (x);
if width (z) > width (v) then width (v)← width (z);
x← rebox (x,width (v)); y ← rebox (y,width (v)); z ← rebox (z,width (v));
shift amount (x)← half (delta); shift amount (z)← −shift amount (x); height (v)← height (y);
depth (v)← depth (y);
⟨Attach the limits to y and adjust height (v), depth (v) to account for their presence 795 ⟩;
new hlist (q)← v;
end

This code is used in section 793.

348 PART 36: TYPESETTING MATH FORMULAS X ETEX §795

795. We use shift up and shift down in the following program for the amount of glue between the displayed
operator y and its limits x and z. The vlist inside box v will consist of x followed by y followed by z, with
kern nodes for the spaces between and around them.

⟨Attach the limits to y and adjust height (v), depth (v) to account for their presence 795 ⟩ ≡
cur f ← save f ;
if math type (supscr (q)) = empty then
begin free node (x, box node size); list ptr (v)← y;
end

else begin shift up ← big op spacing3 − depth (x);
if shift up < big op spacing1 then shift up ← big op spacing1 ;
p← new kern (shift up); link (p)← y; link (x)← p;
p← new kern (big op spacing5); link (p)← x; list ptr (v)← p;
height (v)← height (v) + big op spacing5 + height (x) + depth (x) + shift up ;
end;

if math type (subscr (q)) = empty then free node (z, box node size)
else begin shift down ← big op spacing4 − height (z);
if shift down < big op spacing2 then shift down ← big op spacing2 ;
p← new kern (shift down); link (y)← p; link (p)← z;
p← new kern (big op spacing5); link (z)← p;
depth (v)← depth (v) + big op spacing5 + height (z) + depth (z) + shift down ;
end

This code is used in section 794.

§796 X ETEX PART 36: TYPESETTING MATH FORMULAS 349

796. A ligature found in a math formula does not create a ligature node , because there is no question of
hyphenation afterwards; the ligature will simply be stored in an ordinary char node , after residing in an
ord noad .
The math type is converted to math text char here if we would not want to apply an italic correction to

the current character unless it belongs to a math font (i.e., a font with space = 0).
No boundary characters enter into these ligatures.

⟨Declare math construction procedures 777 ⟩ +≡
procedure make ord (q : pointer);
label restart , exit ;
var a: integer ; { address of lig/kern instruction }
p, r: pointer ; { temporary registers for list manipulation }

begin restart :
if math type (subscr (q)) = empty then
if math type (supscr (q)) = empty then
if math type (nucleus (q)) = math char then
begin p← link (q);
if p ̸= null then
if (type (p) ≥ ord noad) ∧ (type (p) ≤ punct noad) then
if math type (nucleus (p)) = math char then
if fam (nucleus (p)) = fam (nucleus (q)) then
begin math type (nucleus (q))← math text char ; fetch (nucleus (q));
if char tag (cur i) = lig tag then

begin a← lig kern start (cur f)(cur i); cur c ← character (nucleus (p));
cur i ← font info [a].qqqq ;
if skip byte (cur i) > stop flag then

begin a← lig kern restart (cur f)(cur i); cur i ← font info [a].qqqq ;
end;

loop begin ⟨ If instruction cur i is a kern with cur c , attach the kern after q; or if it
is a ligature with cur c , combine noads q and p appropriately; then return if
the cursor has moved past a noad, or goto restart 797 ⟩;

if skip byte (cur i) ≥ stop flag then return;
a← a+ qo(skip byte (cur i)) + 1; cur i ← font info [a].qqqq ;
end;

end;
end;

end;
exit : end;

350 PART 36: TYPESETTING MATH FORMULAS X ETEX §797

797. Note that a ligature between an ord noad and another kind of noad is replaced by an ord noad , when
the two noads collapse into one. But we could make a parenthesis (say) change shape when it follows certain
letters. Presumably a font designer will define such ligatures only when this convention makes sense.

⟨ If instruction cur i is a kern with cur c , attach the kern after q; or if it is a ligature with cur c ,
combine noads q and p appropriately; then return if the cursor has moved past a noad, or goto
restart 797 ⟩ ≡

if next char (cur i) = cur c then
if skip byte (cur i) ≤ stop flag then
if op byte (cur i) ≥ kern flag then

begin p← new kern (char kern (cur f)(cur i)); link (p)← link (q); link (q)← p; return;
end

else begin check interrupt ; { allow a way out of infinite ligature loop }
case op byte (cur i) of
qi (1), qi (5): character (nucleus (q))← rem byte (cur i); { =:|, =:|> }
qi (2), qi (6): character (nucleus (p))← rem byte (cur i); { |=:, |=:> }
qi (3), qi (7), qi (11): begin r ← new noad ; { |=:|, |=:|>, |=:|>> }
character (nucleus (r))← rem byte (cur i); plane and fam field (nucleus (r))← fam (nucleus (q));
link (q)← r; link (r)← p;
if op byte (cur i) < qi (11) then math type (nucleus (r))← math char
else math type (nucleus (r))← math text char ; { prevent combination }
end;

othercases begin link (q)← link (p); character (nucleus (q))← rem byte (cur i); { =: }
mem [subscr (q)]← mem [subscr (p)]; mem [supscr (q)]← mem [supscr (p)];
free node (p,noad size);
end

endcases;
if op byte (cur i) > qi (3) then return;
math type (nucleus (q))← math char ; goto restart ;
end

This code is used in section 796.

§798 X ETEX PART 36: TYPESETTING MATH FORMULAS 351

798. When we get to the following part of the program, we have “fallen through” from cases that did not
lead to check dimensions or done with noad or done with node . Thus, q points to a noad whose nucleus
may need to be converted to an hlist, and whose subscripts and superscripts need to be appended if they
are present.
If nucleus (q) is not a math char , the variable delta is the amount by which a superscript should be moved

right with respect to a subscript when both are present.

⟨Convert nucleus (q) to an hlist and attach the sub/superscripts 798 ⟩ ≡
case math type (nucleus (q)) of
math char ,math text char : ⟨Create a character node p for nucleus (q), possibly followed by a kern node

for the italic correction, and set delta to the italic correction if a subscript is present 799 ⟩;
empty : p← null ;
sub box : p← info(nucleus (q));
sub mlist : begin cur mlist ← info(nucleus (q)); save style ← cur style ; mlist penalties ← false ;
mlist to hlist ; { recursive call }
cur style ← save style ; ⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
p← hpack (link (temp head),natural);
end;

othercases confusion ("mlist2")
endcases;
new hlist (q)← p;
if (math type (subscr (q)) = empty) ∧ (math type (supscr (q)) = empty) then goto check dimensions ;
make scripts (q, delta)

This code is used in section 771.

799. ⟨Create a character node p for nucleus (q), possibly followed by a kern node for the italic correction,
and set delta to the italic correction if a subscript is present 799 ⟩ ≡

begin fetch (nucleus (q));
if is native font (cur f) then
begin z ← new native character (cur f , qo(cur c)); p← get node (glyph node size);
type (p)← whatsit node ; subtype (p)← glyph node ; native font (p)← cur f ;
native glyph (p)← get native glyph (z, 0); set native glyph metrics (p, 1); free node (z,native size (z));
delta ← get ot math ital corr (cur f ,native glyph (p));
if (math type (nucleus (q)) = math text char) ∧ (¬is new mathfont (cur f) ̸= 0) then delta ← 0;

{ no italic correction in mid-word of text font }
if (math type (subscr (q)) = empty) ∧ (delta ̸= 0) then

begin link (p)← new kern (delta); delta ← 0;
end;

end
else if char exists (cur i) then

begin delta ← char italic(cur f)(cur i); p← new character (cur f , qo(cur c));
if (math type (nucleus (q)) = math text char) ∧ (space (cur f) ̸= 0) then delta ← 0;

{ no italic correction in mid-word of text font }
if (math type (subscr (q)) = empty) ∧ (delta ̸= 0) then
begin link (p)← new kern (delta); delta ← 0;
end;

end
else p← null ;

end

This code is used in section 798.

352 PART 36: TYPESETTING MATH FORMULAS X ETEX §800

800. The purpose of make scripts (q, delta) is to attach the subscript and/or superscript of noad q to the
list that starts at new hlist (q), given that the subscript and superscript aren’t both empty. The superscript
will appear to the right of the subscript by a given distance delta .
We set shift down and shift up to the minimum amounts to shift the baseline of subscripts and superscripts

based on the given nucleus.

⟨Declare math construction procedures 777 ⟩ +≡
function attach hkern to new hlist (q : pointer ; delta : scaled): pointer ;

var y, z: pointer ; { temporary registers for box construction }
begin z ← new kern (delta);
if new hlist (q) = null then new hlist (q)← z
else begin y ← new hlist (q);
while link (y) ̸= null do y ← link (y);
link (y)← z;
end;

attach hkern to new hlist ← new hlist (q);
end;

procedure make scripts (q : pointer ; delta : scaled);
var p, x, y, z: pointer ; { temporary registers for box construction }
shift up , shift down , clr , sub kern , sup kern : scaled ; { dimensions in the calculation }
script c : pointer ; { temprary native character for sub/superscript }
script g : quarterword ; { temporary register for sub/superscript native glyph id }
script f : internal font number ; { temporary register for sub/superscript font }
sup g : quarterword ; { superscript native glyph id }
sup f : internal font number ; { superscript font }
sub g : quarterword ; { subscript native glyph id }
sub f : internal font number ; { subscript font }
t: integer ; { subsidiary size code }
save f : internal font number ; script head : pointer ; { scratch var for OpenType s*scripts }
script ptr : pointer ; { scratch var for OpenType s*scripts }
saved math style : small number ; { scratch var for OpenType s*scripts }
this math style : small number ; { scratch var for OpenType s*scripts }

begin p← new hlist (q); script c ← null ; script g ← 0; script f ← 0; sup kern ← 0; sub kern ← 0;
if is char node (p) ∨ is glyph node (p) then
begin shift up ← 0; shift down ← 0;
end

else begin z ← hpack (p,natural);
if cur style < script style then t← script size else t← script script size ;
shift up ← height (z)− sup drop(t); shift down ← depth (z) + sub drop(t); free node (z, box node size);
end;

if math type (supscr (q)) = empty then ⟨Construct a subscript box x when there is no superscript 801 ⟩
else begin ⟨Construct a superscript box x 802 ⟩;
if math type (subscr (q)) = empty then shift amount (x)← −shift up
else ⟨Construct a sub/superscript combination box x, with the superscript offset by delta 803 ⟩;
end;

if new hlist (q) = null then new hlist (q)← x
else begin p← new hlist (q);
while link (p) ̸= null do p← link (p);
link (p)← x;
end;

end;

§801 X ETEX PART 36: TYPESETTING MATH FORMULAS 353

801. When there is a subscript without a superscript, the top of the subscript should not exceed the
baseline plus four-fifths of the x-height.

⟨Construct a subscript box x when there is no superscript 801 ⟩ ≡
begin script head ← subscr (q); ⟨Fetch first character of a sub/superscript 805 ⟩;
sub g ← script g ; sub f ← script f ; save f ← cur f ; x← clean box (subscr (q), sub style (cur style));
cur f ← save f ; width (x)← width (x) + script space ;
if shift down < sub1 (cur size) then shift down ← sub1 (cur size);
if is new mathfont (cur f) then clr ← height (x)− get ot math constant (cur f , subscriptTopMax)
else clr ← height (x)− (abs (math x height (cur size) ∗ 4) div 5);
if shift down < clr then shift down ← clr ;
shift amount (x)← shift down ;
if is new mathfont (cur f) then ⟨Attach subscript OpenType math kerning 806 ⟩
end

This code is used in section 800.

802. The bottom of a superscript should never descend below the baseline plus one-fourth of the x-height.

⟨Construct a superscript box x 802 ⟩ ≡
begin script head ← supscr (q); ⟨Fetch first character of a sub/superscript 805 ⟩;
sup g ← script g ; sup f ← script f ; save f ← cur f ; x← clean box (supscr (q), sup style (cur style));
cur f ← save f ; width (x)← width (x) + script space ;
if odd (cur style) then clr ← sup3 (cur size)
else if cur style < text style then clr ← sup1 (cur size)
else clr ← sup2 (cur size);

if shift up < clr then shift up ← clr ;
if is new mathfont (cur f) then clr ← depth (x) + get ot math constant (cur f , superscriptBottomMin)
else clr ← depth (x) + (abs (math x height (cur size)) div 4);
if shift up < clr then shift up ← clr ;
if is new mathfont (cur f) then ⟨Attach superscript OpenType math kerning 807 ⟩
end

This code is used in section 800.

354 PART 36: TYPESETTING MATH FORMULAS X ETEX §803

803. When both subscript and superscript are present, the subscript must be separated from the super-
script by at least four times default rule thickness . If this condition would be violated, the subscript moves
down, after which both subscript and superscript move up so that the bottom of the superscript is at least
as high as the baseline plus four-fifths of the x-height.

⟨Construct a sub/superscript combination box x, with the superscript offset by delta 803 ⟩ ≡
begin save f ← cur f ; script head ← subscr (q); ⟨Fetch first character of a sub/superscript 805 ⟩;
sub g ← script g ; sub f ← script f ; y ← clean box (subscr (q), sub style (cur style)); cur f ← save f ;
width (y)← width (y) + script space ;
if shift down < sub2 (cur size) then shift down ← sub2 (cur size);
if is new mathfont (cur f) then clr ← get ot math constant (cur f ,

subSuperscriptGapMin)− ((shift up − depth (x))− (height (y)− shift down))
else clr ← 4 ∗ default rule thickness − ((shift up − depth (x))− (height (y)− shift down));
if clr > 0 then
begin shift down ← shift down + clr ;
if is new mathfont (cur f) then

clr ← get ot math constant (cur f , superscriptBottomMaxWithSubscript)− (shift up − depth (x))
else clr ← (abs (math x height (cur size) ∗ 4) div 5)− (shift up − depth (x));
if clr > 0 then
begin shift up ← shift up + clr ; shift down ← shift down − clr ;
end;

end;
if is new mathfont (cur f) then
begin ⟨Attach subscript OpenType math kerning 806 ⟩
⟨Attach superscript OpenType math kerning 807 ⟩
end

else begin sup kern ← 0; sub kern ← 0;
end;

shift amount (x)← sup kern + delta − sub kern ; { superscript is delta to the right of the subscript }
p← new kern ((shift up − depth (x))− (height (y)− shift down)); link (x)← p; link (p)← y;
x← vpack (x,natural); shift amount (x)← shift down ;
end

This code is used in section 800.

804. OpenType math fonts provide an additional adjustment for the horizontal position of sub/superscripts
called math kerning.
The following definitions should be kept in sync with XeTeXOTMath.cpp.

define sup cmd = 0 { superscript kern type for get ot math kern }
define sub cmd = 1 { subscript kern type for get ot math kern }
define is valid pointer (#) ≡ ((# ≥ mem min) ∧ (# ≤ mem end))

§805 X ETEX PART 36: TYPESETTING MATH FORMULAS 355

805. ⟨Fetch first character of a sub/superscript 805 ⟩ ≡
script c ← null ; script g ← qi (0);
script f ← null font ; this math style ← sub style (cur style); { Loop through the sub mlist looking for

the first character-like thing. Ignore kerns or glue so that, for example, changing Pj to Pj will have a
predictable effect. Intercept style node s and execute them. If we encounter a choice node , follow the
appropriate branch. Anything else halts the search and inhibits OpenType kerning. }

{ Don’t try to do anything clever if the nucleus of the script head is empty, e.g., Pj and the such. }
if math type (script head) = sub mlist then
begin script ptr ← info(script head); script head ← null ;
while is valid pointer (script ptr) do

begin case type (script ptr) of
kern node , glue node : do nothing ;
style node : begin this math style ← subtype (script ptr);
end;

choice node : do nothing ; { see below }
ord noad , op noad , bin noad , rel noad , open noad , close noad , punct noad : begin

script head ← nucleus (script ptr); script ptr ← null ;
end;

othercases script ptr ← null { end the search }
endcases;
if is valid pointer (script ptr) then

if type (script ptr) = choice node then
case this math style div 2 of
0: script ptr ← display mlist (script ptr);
1: script ptr ← text mlist (script ptr);
2: script ptr ← script mlist (script ptr);
3: script ptr ← script script mlist (script ptr);
end

else script ptr ← link (script ptr);
end;

end;
if is valid pointer (script head) ∧math type (script head) = math char then
begin save f ← cur f ; saved math style ← cur style ; cur style ← this math style ;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
fetch (script head);
if is new mathfont (cur f) then
begin script c ← new native character (cur f , qo(cur c)); script g ← get native glyph (script c , 0);
script f ← cur f ; { script font }
end;

cur f ← save f ; cur style ← saved math style ;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
end; { The remaining case is math type (script head) = sub box . Although it would be possible to

deconstruct the box node to find the first glyph, it will most likely be from a text font without
MATH kerning, so there’s probably no point. }

This code is used in sections 801, 802, and 803.

356 PART 36: TYPESETTING MATH FORMULAS X ETEX §806

806. ⟨Attach subscript OpenType math kerning 806 ⟩ ≡
begin if is glyph node (p) then
begin sub kern ← get ot math kern (native font (p),native glyph (p), sub f , sub g , sub cmd , shift down);
if sub kern ̸= 0 then p← attach hkern to new hlist (q, sub kern);
end;

end;

This code is used in sections 801 and 803.

807. ⟨Attach superscript OpenType math kerning 807 ⟩ ≡
begin { if there is a superscript the kern will be added to shift amount (x) }
if math type (subscr (q)) = empty then
if is glyph node (p) then
begin sup kern ← get ot math kern (native font (p),native glyph (p), sup f , sup g , sup cmd , shift up);
if sup kern ̸= 0 then p← attach hkern to new hlist (q, sup kern);
end;

end;

This code is used in sections 802 and 803.

808. We have now tied up all the loose ends of the first pass of mlist to hlist . The second pass simply goes
through and hooks everything together with the proper glue and penalties. It also handles the left noad and
right noad that might be present, since max h and max d are now known. Variable p points to a node at
the current end of the final hlist.

⟨Make a second pass over the mlist, removing all noads and inserting the proper spacing and penalties 808 ⟩ ≡
p← temp head ; link (p)← null ; q ← mlist ; r type ← 0; cur style ← style ;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
while q ̸= null do
begin ⟨ If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, put

it into the hlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to the
associated type (ord noad . . inner noad), and set pen to the associated penalty 809 ⟩;

⟨Append inter-element spacing based on r type and t 814 ⟩;
⟨Append any new hlist entries for q, and any appropriate penalties 815 ⟩;
if type (q) = right noad then t← open noad ;
r type ← t;

delete q : r ← q; q ← link (q); free node (r, s);
done : end

This code is used in section 769.

§809 X ETEX PART 36: TYPESETTING MATH FORMULAS 357

809. Just before doing the big case switch in the second pass, the program sets up default values so that
most of the branches are short.

⟨ If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, put it into the
hlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to the associated type
(ord noad . . inner noad), and set pen to the associated penalty 809 ⟩ ≡

t← ord noad ; s← noad size ; pen ← inf penalty ;
case type (q) of
op noad , open noad , close noad , punct noad , inner noad : t← type (q);
bin noad : begin t← bin noad ; pen ← bin op penalty ;
end;

rel noad : begin t← rel noad ; pen ← rel penalty ;
end;

ord noad , vcenter noad , over noad , under noad : do nothing ;
radical noad : s← radical noad size ;
accent noad : s← accent noad size ;
fraction noad : s← fraction noad size ;
left noad , right noad : t← make left right (q, style ,max d ,max h);
style node : ⟨Change the current style and goto delete q 811 ⟩;
whatsit node , penalty node , rule node , disc node , adjust node , ins node ,mark node , glue node , kern node :
begin link (p)← q; p← q; q ← link (q); link (p)← null ; goto done ;
end;

othercases confusion ("mlist3")
endcases

This code is used in section 808.

810. The make left right function constructs a left or right delimiter of the required size and returns the
value open noad or close noad . The right noad and left noad will both be based on the original style , so
they will have consistent sizes.
We use the fact that right noad − left noad = close noad − open noad .

⟨Declare math construction procedures 777 ⟩ +≡
function make left right (q : pointer ; style : small number ; max d ,max h : scaled): small number ;

var delta , delta1 , delta2 : scaled ; { dimensions used in the calculation }
begin cur style ← style ; ⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
delta2 ← max d + axis height (cur size); delta1 ← max h +max d − delta2 ;
if delta2 > delta1 then delta1 ← delta2 ; { delta1 is max distance from axis }
delta ← (delta1 div 500) ∗ delimiter factor ; delta2 ← delta1 + delta1 − delimiter shortfall ;
if delta < delta2 then delta ← delta2 ;
new hlist (q)← var delimiter (delimiter (q), cur size , delta);
make left right ← type (q)− (left noad − open noad); { open noad or close noad }
end;

811. ⟨Change the current style and goto delete q 811 ⟩ ≡
begin cur style ← subtype (q); s← style node size ;
⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩;
goto delete q ;
end

This code is used in section 809.

358 PART 36: TYPESETTING MATH FORMULAS X ETEX §812

812. The inter-element spacing in math formulas depends on an 8×8 table that TEX preloads as a 64-digit
string. The elements of this string have the following significance:

0 means no space;
1 means a conditional thin space (\nonscript\mskip\thinmuskip);
2 means a thin space (\mskip\thinmuskip);
3 means a conditional medium space (\nonscript\mskip\medmuskip);
4 means a conditional thick space (\nonscript\mskip\thickmuskip);
* means an impossible case.

This is all pretty cryptic, but The TEXbook explains what is supposed to happen, and the string makes it
happen.
A global variable magic offset is computed so that if a and b are in the range ord noad . . inner noad ,

then str pool [a ∗ 8 + b+magic offset] is the digit for spacing between noad types a and b.
If Pascal had provided a good way to preload constant arrays, this part of the program would not have

been so strange.

define math spacing =
"0234000122*4000133**3**344*0400400*000000234000111*1111112341011"

⟨Global variables 13 ⟩ +≡
magic offset : integer ; { used to find inter-element spacing }

813. ⟨Compute the magic offset 813 ⟩ ≡
magic offset ← str start macro(math spacing)− 9 ∗ ord noad

This code is used in section 1391.

814. ⟨Append inter-element spacing based on r type and t 814 ⟩ ≡
if r type > 0 then { not the first noad }
begin case so(str pool [r type ∗ 8 + t+magic offset]) of
"0": x← 0;
"1": if cur style < script style then x← thin mu skip code else x← 0;
"2": x← thin mu skip code ;
"3": if cur style < script style then x← med mu skip code else x← 0;
"4": if cur style < script style then x← thick mu skip code else x← 0;
othercases confusion ("mlist4")
endcases;
if x ̸= 0 then
begin y ← math glue (glue par (x), cur mu); z ← new glue (y); glue ref count (y)← null ;
link (p)← z; p← z;
subtype (z)← x+ 1; { store a symbolic subtype }
end;

end

This code is used in section 808.

§815 X ETEX PART 36: TYPESETTING MATH FORMULAS 359

815. We insert a penalty node after the hlist entries of noad q if pen is not an “infinite” penalty, and if
the node immediately following q is not a penalty node or a rel noad or absent entirely.

⟨Append any new hlist entries for q, and any appropriate penalties 815 ⟩ ≡
if new hlist (q) ̸= null then
begin link (p)← new hlist (q);
repeat p← link (p);
until link (p) = null ;
end;

if penalties then
if link (q) ̸= null then
if pen < inf penalty then

begin r type ← type (link (q));
if r type ̸= penalty node then
if r type ̸= rel noad then

begin z ← new penalty (pen); link (p)← z; p← z;
end;

end

This code is used in section 808.

360 PART 37: ALIGNMENT X ETEX §816

816. Alignment. It’s sort of a miracle whenever \halign and \valign work, because they cut across
so many of the control structures of TEX.
Therefore the present page is probably not the best place for a beginner to start reading this program; it

is better to master everything else first.
Let us focus our thoughts on an example of what the input might be, in order to get some idea about

how the alignment miracle happens. The example doesn’t do anything useful, but it is sufficiently general
to indicate all of the special cases that must be dealt with; please do not be disturbed by its apparent
complexity and meaninglessness.

\tabskip 2pt plus 3pt

\halign to 300pt{u1#v1&

\tabskip 1pt plus 1fil u2#v2&

u3#v3\cr

a1&\omit a2&\vrule\cr

\noalign{\vskip 3pt}

b1\span b2\cr

\omit&c2\span\omit\cr}

Here’s what happens:

(0) When ‘\halign to 300pt{’ is scanned, the scan spec routine places the 300pt dimension onto the
save stack , and an align group code is placed above it. This will make it possible to complete the alignment
when the matching ‘}’ is found.

(1) The preamble is scanned next. Macros in the preamble are not expanded, except as part of a tabskip
specification. For example, if u2 had been a macro in the preamble above, it would have been expanded,
since TEX must look for ‘minus...’ as part of the tabskip glue. A “preamble list” is constructed based on
the user’s preamble; in our case it contains the following seven items:

\glue 2pt plus 3pt (the tabskip preceding column 1)
\alignrecord, width −∞ (preamble info for column 1)
\glue 2pt plus 3pt (the tabskip between columns 1 and 2)
\alignrecord, width −∞ (preamble info for column 2)
\glue 1pt plus 1fil (the tabskip between columns 2 and 3)
\alignrecord, width −∞ (preamble info for column 3)
\glue 1pt plus 1fil (the tabskip following column 3)

These “alignrecord” entries have the same size as an unset node , since they will later be converted into such
nodes. However, at the moment they have no type or subtype fields; they have info fields instead, and these
info fields are initially set to the value end span , for reasons explained below. Furthermore, the alignrecord
nodes have no height or depth fields; these are renamed u part and v part , and they point to token lists for
the templates of the alignment. For example, the u part field in the first alignrecord points to the token list
‘u1’, i.e., the template preceding the ‘#’ for column 1.

(2) TEX now looks at what follows the \cr that ended the preamble. It is not ‘\noalign’ or ‘\omit’, so
this input is put back to be read again, and the template ‘u1’ is fed to the scanner. Just before reading ‘u1’,
TEX goes into restricted horizontal mode. Just after reading ‘u1’, TEX will see ‘a1’, and then (when the & is
sensed) TEX will see ‘v1’. Then TEX scans an endv token, indicating the end of a column. At this point an
unset node is created, containing the contents of the current hlist (i.e., ‘u1a1v1’). The natural width of this
unset node replaces the width field of the alignrecord for column 1; in general, the alignrecords will record
the maximum natural width that has occurred so far in a given column.
(3) Since ‘\omit’ follows the ‘&’, the templates for column 2 are now bypassed. Again TEX goes into

restricted horizontal mode and makes an unset node from the resulting hlist; but this time the hlist contains
simply ‘a2’. The natural width of the new unset box is remembered in the width field of the alignrecord for
column 2.
(4) A third unset node is created for column 3, using essentially the mechanism that worked for column 1;

this unset box contains ‘u3\vrule v3’. The vertical rule in this case has running dimensions that will later

§816 X ETEX PART 37: ALIGNMENT 361

extend to the height and depth of the whole first row, since each unset node in a row will eventually inherit
the height and depth of its enclosing box.
(5) The first row has now ended; it is made into a single unset box comprising the following seven items:

\glue 2pt plus 3pt

\unsetbox for 1 column: u1a1v1

\glue 2pt plus 3pt

\unsetbox for 1 column: a2

\glue 1pt plus 1fil

\unsetbox for 1 column: u3\vrule v3

\glue 1pt plus 1fil

The width of this unset row is unimportant, but it has the correct height and depth, so the correct baselineskip
glue will be computed as the row is inserted into a vertical list.
(6) Since ‘\noalign’ follows the current \cr, TEX appends additional material (in this case \vskip 3pt)

to the vertical list. While processing this material, TEX will be in internal vertical mode, and no align group
will be on save stack .
(7) The next row produces an unset box that looks like this:

\glue 2pt plus 3pt

\unsetbox for 2 columns: u1b1v1u2b2v2

\glue 1pt plus 1fil

\unsetbox for 1 column: (empty)
\glue 1pt plus 1fil

The natural width of the unset box that spans columns 1 and 2 is stored in a “span node,” which we will
explain later; the info field of the alignrecord for column 1 now points to the new span node, and the info
of the span node points to end span .
(8) The final row produces the unset box

\glue 2pt plus 3pt

\unsetbox for 1 column: (empty)
\glue 2pt plus 3pt

\unsetbox for 2 columns: u2c2v2

\glue 1pt plus 1fil

A new span node is attached to the alignrecord for column 2.
(9) The last step is to compute the true column widths and to change all the unset boxes to hboxes,

appending the whole works to the vertical list that encloses the \halign. The rules for deciding on the final
widths of each unset column box will be explained below.

Note that as \halign is being processed, we fearlessly give up control to the rest of TEX. At critical junctures,
an alignment routine is called upon to step in and do some little action, but most of the time these routines
just lurk in the background. It’s something like post-hypnotic suggestion.

817. We have mentioned that alignrecords contain no height or depth fields. Their glue sign and glue order
are pre-empted as well, since it is necessary to store information about what to do when a template ends.
This information is called the extra info field.

define u part (#) ≡ mem [#+ height offset].int { pointer to ⟨uj⟩ token list }
define v part (#) ≡ mem [#+ depth offset].int { pointer to ⟨vj⟩ token list }
define extra info(#) ≡ info(#+ list offset) { info to remember during template }

362 PART 37: ALIGNMENT X ETEX §818

818. Alignments can occur within alignments, so a small stack is used to access the alignrecord information.
At each level we have a preamble pointer, indicating the beginning of the preamble list; a cur align pointer,
indicating the current position in the preamble list; a cur span pointer, indicating the value of cur align at
the beginning of a sequence of spanned columns; a cur loop pointer, indicating the tabskip glue before an
alignrecord that should be copied next if the current list is extended; and the align state variable, which
indicates the nesting of braces so that \cr and \span and tab marks are properly intercepted. There also are
pointers cur head and cur tail to the head and tail of a list of adjustments being moved out from horizontal
mode to vertical mode.
The current values of these seven quantities appear in global variables; when they have to be pushed down,

they are stored in 5-word nodes, and align ptr points to the topmost such node.

define preamble ≡ link (align head) { the current preamble list }
define align stack node size = 6 { number of mem words to save alignment states }

⟨Global variables 13 ⟩ +≡
cur align : pointer ; { current position in preamble list }
cur span : pointer ; { start of currently spanned columns in preamble list }
cur loop : pointer ; { place to copy when extending a periodic preamble }
align ptr : pointer ; {most recently pushed-down alignment stack node }
cur head , cur tail : pointer ; { adjustment list pointers }
cur pre head , cur pre tail : pointer ; { pre-adjustment list pointers }

819. The align state and preamble variables are initialized elsewhere.

⟨ Set initial values of key variables 23 ⟩ +≡
align ptr ← null ; cur align ← null ; cur span ← null ; cur loop ← null ; cur head ← null ;
cur tail ← null ; cur pre head ← null ; cur pre tail ← null ;

820. Alignment stack maintenance is handled by a pair of trivial routines called push alignment and
pop alignment .

procedure push alignment ;
var p: pointer ; { the new alignment stack node }
begin p← get node (align stack node size); link (p)← align ptr ; info(p)← cur align ;
llink (p)← preamble ; rlink (p)← cur span ; mem [p+ 2].int ← cur loop ; mem [p+ 3].int ← align state ;
info(p+ 4)← cur head ; link (p+ 4)← cur tail ; info(p+ 5)← cur pre head ; link (p+ 5)← cur pre tail ;
align ptr ← p; cur head ← get avail ; cur pre head ← get avail ;
end;

procedure pop alignment ;
var p: pointer ; { the top alignment stack node }
begin free avail (cur head); free avail (cur pre head); p← align ptr ; cur tail ← link (p+ 4);
cur head ← info(p+ 4); cur pre tail ← link (p+ 5); cur pre head ← info(p+ 5);
align state ← mem [p+ 3].int ; cur loop ← mem [p+ 2].int ; cur span ← rlink (p); preamble ← llink (p);
cur align ← info(p); align ptr ← link (p); free node (p, align stack node size);
end;

821. TEX has eight procedures that govern alignments: init align and fin align are used at the very
beginning and the very end; init row and fin row are used at the beginning and end of individual rows;
init span is used at the beginning of a sequence of spanned columns (possibly involving only one column);
init col and fin col are used at the beginning and end of individual columns; and align peek is used after
\cr to see whether the next item is \noalign.
We shall consider these routines in the order they are first used during the course of a complete \halign,

namely init align , align peek , init row , init span , init col , fin col , fin row , fin align .

§822 X ETEX PART 37: ALIGNMENT 363

822. When \halign or \valign has been scanned in an appropriate mode, TEX calls init align , whose
task is to get everything off to a good start. This mostly involves scanning the preamble and putting its
information into the preamble list.

⟨Declare the procedure called get preamble token 830 ⟩
procedure align peek ; forward ;
procedure normal paragraph ; forward ;
procedure init align ;
label done , done1 , done2 , continue ;
var save cs ptr : pointer ; {warning index value for error messages }
p: pointer ; { for short-term temporary use }

begin save cs ptr ← cur cs ; { \halign or \valign, usually }
push alignment ; align state ← −1000000; { enter a new alignment level }
⟨Check for improper alignment in displayed math 824 ⟩;
push nest ; { enter a new semantic level }
⟨Change current mode to −vmode for \halign, −hmode for \valign 823 ⟩;
scan spec(align group , false);
⟨ Scan the preamble and record it in the preamble list 825 ⟩;
new save level (align group);
if every cr ̸= null then begin token list (every cr , every cr text);
align peek ; { look for \noalign or \omit }
end;

823. In vertical modes, prev depth already has the correct value. But if we are in mmode (displayed
formula mode), we reach out to the enclosing vertical mode for the prev depth value that produces the
correct baseline calculations.

⟨Change current mode to −vmode for \halign, −hmode for \valign 823 ⟩ ≡
if mode = mmode then
begin mode ← −vmode ; prev depth ← nest [nest ptr − 2].aux field .sc ;
end

else if mode > 0 then negate (mode)

This code is used in section 822.

824. When \halign is used as a displayed formula, there should be no other pieces of mlists present.

⟨Check for improper alignment in displayed math 824 ⟩ ≡
if (mode = mmode) ∧ ((tail ̸= head) ∨ (incompleat noad ̸= null)) then
begin print err ("Improper␣"); print esc("halign"); print ("␣inside␣$$´s");
help3 ("Displays␣can␣use␣special␣alignments␣(like␣\eqalignno)")
("only␣if␣nothing␣but␣the␣alignment␣itself␣is␣between␣$$´s.")
("So␣I´ve␣deleted␣the␣formulas␣that␣preceded␣this␣alignment."); error ; flush math ;
end

This code is used in section 822.

364 PART 37: ALIGNMENT X ETEX §825

825. ⟨ Scan the preamble and record it in the preamble list 825 ⟩ ≡
preamble ← null ; cur align ← align head ; cur loop ← null ; scanner status ← aligning ;
warning index ← save cs ptr ; align state ← −1000000; { at this point, cur cmd = left brace }
loop begin ⟨Append the current tabskip glue to the preamble list 826 ⟩;
if cur cmd = car ret then goto done ; { \cr ends the preamble }
⟨ Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue;

append an alignrecord to the preamble list 827 ⟩;
end;

done : scanner status ← normal

This code is used in section 822.

826. ⟨Append the current tabskip glue to the preamble list 826 ⟩ ≡
link (cur align)← new param glue (tab skip code); cur align ← link (cur align)

This code is used in section 825.

827. ⟨ Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue;
append an alignrecord to the preamble list 827 ⟩ ≡

⟨ Scan the template ⟨uj⟩, putting the resulting token list in hold head 831 ⟩;
link (cur align)← new null box ; cur align ← link (cur align); { a new alignrecord }
info(cur align)← end span ; width (cur align)← null flag ; u part (cur align)← link (hold head);
⟨ Scan the template ⟨vj⟩, putting the resulting token list in hold head 832 ⟩;
v part (cur align)← link (hold head)

This code is used in section 825.

828. We enter ‘\span’ into eqtb with tab mark as its command code, and with span code as the command
modifier. This makes TEX interpret it essentially the same as an alignment delimiter like ‘&’, yet it is
recognizably different when we need to distinguish it from a normal delimiter. It also turns out to be useful
to give a special cr code to ‘\cr’, and an even larger cr cr code to ‘\crcr’.

The end of a template is represented by two “frozen” control sequences called \endtemplate. The first
has the command code end template , which is > outer call , so it will not easily disappear in the presence of
errors. The get x token routine converts the first into the second, which has endv as its command code.

define span code = special char { distinct from any character }
define cr code = span code + 1 { distinct from span code and from any character }
define cr cr code = cr code + 1 { this distinguishes \crcr from \cr }
define end template token ≡ cs token flag + frozen end template

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("span", tab mark , span code);
primitive ("cr", car ret , cr code); text (frozen cr)← "cr"; eqtb [frozen cr]← eqtb [cur val];
primitive ("crcr", car ret , cr cr code); text (frozen end template)← "endtemplate";
text (frozen endv)← "endtemplate"; eq type (frozen endv)← endv ; equiv (frozen endv)← null list ;
eq level (frozen endv)← level one ;
eqtb [frozen end template]← eqtb [frozen endv]; eq type (frozen end template)← end template ;

829. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
tab mark : if chr code = span code then print esc("span")

else chr cmd ("alignment␣tab␣character␣");
car ret : if chr code = cr code then print esc("cr")
else print esc("crcr");

§830 X ETEX PART 37: ALIGNMENT 365

830. The preamble is copied directly, except that \tabskip causes a change to the tabskip glue, thereby
possibly expanding macros that immediately follow it. An appearance of \span also causes such an expansion.

Note that if the preamble contains ‘\global\tabskip’, the ‘\global’ token survives in the preamble and
the ‘\tabskip’ defines new tabskip glue (locally).

⟨Declare the procedure called get preamble token 830 ⟩ ≡
procedure get preamble token ;
label restart ;
begin restart : get token ;
while (cur chr = span code) ∧ (cur cmd = tab mark) do
begin get token ; { this token will be expanded once }
if cur cmd > max command then
begin expand ; get token ;
end;

end;
if cur cmd = endv then fatal error ("(interwoven␣alignment␣preambles␣are␣not␣allowed)");
if (cur cmd = assign glue) ∧ (cur chr = glue base + tab skip code) then
begin scan optional equals ; scan glue (glue val);
if global defs > 0 then geq define (glue base + tab skip code , glue ref , cur val)
else eq define (glue base + tab skip code , glue ref , cur val);
goto restart ;
end;

end;

This code is used in section 822.

831. Spaces are eliminated from the beginning of a template.

⟨ Scan the template ⟨uj⟩, putting the resulting token list in hold head 831 ⟩ ≡
p← hold head ; link (p)← null ;
loop begin get preamble token ;
if cur cmd = mac param then goto done1 ;
if (cur cmd ≤ car ret) ∧ (cur cmd ≥ tab mark) ∧ (align state = −1000000) then
if (p = hold head) ∧ (cur loop = null) ∧ (cur cmd = tab mark) then cur loop ← cur align
else begin print err ("Missing␣#␣inserted␣in␣alignment␣preamble");
help3 ("There␣should␣be␣exactly␣one␣#␣between␣&´s,␣when␣an")
("\halign␣or␣\valign␣is␣being␣set␣up.␣In␣this␣case␣you␣had")
("none,␣so␣I´ve␣put␣one␣in;␣maybe␣that␣will␣work."); back error ; goto done1 ;
end

else if (cur cmd ̸= spacer) ∨ (p ̸= hold head) then
begin link (p)← get avail ; p← link (p); info(p)← cur tok ;
end;

end;
done1 :

This code is used in section 827.

366 PART 37: ALIGNMENT X ETEX §832

832. ⟨ Scan the template ⟨vj⟩, putting the resulting token list in hold head 832 ⟩ ≡
p← hold head ; link (p)← null ;
loop begin continue : get preamble token ;
if (cur cmd ≤ car ret) ∧ (cur cmd ≥ tab mark) ∧ (align state = −1000000) then goto done2 ;
if cur cmd = mac param then

begin print err ("Only␣one␣#␣is␣allowed␣per␣tab");
help3 ("There␣should␣be␣exactly␣one␣#␣between␣&´s,␣when␣an")
("\halign␣or␣\valign␣is␣being␣set␣up.␣In␣this␣case␣you␣had")
("more␣than␣one,␣so␣I´m␣ignoring␣all␣but␣the␣first."); error ; goto continue ;
end;

link (p)← get avail ; p← link (p); info(p)← cur tok ;
end;

done2 : link (p)← get avail ; p← link (p); info(p)← end template token { put \endtemplate at the end }
This code is used in section 827.

833. The tricky part about alignments is getting the templates into the scanner at the right time, and
recovering control when a row or column is finished.
We usually begin a row after each \cr has been sensed, unless that \cr is followed by \noalign or by the

right brace that terminates the alignment. The align peek routine is used to look ahead and do the right
thing; it either gets a new row started, or gets a \noalign started, or finishes off the alignment.

⟨Declare the procedure called align peek 833 ⟩ ≡
procedure align peek ;
label restart ;
begin restart : align state ← 1000000;
repeat get x or protected ;
until cur cmd ̸= spacer ;
if cur cmd = no align then
begin scan left brace ; new save level (no align group);
if mode = −vmode then normal paragraph ;
end

else if cur cmd = right brace then fin align
else if (cur cmd = car ret) ∧ (cur chr = cr cr code) then goto restart { ignore \crcr }

else begin init row ; { start a new row }
init col ; { start a new column and replace what we peeked at }
end;

end;

This code is used in section 848.

834. To start a row (i.e., a ‘row’ that rhymes with ‘dough’ but not with ‘bough’), we enter a new semantic
level, copy the first tabskip glue, and change from internal vertical mode to restricted horizontal mode or
vice versa. The space factor and prev depth are not used on this semantic level, but we clear them to zero
just to be tidy.

⟨Declare the procedure called init span 835 ⟩
procedure init row ;
begin push nest ; mode ← (−hmode − vmode)−mode ;
if mode = −hmode then space factor ← 0 else prev depth ← 0;
tail append (new glue (glue ptr (preamble))); subtype (tail)← tab skip code + 1;
cur align ← link (preamble); cur tail ← cur head ; cur pre tail ← cur pre head ; init span (cur align);
end;

§835 X ETEX PART 37: ALIGNMENT 367

835. The parameter to init span is a pointer to the alignrecord where the next column or group of columns
will begin. A new semantic level is entered, so that the columns will generate a list for subsequent packaging.

⟨Declare the procedure called init span 835 ⟩ ≡
procedure init span (p : pointer);
begin push nest ;
if mode = −hmode then space factor ← 1000
else begin prev depth ← ignore depth ; normal paragraph ;
end;

cur span ← p;
end;

This code is used in section 834.

836. When a column begins, we assume that cur cmd is either omit or else the current token should be
put back into the input until the ⟨uj⟩ template has been scanned. (Note that cur cmd might be tab mark
or car ret .) We also assume that align state is approximately 1000000 at this time. We remain in the same
mode, and start the template if it is called for.

procedure init col ;
begin extra info(cur align)← cur cmd ;
if cur cmd = omit then align state ← 0
else begin back input ; begin token list (u part (cur align), u template);
end; { now align state = 1000000 }

end;

837. The scanner sets align state to zero when the ⟨uj⟩ template ends. When a subsequent \cr or \span
or tab mark occurs with align state = 0, the scanner activates the following code, which fires up the ⟨vj⟩
template. We need to remember the cur chr , which is either cr cr code , cr code , span code , or a character
code, depending on how the column text has ended.
This part of the program had better not be activated when the preamble to another alignment is being

scanned, or when no alignment preamble is active.

⟨ Insert the ⟨vj⟩ template and goto restart 837 ⟩ ≡
begin if (scanner status = aligning) ∨ (cur align = null) then
fatal error ("(interwoven␣alignment␣preambles␣are␣not␣allowed)");

cur cmd ← extra info(cur align); extra info(cur align)← cur chr ;
if cur cmd = omit then begin token list (omit template , v template)
else begin token list (v part (cur align), v template);
align state ← 1000000; goto restart ;
end

This code is used in section 372.

838. The token list omit template just referred to is a constant token list that contains the special control
sequence \endtemplate only.

⟨ Initialize the special list heads and constant nodes 838 ⟩ ≡
info(omit template)← end template token ; { link (omit template) = null }

See also sections 845, 868, 1035, and 1042.

This code is used in section 189.

368 PART 37: ALIGNMENT X ETEX §839

839. When the endv command at the end of a ⟨vj⟩ template comes through the scanner, things really
start to happen; and it is the fin col routine that makes them happen. This routine returns true if a row as
well as a column has been finished.

function fin col : boolean ;
label exit ;
var p: pointer ; { the alignrecord after the current one }
q, r: pointer ; { temporary pointers for list manipulation }
s: pointer ; { a new span node }
u: pointer ; { a new unset box }
w: scaled ; { natural width }
o: glue ord ; { order of infinity }
n: halfword ; { span counter }

begin if cur align = null then confusion ("endv");
q ← link (cur align); if q = null then confusion ("endv");
if align state < 500000 then fatal error ("(interwoven␣alignment␣preambles␣are␣not␣allowed)");
p← link (q); ⟨ If the preamble list has been traversed, check that the row has ended 840 ⟩;
if extra info(cur align) ̸= span code then
begin unsave ; new save level (align group);
⟨Package an unset box for the current column and record its width 844 ⟩;
⟨Copy the tabskip glue between columns 843 ⟩;
if extra info(cur align) ≥ cr code then
begin fin col ← true ; return;
end;

init span (p);
end;

align state ← 1000000;
repeat get x or protected ;
until cur cmd ̸= spacer ;
cur align ← p; init col ; fin col ← false ;

exit : end;

840. ⟨ If the preamble list has been traversed, check that the row has ended 840 ⟩ ≡
if (p = null) ∧ (extra info(cur align) < cr code) then
if cur loop ̸= null then ⟨Lengthen the preamble periodically 841 ⟩
else begin print err ("Extra␣alignment␣tab␣has␣been␣changed␣to␣"); print esc("cr");

help3 ("You␣have␣given␣more␣\span␣or␣&␣marks␣than␣there␣were")
("in␣the␣preamble␣to␣the␣\halign␣or␣\valign␣now␣in␣progress.")
("So␣I´ll␣assume␣that␣you␣meant␣to␣type␣\cr␣instead."); extra info(cur align)← cr code ;
error ;
end

This code is used in section 839.

841. ⟨Lengthen the preamble periodically 841 ⟩ ≡
begin link (q)← new null box ; p← link (q); { a new alignrecord }
info(p)← end span ; width (p)← null flag ; cur loop ← link (cur loop);
⟨Copy the templates from node cur loop into node p 842 ⟩;
cur loop ← link (cur loop); link (p)← new glue (glue ptr (cur loop)); subtype (link (p))← tab skip code +1;
end

This code is used in section 840.

§842 X ETEX PART 37: ALIGNMENT 369

842. ⟨Copy the templates from node cur loop into node p 842 ⟩ ≡
q ← hold head ; r ← u part (cur loop);
while r ̸= null do
begin link (q)← get avail ; q ← link (q); info(q)← info(r); r ← link (r);
end;

link (q)← null ; u part (p)← link (hold head); q ← hold head ; r ← v part (cur loop);
while r ̸= null do
begin link (q)← get avail ; q ← link (q); info(q)← info(r); r ← link (r);
end;

link (q)← null ; v part (p)← link (hold head)

This code is used in section 841.

843. ⟨Copy the tabskip glue between columns 843 ⟩ ≡
tail append (new glue (glue ptr (link (cur align)))); subtype (tail)← tab skip code + 1

This code is used in section 839.

844. ⟨Package an unset box for the current column and record its width 844 ⟩ ≡
begin if mode = −hmode then
begin adjust tail ← cur tail ; pre adjust tail ← cur pre tail ; u← hpack (link (head),natural);
w ← width (u); cur tail ← adjust tail ; adjust tail ← null ; cur pre tail ← pre adjust tail ;
pre adjust tail ← null ;
end

else begin u← vpackage (link (head),natural , 0); w ← height (u);
end;

n← min quarterword ; { this represents a span count of 1 }
if cur span ̸= cur align then ⟨Update width entry for spanned columns 846 ⟩
else if w > width (cur align) then width (cur align)← w;
type (u)← unset node ; span count (u)← n;
⟨Determine the stretch order 701 ⟩;
glue order (u)← o; glue stretch (u)← total stretch [o];
⟨Determine the shrink order 707 ⟩;
glue sign (u)← o; glue shrink (u)← total shrink [o];
pop nest ; link (tail)← u; tail ← u;
end

This code is used in section 839.

845. A span node is a 2-word record containing width , info , and link fields. The link field is not really a
link, it indicates the number of spanned columns; the info field points to a span node for the same starting
column, having a greater extent of spanning, or to end span , which has the largest possible link field; the
width field holds the largest natural width corresponding to a particular set of spanned columns.
A list of the maximum widths so far, for spanned columns starting at a given column, begins with the

info field of the alignrecord for that column.

define span node size = 2 { number of mem words for a span node }
⟨ Initialize the special list heads and constant nodes 838 ⟩ +≡
link (end span)← max quarterword + 1; info(end span)← null ;

370 PART 37: ALIGNMENT X ETEX §846

846. ⟨Update width entry for spanned columns 846 ⟩ ≡
begin q ← cur span ;
repeat incr (n); q ← link (link (q));
until q = cur align ;
if n > max quarterword then confusion ("too␣many␣spans"); { this can happen, but won’t }
q ← cur span ;
while link (info(q)) < n do q ← info(q);
if link (info(q)) > n then
begin s← get node (span node size); info(s)← info(q); link (s)← n; info(q)← s; width (s)← w;
end

else if width (info(q)) < w then width (info(q))← w;
end

This code is used in section 844.

847. At the end of a row, we append an unset box to the current vlist (for \halign) or the current hlist
(for \valign). This unset box contains the unset boxes for the columns, separated by the tabskip glue.
Everything will be set later.

procedure fin row ;
var p: pointer ; { the new unset box }
begin if mode = −hmode then
begin p← hpack (link (head),natural); pop nest ;
if cur pre head ̸= cur pre tail then append list (cur pre head)(cur pre tail);
append to vlist (p);
if cur head ̸= cur tail then append list (cur head)(cur tail);
end

else begin p← vpack (link (head),natural); pop nest ; link (tail)← p; tail ← p; space factor ← 1000;
end;

type (p)← unset node ; glue stretch (p)← 0;
if every cr ̸= null then begin token list (every cr , every cr text);
align peek ;
end; { note that glue shrink (p) = 0 since glue shrink ≡ shift amount }

§848 X ETEX PART 37: ALIGNMENT 371

848. Finally, we will reach the end of the alignment, and we can breathe a sigh of relief that memory
hasn’t overflowed. All the unset boxes will now be set so that the columns line up, taking due account of
spanned columns.

procedure do assignments ; forward ;
procedure resume after display ; forward ;
procedure build page ; forward ;
procedure fin align ;
var p, q, r, s, u, v: pointer ; { registers for the list operations }
t, w: scaled ; {width of column }
o: scaled ; { shift offset for unset boxes }
n: halfword ; {matching span amount }
rule save : scaled ; { temporary storage for overfull rule }
aux save : memory word ; { temporary storage for aux }

begin if cur group ̸= align group then confusion ("align1");
unsave ; { that align group was for individual entries }
if cur group ̸= align group then confusion ("align0");
unsave ; { that align group was for the whole alignment }
if nest [nest ptr − 1].mode field = mmode then o← display indent
else o← 0;
⟨Go through the preamble list, determining the column widths and changing the alignrecords to dummy

unset boxes 849 ⟩;
⟨Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this

prototype box 852 ⟩;
⟨ Set the glue in all the unset boxes of the current list 853 ⟩;
flush node list (p); pop alignment ; ⟨ Insert the current list into its environment 860 ⟩;
end;

⟨Declare the procedure called align peek 833 ⟩

372 PART 37: ALIGNMENT X ETEX §849

849. It’s time now to dismantle the preamble list and to compute the column widths. Let wij be the
maximum of the natural widths of all entries that span columns i through j, inclusive. The alignrecord for
column i contains wii in its width field, and there is also a linked list of the nonzero wij for increasing j,
accessible via the info field; these span nodes contain the value j − i+min quarterword in their link fields.
The values of wii were initialized to null flag , which we regard as −∞.

The final column widths are defined by the formula

wj = max
1≤i≤j

(
wij −

∑
i≤k<j

(tk + wk)

)
,

where tk is the natural width of the tabskip glue between columns k and k + 1. However, if wij = −∞ for
all i in the range 1 ≤ i ≤ j (i.e., if every entry that involved column j also involved column j + 1), we let
wj = 0, and we zero out the tabskip glue after column j.
TEX computes these values by using the following scheme: First w1 = w11. Then replace w2j by

max(w2j , w1j − t1 − w1), for all j > 1. Then w2 = w22. Then replace w3j by max(w3j , w2j − t2 − w2)
for all j > 2; and so on. If any wj turns out to be −∞, its value is changed to zero and so is the next
tabskip.

⟨Go through the preamble list, determining the column widths and changing the alignrecords to dummy
unset boxes 849 ⟩ ≡

q ← link (preamble);
repeat flush list (u part (q)); flush list (v part (q)); p← link (link (q));
if width (q) = null flag then ⟨Nullify width (q) and the tabskip glue following this column 850 ⟩;
if info(q) ̸= end span then
⟨Merge the widths in the span nodes of q with those of p, destroying the span nodes of q 851 ⟩;

type (q)← unset node ; span count (q)← min quarterword ; height (q)← 0; depth (q)← 0;
glue order (q)← normal ; glue sign (q)← normal ; glue stretch (q)← 0; glue shrink (q)← 0; q ← p;

until q = null

This code is used in section 848.

850. ⟨Nullify width (q) and the tabskip glue following this column 850 ⟩ ≡
begin width (q)← 0; r ← link (q); s← glue ptr (r);
if s ̸= zero glue then
begin add glue ref (zero glue); delete glue ref (s); glue ptr (r)← zero glue ;
end;

end

This code is used in section 849.

§851 X ETEX PART 37: ALIGNMENT 373

851. Merging of two span-node lists is a typical exercise in the manipulation of linearly linked data
structures. The essential invariant in the following repeat loop is that we want to dispense with node
r, in q’s list, and u is its successor; all nodes of p’s list up to and including s have been processed, and the
successor of s matches r or precedes r or follows r, according as link (r) = n or link (r) > n or link (r) < n.

⟨Merge the widths in the span nodes of q with those of p, destroying the span nodes of q 851 ⟩ ≡
begin t← width (q) + width (glue ptr (link (q))); r ← info(q); s← end span ; info(s)← p;
n← min quarterword + 1;
repeat width (r)← width (r)− t; u← info(r);
while link (r) > n do

begin s← info(s); n← link (info(s)) + 1;
end;

if link (r) < n then
begin info(r)← info(s); info(s)← r; decr (link (r)); s← r;
end

else begin if width (r) > width (info(s)) then width (info(s))← width (r);
free node (r, span node size);
end;

r ← u;
until r = end span ;
end

This code is used in section 849.

852. Now the preamble list has been converted to a list of alternating unset boxes and tabskip glue, where
the box widths are equal to the final column sizes. In case of \valign, we change the widths to heights, so
that a correct error message will be produced if the alignment is overfull or underfull.

⟨Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototype
box 852 ⟩ ≡

save ptr ← save ptr − 2; pack begin line ← −mode line ;
if mode = −vmode then
begin rule save ← overfull rule ; overfull rule ← 0; { prevent rule from being packaged }
p← hpack (preamble , saved (1), saved (0)); overfull rule ← rule save ;
end

else begin q ← link (preamble);
repeat height (q)← width (q); width (q)← 0; q ← link (link (q));
until q = null ;
p← vpack (preamble , saved (1), saved (0)); q ← link (preamble);
repeat width (q)← height (q); height (q)← 0; q ← link (link (q));
until q = null ;
end;

pack begin line ← 0

This code is used in section 848.

374 PART 37: ALIGNMENT X ETEX §853

853. ⟨ Set the glue in all the unset boxes of the current list 853 ⟩ ≡
q ← link (head); s← head ;
while q ̸= null do
begin if ¬is char node (q) then

if type (q) = unset node then ⟨ Set the unset box q and the unset boxes in it 855 ⟩
else if type (q) = rule node then
⟨Make the running dimensions in rule q extend to the boundaries of the alignment 854 ⟩;

s← q; q ← link (q);
end

This code is used in section 848.

854. ⟨Make the running dimensions in rule q extend to the boundaries of the alignment 854 ⟩ ≡
begin if is running (width (q)) then width (q)← width (p);
if is running (height (q)) then height (q)← height (p);
if is running (depth (q)) then depth (q)← depth (p);
if o ̸= 0 then
begin r ← link (q); link (q)← null ; q ← hpack (q, natural); shift amount (q)← o; link (q)← r;
link (s)← q;
end;

end

This code is used in section 853.

855. The unset box q represents a row that contains one or more unset boxes, depending on how soon \cr

occurred in that row.

⟨ Set the unset box q and the unset boxes in it 855 ⟩ ≡
begin if mode = −vmode then
begin type (q)← hlist node ; width (q)← width (p);
if nest [nest ptr − 1].mode field = mmode then set box lr (q)(dlist); { for ship out }
end

else begin type (q)← vlist node ; height (q)← height (p);
end;

glue order (q)← glue order (p); glue sign (q)← glue sign (p); glue set (q)← glue set (p);
shift amount (q)← o; r ← link (list ptr (q)); s← link (list ptr (p));
repeat ⟨ Set the glue in node r and change it from an unset node 856 ⟩;
r ← link (link (r)); s← link (link (s));

until r = null ;
end

This code is used in section 853.

§856 X ETEX PART 37: ALIGNMENT 375

856. A box made from spanned columns will be followed by tabskip glue nodes and by empty boxes as if
there were no spanning. This permits perfect alignment of subsequent entries, and it prevents values that
depend on floating point arithmetic from entering into the dimensions of any boxes.

⟨ Set the glue in node r and change it from an unset node 856 ⟩ ≡
n← span count (r); t← width (s); w ← t; u← hold head ; set box lr (r)(0); { for ship out }
while n > min quarterword do
begin decr (n); ⟨Append tabskip glue and an empty box to list u, and update s and t as the prototype

nodes are passed 857 ⟩;
end;

if mode = −vmode then
⟨Make the unset node r into an hlist node of width w, setting the glue as if the width were t 858 ⟩

else ⟨Make the unset node r into a vlist node of height w, setting the glue as if the height were t 859 ⟩;
shift amount (r)← 0;
if u ̸= hold head then { append blank boxes to account for spanned nodes }
begin link (u)← link (r); link (r)← link (hold head); r ← u;
end

This code is used in section 855.

857. ⟨Append tabskip glue and an empty box to list u, and update s and t as the prototype nodes are
passed 857 ⟩ ≡

s← link (s); v ← glue ptr (s); link (u)← new glue (v); u← link (u); subtype (u)← tab skip code + 1;
t← t+ width (v);
if glue sign (p) = stretching then
begin if stretch order (v) = glue order (p) then t← t+ round (float (glue set (p)) ∗ stretch (v));
end

else if glue sign (p) = shrinking then
begin if shrink order (v) = glue order (p) then t← t− round (float (glue set (p)) ∗ shrink (v));
end;

s← link (s); link (u)← new null box ; u← link (u); t← t+ width (s);
if mode = −vmode then width (u)← width (s) else begin type (u)← vlist node ; height (u)← width (s);
end

This code is used in section 856.

858. ⟨Make the unset node r into an hlist node of width w, setting the glue as if the width were t 858 ⟩ ≡
begin height (r)← height (q); depth (r)← depth (q);
if t = width (r) then
begin glue sign (r)← normal ; glue order (r)← normal ; set glue ratio zero(glue set (r));
end

else if t > width (r) then
begin glue sign (r)← stretching ;
if glue stretch (r) = 0 then set glue ratio zero(glue set (r))
else glue set (r)← unfloat ((t− width (r))/glue stretch (r));
end

else begin glue order (r)← glue sign (r); glue sign (r)← shrinking ;
if glue shrink (r) = 0 then set glue ratio zero(glue set (r))
else if (glue order (r) = normal) ∧ (width (r)− t > glue shrink (r)) then

set glue ratio one (glue set (r))
else glue set (r)← unfloat ((width (r)− t)/glue shrink (r));

end;
width (r)← w; type (r)← hlist node ;
end

This code is used in section 856.

376 PART 37: ALIGNMENT X ETEX §859

859. ⟨Make the unset node r into a vlist node of height w, setting the glue as if the height were t 859 ⟩ ≡
begin width (r)← width (q);
if t = height (r) then
begin glue sign (r)← normal ; glue order (r)← normal ; set glue ratio zero(glue set (r));
end

else if t > height (r) then
begin glue sign (r)← stretching ;
if glue stretch (r) = 0 then set glue ratio zero(glue set (r))
else glue set (r)← unfloat ((t− height (r))/glue stretch (r));
end

else begin glue order (r)← glue sign (r); glue sign (r)← shrinking ;
if glue shrink (r) = 0 then set glue ratio zero(glue set (r))
else if (glue order (r) = normal) ∧ (height (r)− t > glue shrink (r)) then

set glue ratio one (glue set (r))
else glue set (r)← unfloat ((height (r)− t)/glue shrink (r));

end;
height (r)← w; type (r)← vlist node ;
end

This code is used in section 856.

860. We now have a completed alignment, in the list that starts at head and ends at tail . This list will be
merged with the one that encloses it. (In case the enclosing mode is mmode , for displayed formulas, we will
need to insert glue before and after the display; that part of the program will be deferred until we’re more
familiar with such operations.)
In restricted horizontal mode, the clang part of aux is undefined; an over-cautious Pascal runtime system

may complain about this.

⟨ Insert the current list into its environment 860 ⟩ ≡
aux save ← aux ; p← link (head); q ← tail ; pop nest ;
if mode = mmode then ⟨Finish an alignment in a display 1260 ⟩
else begin aux ← aux save ; link (tail)← p;
if p ̸= null then tail ← q;
if mode = vmode then build page ;
end

This code is used in section 848.

§861 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 377

861. Breaking paragraphs into lines. We come now to what is probably the most interesting algo-
rithm of TEX: the mechanism for choosing the “best possible” breakpoints that yield the individual lines of
a paragraph. TEX’s line-breaking algorithm takes a given horizontal list and converts it to a sequence of
boxes that are appended to the current vertical list. In the course of doing this, it creates a special data
structure containing three kinds of records that are not used elsewhere in TEX. Such nodes are created while
a paragraph is being processed, and they are destroyed afterwards; thus, the other parts of TEX do not need
to know anything about how line-breaking is done.
The method used here is based on an approach devised by Michael F. Plass and the author in 1977,

subsequently generalized and improved by the same two people in 1980. A detailed discussion appears in
Software—Practice and Experience 11 (1981), 1119–1184, where it is shown that the line-breaking problem
can be regarded as a special case of the problem of computing the shortest path in an acyclic network. The
cited paper includes numerous examples and describes the history of line breaking as it has been practiced
by printers through the ages. The present implementation adds two new ideas to the algorithm of 1980:
Memory space requirements are considerably reduced by using smaller records for inactive nodes than for
active ones, and arithmetic overflow is avoided by using “delta distances” instead of keeping track of the
total distance from the beginning of the paragraph to the current point.

862. The line break procedure should be invoked only in horizontal mode; it leaves that mode and places
its output into the current vlist of the enclosing vertical mode (or internal vertical mode). There is one
explicit parameter: d is true for partial paragraphs preceding display math mode; in this case the amount
of additional penalty inserted before the final line is display widow penalty instead of widow penalty .
There are also a number of implicit parameters: The hlist to be broken starts at link (head), and it is

nonempty. The value of prev graf in the enclosing semantic level tells where the paragraph should begin in
the sequence of line numbers, in case hanging indentation or \parshape is in use; prev graf is zero unless this
paragraph is being continued after a displayed formula. Other implicit parameters, such as the par shape ptr
and various penalties to use for hyphenation, etc., appear in eqtb .

After line break has acted, it will have updated the current vlist and the value of prev graf . Furthermore,
the global variable just box will point to the final box created by line break , so that the width of this line can
be ascertained when it is necessary to decide whether to use above display skip or above display short skip
before a displayed formula.

⟨Global variables 13 ⟩ +≡
just box : pointer ; { the hlist node for the last line of the new paragraph }

863. Since line break is a rather lengthy procedure—sort of a small world unto itself—we must build it
up little by little, somewhat more cautiously than we have done with the simpler procedures of TEX. Here
is the general outline.

⟨Declare subprocedures for line break 874 ⟩
procedure line break (d : boolean);
label done , done1 , done2 , done3 , done4 , done5 , done6 , continue , restart ;
var ⟨Local variables for line breaking 910 ⟩
begin pack begin line ← mode line ; { this is for over/underfull box messages }
⟨Get ready to start line breaking 864 ⟩;
⟨Find optimal breakpoints 911 ⟩;
⟨Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and

append them to the current vertical list 924 ⟩;
⟨Clean up the memory by removing the break nodes 913 ⟩;
pack begin line ← 0;
end;

⟨Declare ε-TEX procedures for use by main control 1466 ⟩

378 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §864

864. The first task is to move the list from head to temp head and go into the enclosing semantic level.
We also append the \parfillskip glue to the end of the paragraph, removing a space (or other glue node)
if it was there, since spaces usually precede blank lines and instances of ‘$$’. The par fill skip is preceded
by an infinite penalty, so it will never be considered as a potential breakpoint.
This code assumes that a glue node and a penalty node occupy the same number of mem words.

⟨Get ready to start line breaking 864 ⟩ ≡
link (temp head)← link (head);
if is char node (tail) then tail append (new penalty (inf penalty))
else if type (tail) ̸= glue node then tail append (new penalty (inf penalty))
else begin type (tail)← penalty node ; delete glue ref (glue ptr (tail)); flush node list (leader ptr (tail));

penalty (tail)← inf penalty ;
end;

link (tail)← new param glue (par fill skip code); last line fill ← link (tail);
init cur lang ← prev graf mod 2́00000 ; init l hyf ← prev graf div 2́0000000 ;
init r hyf ← (prev graf div 2́00000)mod 1́00 ; pop nest ;

See also sections 875, 882, and 896.

This code is used in section 863.

865. When looking for optimal line breaks, TEX creates a “break node” for each break that is feasible,
in the sense that there is a way to end a line at the given place without requiring any line to stretch more
than a given tolerance. A break node is characterized by three things: the position of the break (which is
a pointer to a glue node , math node , penalty node , or disc node); the ordinal number of the line that will
follow this breakpoint; and the fitness classification of the line that has just ended, i.e., tight fit , decent fit ,
loose fit , or very loose fit .

define tight fit = 3 { fitness classification for lines shrinking 0.5 to 1.0 of their shrinkability }
define loose fit = 1 { fitness classification for lines stretching 0.5 to 1.0 of their stretchability }
define very loose fit = 0 { fitness classification for lines stretching more than their stretchability }
define decent fit = 2 { fitness classification for all other lines }

866. The algorithm essentially determines the best possible way to achieve each feasible combination of
position, line, and fitness. Thus, it answers questions like, “What is the best way to break the opening
part of the paragraph so that the fourth line is a tight line ending at such-and-such a place?” However, the
fact that all lines are to be the same length after a certain point makes it possible to regard all sufficiently
large line numbers as equivalent, when the looseness parameter is zero, and this makes it possible for the
algorithm to save space and time.
An “active node” and a “passive node” are created in mem for each feasible breakpoint that needs to be

considered. Active nodes are three words long and passive nodes are two words long. We need active nodes
only for breakpoints near the place in the paragraph that is currently being examined, so they are recycled
within a comparatively short time after they are created.

§867 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 379

867. An active node for a given breakpoint contains six fields:

link points to the next node in the list of active nodes; the last active node has link = last active .

break node points to the passive node associated with this breakpoint.

line number is the number of the line that follows this breakpoint.

fitness is the fitness classification of the line ending at this breakpoint.

type is either hyphenated or unhyphenated , depending on whether this breakpoint is a disc node .

total demerits is the minimum possible sum of demerits over all lines leading from the beginning of the
paragraph to this breakpoint.

The value of link (active) points to the first active node on a linked list of all currently active nodes. This
list is in order by line number , except that nodes with line number > easy line may be in any order relative
to each other.

define active node size normal = 3 { number of words in normal active nodes }
define fitness ≡ subtype { very loose fit . . tight fit on final line for this break }
define break node ≡ rlink { pointer to the corresponding passive node }
define line number ≡ llink { line that begins at this breakpoint }
define total demerits (#) ≡ mem [#+ 2].int { the quantity that TEX minimizes }
define unhyphenated = 0 { the type of a normal active break node }
define hyphenated = 1 { the type of an active node that breaks at a disc node }
define last active ≡ active { the active list ends where it begins }

868. ⟨ Initialize the special list heads and constant nodes 838 ⟩ +≡
type (last active)← hyphenated ; line number (last active)← max halfword ; subtype (last active)← 0;

{ the subtype is never examined by the algorithm }

869. The passive node for a given breakpoint contains only four fields:

link points to the passive node created just before this one, if any, otherwise it is null .

cur break points to the position of this breakpoint in the horizontal list for the paragraph being broken.

prev break points to the passive node that should precede this one in an optimal path to this breakpoint.

serial is equal to n if this passive node is the nth one created during the current pass. (This field is used
only when printing out detailed statistics about the line-breaking calculations.)

There is a global variable called passive that points to the most recently created passive node. Another
global variable, printed node , is used to help print out the paragraph when detailed information about the
line-breaking computation is being displayed.

define passive node size = 2 { number of words in passive nodes }
define cur break ≡ rlink { in passive node, points to position of this breakpoint }
define prev break ≡ llink { points to passive node that should precede this one }
define serial ≡ info { serial number for symbolic identification }

⟨Global variables 13 ⟩ +≡
passive : pointer ; {most recent node on passive list }
printed node : pointer ; {most recent node that has been printed }
pass number : halfword ; { the number of passive nodes allocated on this pass }

380 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §870

870. The active list also contains “delta” nodes that help the algorithm compute the badness of individual
lines. Such nodes appear only between two active nodes, and they have type = delta node . If p and r are
active nodes and if q is a delta node between them, so that link (p) = q and link (q) = r, then q tells the
space difference between lines in the horizontal list that start after breakpoint p and lines that start after
breakpoint r. In other words, if we know the length of the line that starts after p and ends at our current
position, then the corresponding length of the line that starts after r is obtained by adding the amounts in
node q. A delta node contains six scaled numbers, since it must record the net change in glue stretchability
with respect to all orders of infinity. The natural width difference appears in mem [q + 1].sc ; the stretch
differences in units of pt, fil, fill, and filll appear in mem [q+2 . . q+5].sc ; and the shrink difference appears
in mem [q + 6].sc . The subtype field of a delta node is not used.

define delta node size = 7 { number of words in a delta node }
define delta node = 2 { type field in a delta node }

871. As the algorithm runs, it maintains a set of six delta-like registers for the length of the line following
the first active breakpoint to the current position in the given hlist. When it makes a pass through the active
list, it also maintains a similar set of six registers for the length following the active breakpoint of current
interest. A third set holds the length of an empty line (namely, the sum of \leftskip and \rightskip);
and a fourth set is used to create new delta nodes.
When we pass a delta node we want to do operations like

for k ← 1 to 6 do cur active width [k]← cur active width [k] +mem [q + k].sc ;

and we want to do this without the overhead of for loops. The do all six macro makes such six-tuples
convenient.

define do all six (#) ≡ #(1); #(2); #(3); #(4); #(5); #(6)

⟨Global variables 13 ⟩ +≡
active width : array [1 . . 6] of scaled ; { distance from first active node to cur p }
cur active width : array [1 . . 6] of scaled ; { distance from current active node }
background : array [1 . . 6] of scaled ; { length of an “empty” line }
break width : array [1 . . 6] of scaled ; { length being computed after current break }

§872 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 381

872. Let’s state the principles of the delta nodes more precisely and concisely, so that the following
programs will be less obscure. For each legal breakpoint p in the paragraph, we define two quantities α(p)
and β(p) such that the length of material in a line from breakpoint p to breakpoint q is γ + β(q)− α(p), for
some fixed γ. Intuitively, α(p) and β(q) are the total length of material from the beginning of the paragraph
to a point “after” a break at p and to a point “before” a break at q; and γ is the width of an empty line,
namely the length contributed by \leftskip and \rightskip.

Suppose, for example, that the paragraph consists entirely of alternating boxes and glue skips; let
the boxes have widths x1 . . . xn and let the skips have widths y1 . . . yn, so that the paragraph can be
represented by x1y1 . . . xnyn. Let pi be the legal breakpoint at yi; then α(pi) = x1 + y1 + · · · + xi + yi,
and β(pi) = x1 + y1 + · · · + xi. To check this, note that the length of material from p2 to p5, say, is
γ + x3 + y3 + x4 + y4 + x5 = γ + β(p5)− α(p2).
The quantities α, β, γ involve glue stretchability and shrinkability as well as a natural width. If we were

to compute α(p) and β(p) for each p, we would need multiple precision arithmetic, and the multiprecise
numbers would have to be kept in the active nodes. TEX avoids this problem by working entirely with
relative differences or “deltas.” Suppose, for example, that the active list contains a1 δ1 a2 δ2 a3, where the
a’s are active breakpoints and the δ’s are delta nodes. Then δ1 = α(a1) − α(a2) and δ2 = α(a2) − α(a3).
If the line breaking algorithm is currently positioned at some other breakpoint p, the active width array
contains the value γ + β(p) − α(a1). If we are scanning through the list of active nodes and considering a
tentative line that runs from a2 to p, say, the cur active width array will contain the value γ+ β(p)−α(a2).
Thus, when we move from a2 to a3, we want to add α(a2) − α(a3) to cur active width ; and this is just δ2,
which appears in the active list between a2 and a3. The background array contains γ. The break width array
will be used to calculate values of new delta nodes when the active list is being updated.

873. Glue nodes in a horizontal list that is being paragraphed are not supposed to include “infinite”
shrinkability; that is why the algorithm maintains four registers for stretching but only one for shrinking. If
the user tries to introduce infinite shrinkability, the shrinkability will be reset to finite and an error message
will be issued. A boolean variable no shrink error yet prevents this error message from appearing more than
once per paragraph.

define check shrinkage (#) ≡
if (shrink order (#) ̸= normal) ∧ (shrink (#) ̸= 0) then
begin #← finite shrink (#);
end

⟨Global variables 13 ⟩ +≡
no shrink error yet : boolean ; { have we complained about infinite shrinkage? }

382 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §874

874. ⟨Declare subprocedures for line break 874 ⟩ ≡
function finite shrink (p : pointer): pointer ; { recovers from infinite shrinkage }
var q: pointer ; { new glue specification }
begin if no shrink error yet then
begin no shrink error yet ← false ;
stat if tracing paragraphs > 0 then end diagnostic(true);
tats print err ("Infinite␣glue␣shrinkage␣found␣in␣a␣paragraph");
help5 ("The␣paragraph␣just␣ended␣includes␣some␣glue␣that␣has")
("infinite␣shrinkability,␣e.g.,␣`\hskip␣0pt␣minus␣1fil´.")
("Such␣glue␣doesn´t␣belong␣there−−−it␣allows␣a␣paragraph")
("of␣any␣length␣to␣fit␣on␣one␣line.␣But␣it´s␣safe␣to␣proceed,")
("since␣the␣offensive␣shrinkability␣has␣been␣made␣finite."); error ;
stat if tracing paragraphs > 0 then begin diagnostic ;
tats
end;

q ← new spec(p); shrink order (q)← normal ; delete glue ref (p); finite shrink ← q;
end;

See also sections 877, 925, 944, and 996.

This code is used in section 863.

875. ⟨Get ready to start line breaking 864 ⟩ +≡
no shrink error yet ← true ;
check shrinkage (left skip); check shrinkage (right skip);
q ← left skip ; r ← right skip ; background [1]← width (q) + width (r);
background [2]← 0; background [3]← 0; background [4]← 0; background [5]← 0;
background [2 + stretch order (q)]← stretch (q);
background [2 + stretch order (r)]← background [2 + stretch order (r)] + stretch (r);
background [6]← shrink (q) + shrink (r); ⟨Check for special treatment of last line of paragraph 1654 ⟩;

876. A pointer variable cur p runs through the given horizontal list as we look for breakpoints. This
variable is global, since it is used both by line break and by its subprocedure try break .

Another global variable called threshold is used to determine the feasibility of individual lines: Breakpoints
are feasible if there is a way to reach them without creating lines whose badness exceeds threshold . (The
badness is compared to threshold before penalties are added, so that penalty values do not affect the feasibility
of breakpoints, except that no break is allowed when the penalty is 10000 or more.) If threshold is 10000
or more, all legal breaks are considered feasible, since the badness function specified above never returns a
value greater than 10000.
Up to three passes might be made through the paragraph in an attempt to find at least one set of feasible

breakpoints. On the first pass, we have threshold = pretolerance and second pass = final pass = false .
If this pass fails to find a feasible solution, threshold is set to tolerance , second pass is set true , and an
attempt is made to hyphenate as many words as possible. If that fails too, we add emergency stretch to the
background stretchability and set final pass = true .

⟨Global variables 13 ⟩ +≡
cur p : pointer ; { the current breakpoint under consideration }
second pass : boolean ; { is this our second attempt to break this paragraph? }
final pass : boolean ; { is this our final attempt to break this paragraph? }
threshold : integer ; {maximum badness on feasible lines }

§877 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 383

877. The heart of the line-breaking procedure is ‘try break ’, a subroutine that tests if the current breakpoint
cur p is feasible, by running through the active list to see what lines of text can be made from active nodes
to cur p . If feasible breaks are possible, new break nodes are created. If cur p is too far from an active
node, that node is deactivated.
The parameter pi to try break is the penalty associated with a break at cur p ; we have pi = eject penalty

if the break is forced, and pi = inf penalty if the break is illegal.
The other parameter, break type , is set to hyphenated or unhyphenated , depending on whether or not

the current break is at a disc node . The end of a paragraph is also regarded as ‘hyphenated ’; this case is
distinguishable by the condition cur p = null .

define copy to cur active (#) ≡ cur active width [#]← active width [#]
define deactivate = 60 { go here when node r should be deactivated }
define cp skipable (#) ≡ { skipable nodes at the margins during character protrusion }

(¬is char node (#) ∧ ((type (#) = ins node) ∨ (type (#) = mark node) ∨ (type (#) =
adjust node) ∨ (type (#) = penalty node) ∨ ((type (#) = disc node) ∧ (pre break (#) =
null) ∧ (post break (#) = null) ∧ (replace count (#) = 0)) { an empty disc node }

∨((type (#) = math node) ∧ (width (#) = 0)) ∨ ((type (#) = kern node) ∧ ((width (#) =
0)∨ (subtype (#) = normal)))∨ ((type (#) = glue node)∧ (glue ptr (#) = zero glue))∨ ((type (#) =
hlist node) ∧ (width (#) = 0) ∧ (height (#) = 0) ∧ (depth (#) = 0) ∧ (list ptr (#) = null))))

⟨Declare subprocedures for line break 874 ⟩ +≡
procedure push node (p : pointer);
begin if hlist stack level > max hlist stack then pdf error ("push_node", "stack␣overflow");
hlist stack [hlist stack level]← p; hlist stack level ← hlist stack level + 1;
end;

function pop node : pointer ;
begin hlist stack level ← hlist stack level − 1;
if hlist stack level < 0 then {would point to some bug }
pdf error ("pop_node", "stack␣underflow␣(internal␣error)");

pop node ← hlist stack [hlist stack level];
end;

function find protchar left (l : pointer ; d : boolean): pointer ;
{ searches left to right from list head l, returns 1st non-skipable item }

var t: pointer ; run : boolean ;
begin if (link (l) ̸= null) ∧ (type (l) = hlist node) ∧ (width (l) = 0) ∧ (height (l) = 0) ∧ (depth (l) =

0) ∧ (list ptr (l) = null) then l← link (l) { for paragraph start with \parindent = 0pt }
else if d then

while (link (l) ̸= null) ∧ (¬(is char node (l) ∨ non discardable (l))) do l← link (l);
{ std. discardables at line break, TEXbook, p 95 }

hlist stack level ← 0; run ← true ;
repeat t← l;
while run ∧ (type (l) = hlist node) ∧ (list ptr (l) ̸= null) do

begin push node (l); l← list ptr (l);
end;

while run ∧ cp skipable (l) do
begin while (link (l) = null) ∧ (hlist stack level > 0) do

begin l← pop node ; { don’t visit this node again }
end;

if link (l) ̸= null then l← link (l)
else if hlist stack level = 0 then run ← false
end;

until t = l;
find protchar left ← l;
end;

384 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §877

function find protchar right (l, r : pointer): pointer ;
{ searches right to left from list tail r to head l, returns 1st non-skipable item }

var t: pointer ; run : boolean ;
begin find protchar right ← null ;
if r = null then return;
hlist stack level ← 0; run ← true ;
repeat t← r;
while run ∧ (type (r) = hlist node) ∧ (list ptr (r) ̸= null) do

begin push node (l); push node (r); l← list ptr (r); r ← l;
while link (r) ̸= null do r ← link (r);
end;

while run ∧ cp skipable (r) do
begin while (r = l) ∧ (hlist stack level > 0) do
begin r ← pop node ; { don’t visit this node again }
l← pop node ;
end;

if (r ̸= l) ∧ (r ̸= null) then r ← prev rightmost (l, r)
else if (r = l) ∧ (hlist stack level = 0) then run ← false
end;

until t = r;
find protchar right ← r;
end;

function total pw (q, p : pointer): scaled ;
{ returns the total width of character protrusion of a line; cur break (break node (q)) and p is the
leftmost resp. rightmost node in the horizontal list representing the actual line }

var l, r: pointer ; n: integer ;
begin if break node (q) = null then l← first p
else l← cur break (break node (q));
r ← prev rightmost (global prev p , p); { get link (r) = p }
{ let’s look at the right margin first }

if (p ̸= null) ∧ (type (p) = disc node) ∧ (pre break (p) ̸= null) then
{ a disc node with non-empty pre break , protrude the last char of pre break }

begin r ← pre break (p);
while link (r) ̸= null do r ← link (r);
end

else r ← find protchar right (l, r); { now the left margin }
if (l ̸= null) ∧ (type (l) = disc node) then
begin if post break (l) ̸= null then
begin l← post break (l); { protrude the first char }
goto done ;
end

else { discard replace count (l) nodes }
begin n← replace count (l); l← link (l);
while n > 0 do

begin if link (l) ̸= null then l← link (l);
decr (n);
end;

end;
end;

l← find protchar left (l, true);
done : total pw ← left pw (l) + right pw (r);
end;

§877 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 385

procedure try break (pi : integer ; break type : small number);
label exit , done , done1 , continue , deactivate , found ,not found ;
var r: pointer ; { runs through the active list }
prev r : pointer ; { stays a step behind r }
old l : halfword ; {maximum line number in current equivalence class of lines }
no break yet : boolean ; { have we found a feasible break at cur p? }
⟨Other local variables for try break 878 ⟩

begin ⟨Make sure that pi is in the proper range 879 ⟩;
no break yet ← true ; prev r ← active ; old l ← 0; do all six (copy to cur active);
loop begin continue : r ← link (prev r); ⟨ If node r is of type delta node , update cur active width , set

prev r and prev prev r , then goto continue 880 ⟩;
⟨ If a line number class has ended, create new active nodes for the best feasible breaks in that class;

then return if r = last active , otherwise compute the new line width 883 ⟩;
⟨Consider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active;

then goto continue if a line from r to cur p is infeasible, otherwise record a new feasible
break 899 ⟩;

end;
exit : stat ⟨Update the value of printed node for symbolic displays 906 ⟩ tats

end;

878. ⟨Other local variables for try break 878 ⟩ ≡
prev prev r : pointer ; { a step behind prev r , if type (prev r) = delta node }
s: pointer ; { runs through nodes ahead of cur p }
q: pointer ; { points to a new node being created }
v: pointer ; { points to a glue specification or a node ahead of cur p }
t: integer ; { node count, if cur p is a discretionary node }
f : internal font number ; { used in character width calculation }
l: halfword ; { line number of current active node }
node r stays active : boolean ; { should node r remain in the active list? }
line width : scaled ; { the current line will be justified to this width }
fit class : very loose fit . . tight fit ; { possible fitness class of test line }
b: halfword ; { badness of test line }
d: integer ; { demerits of test line }
artificial demerits : boolean ; { has d been forced to zero? }
save link : pointer ; { temporarily holds value of link (cur p) }
shortfall : scaled ; { used in badness calculations }
See also section 1655.

This code is used in section 877.

879. ⟨Make sure that pi is in the proper range 879 ⟩ ≡
if abs (pi) ≥ inf penalty then
if pi > 0 then return { this breakpoint is inhibited by infinite penalty }
else pi ← eject penalty { this breakpoint will be forced }

This code is used in section 877.

386 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §880

880. The following code uses the fact that type (last active) ̸= delta node .

define update width (#) ≡ cur active width [#]← cur active width [#] +mem [r + #].sc

⟨ If node r is of type delta node , update cur active width , set prev r and prev prev r , then goto
continue 880 ⟩ ≡

if type (r) = delta node then
begin do all six (update width); prev prev r ← prev r ; prev r ← r; goto continue ;
end

This code is used in section 877.

881. As we consider various ways to end a line at cur p , in a given line number class, we keep track of the
best total demerits known, in an array with one entry for each of the fitness classifications. For example,
minimal demerits [tight fit] contains the fewest total demerits of feasible line breaks ending at cur p with
a tight fit line; best place [tight fit] points to the passive node for the break before cur p that achieves
such an optimum; and best pl line [tight fit] is the line number field in the active node corresponding to
best place [tight fit]. When no feasible break sequence is known, the minimal demerits entries will be equal
to awful bad , which is 230 − 1. Another variable, minimum demerits , keeps track of the smallest value in
the minimal demerits array.

define awful bad ≡ 7́777777777 {more than a billion demerits }
⟨Global variables 13 ⟩ +≡
minimal demerits : array [very loose fit . . tight fit] of integer ;

{ best total demerits known for current line class and position, given the fitness }
minimum demerits : integer ; { best total demerits known for current line class and position }
best place : array [very loose fit . . tight fit] of pointer ; { how to achieve minimal demerits }
best pl line : array [very loose fit . . tight fit] of halfword ; { corresponding line number }

882. ⟨Get ready to start line breaking 864 ⟩ +≡
minimum demerits ← awful bad ; minimal demerits [tight fit]← awful bad ;
minimal demerits [decent fit]← awful bad ; minimal demerits [loose fit]← awful bad ;
minimal demerits [very loose fit]← awful bad ;

883. The first part of the following code is part of TEX’s inner loop, so we don’t want to waste any time.
The current active node, namely node r, contains the line number that will be considered next. At the end
of the list we have arranged the data structure so that r = last active and line number (last active) > old l .

⟨ If a line number class has ended, create new active nodes for the best feasible breaks in that class; then
return if r = last active , otherwise compute the new line width 883 ⟩ ≡

begin l← line number (r);
if l > old l then
begin { now we are no longer in the inner loop }
if (minimum demerits < awful bad) ∧ ((old l ̸= easy line) ∨ (r = last active)) then
⟨Create new active nodes for the best feasible breaks just found 884 ⟩;

if r = last active then return;
⟨Compute the new line width 898 ⟩;
end;

end

This code is used in section 877.

§884 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 387

884. It is not necessary to create new active nodes having minimal demerits greater than
minimum demerits + abs (adj demerits), since such active nodes will never be chosen in the final
paragraph breaks. This observation allows us to omit a substantial number of feasible breakpoints from
further consideration.

⟨Create new active nodes for the best feasible breaks just found 884 ⟩ ≡
begin if no break yet then ⟨Compute the values of break width 885 ⟩;
⟨ Insert a delta node to prepare for breaks at cur p 891 ⟩;
if abs (adj demerits) ≥ awful bad −minimum demerits then minimum demerits ← awful bad − 1
else minimum demerits ← minimum demerits + abs (adj demerits);
for fit class ← very loose fit to tight fit do
begin if minimal demerits [fit class] ≤ minimum demerits then
⟨ Insert a new active node from best place [fit class] to cur p 893 ⟩;

minimal demerits [fit class]← awful bad ;
end;

minimum demerits ← awful bad ; ⟨ Insert a delta node to prepare for the next active node 892 ⟩;
end

This code is used in section 883.

885. When we insert a new active node for a break at cur p , suppose this new node is to be placed just
before active node a; then we essentially want to insert ‘δ cur p δ′’ before a, where δ = α(a)− α(cur p) and
δ′ = α(cur p)−α(a) in the notation explained above. The cur active width array now holds γ+ β(cur p)−
α(a); so δ can be obtained by subtracting cur active width from the quantity γ + β(cur p)− α(cur p). The
latter quantity can be regarded as the length of a line “from cur p to cur p”; we call it the break width at
cur p .
The break width is usually negative, since it consists of the background (which is normally zero) minus the

width of nodes following cur p that are eliminated after a break. If, for example, node cur p is a glue node,
the width of this glue is subtracted from the background; and we also look ahead to eliminate all subsequent
glue and penalty and kern and math nodes, subtracting their widths as well.
Kern nodes do not disappear at a line break unless they are explicit or space adjustment .

define set break width to background (#) ≡ break width [#]← background [#]

⟨Compute the values of break width 885 ⟩ ≡
begin no break yet ← false ; do all six (set break width to background); s← cur p ;
if break type > unhyphenated then
if cur p ̸= null then ⟨Compute the discretionary break width values 888 ⟩;

while s ̸= null do
begin if is char node (s) then goto done ;
case type (s) of
glue node : ⟨ Subtract glue from break width 886 ⟩;
penalty node : do nothing ;
math node : break width [1]← break width [1]− width (s);
kern node : if subtype (s) ̸= explicit then goto done

else break width [1]← break width [1]− width (s);
othercases goto done
endcases;
s← link (s);
end;

done : end

This code is used in section 884.

388 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §886

886. ⟨ Subtract glue from break width 886 ⟩ ≡
begin v ← glue ptr (s); break width [1]← break width [1]− width (v);
break width [2 + stretch order (v)]← break width [2 + stretch order (v)]− stretch (v);
break width [6]← break width [6]− shrink (v);
end

This code is used in section 885.

887. When cur p is a discretionary break, the length of a line “from cur p to cur p” has to be defined
properly so that the other calculations work out. Suppose that the pre-break text at cur p has length l0,
the post-break text has length l1, and the replacement text has length l. Suppose also that q is the node
following the replacement text. Then length of a line from cur p to q will be computed as γ+β(q)−α(cur p),
where β(q) = β(cur p)− l0 + l. The actual length will be the background plus l1, so the length from cur p
to cur p should be γ + l0 + l1 − l. If the post-break text of the discretionary is empty, a break may also
discard q; in that unusual case we subtract the length of q and any other nodes that will be discarded after
the discretionary break.
The value of l0 need not be computed, since line break will put it into the global variable disc width before

calling try break .

⟨Global variables 13 ⟩ +≡
disc width : scaled ; { the length of discretionary material preceding a break }

888. ⟨Compute the discretionary break width values 888 ⟩ ≡
begin t← replace count (cur p); v ← cur p ; s← post break (cur p);
while t > 0 do
begin decr (t); v ← link (v); ⟨ Subtract the width of node v from break width 889 ⟩;
end;

while s ̸= null do
begin ⟨Add the width of node s to break width 890 ⟩;
s← link (s);
end;

break width [1]← break width [1] + disc width ;
if post break (cur p) = null then s← link (v); { nodes may be discardable after the break }
end

This code is used in section 885.

889. Replacement texts and discretionary texts are supposed to contain only character nodes, kern nodes,
ligature nodes, and box or rule nodes.

⟨ Subtract the width of node v from break width 889 ⟩ ≡
if is char node (v) then
begin f ← font (v); break width [1]← break width [1]− char width (f)(char info(f)(character (v)));
end

else case type (v) of
ligature node : begin f ← font (lig char (v));
xtx ligature present ← true ;
break width [1]← break width [1]− char width (f)(char info(f)(character (lig char (v))));
end;

hlist node , vlist node , rule node , kern node : break width [1]← break width [1]− width (v);
whatsit node : if (is native word subtype (v)) ∨ (subtype (v) = glyph node) ∨ (subtype (v) =

pic node) ∨ (subtype (v) = pdf node) then break width [1]← break width [1]− width (v)
else confusion ("disc1a");

othercases confusion ("disc1")
endcases

This code is used in section 888.

§890 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 389

890. ⟨Add the width of node s to break width 890 ⟩ ≡
if is char node (s) then
begin f ← font (s); break width [1]← break width [1] + char width (f)(char info(f)(character (s)));
end

else case type (s) of
ligature node : begin f ← font (lig char (s)); xtx ligature present ← true ;

break width [1]← break width [1] + char width (f)(char info(f)(character (lig char (s))));
end;

hlist node , vlist node , rule node , kern node : break width [1]← break width [1] + width (s);
whatsit node : if (is native word subtype (s)) ∨ (subtype (s) = glyph node) ∨ (subtype (s) =

pic node) ∨ (subtype (s) = pdf node) then break width [1]← break width [1] + width (s)
else confusion ("disc2a");

othercases confusion ("disc2")
endcases

This code is used in section 888.

891. We use the fact that type (active) ̸= delta node .

define convert to break width (#) ≡ mem [prev r + #].sc ←
mem [prev r + #].sc − cur active width [#] + break width [#]

define store break width (#) ≡ active width [#]← break width [#]
define new delta to break width (#) ≡ mem [q + #].sc ← break width [#]− cur active width [#]

⟨ Insert a delta node to prepare for breaks at cur p 891 ⟩ ≡
if type (prev r) = delta node then {modify an existing delta node }
begin do all six (convert to break width);
end

else if prev r = active then { no delta node needed at the beginning }
begin do all six (store break width);
end

else begin q ← get node (delta node size); link (q)← r; type (q)← delta node ;
subtype (q)← 0; { the subtype is not used }
do all six (new delta to break width); link (prev r)← q; prev prev r ← prev r ; prev r ← q;
end

This code is used in section 884.

892. When the following code is performed, we will have just inserted at least one active node before r,
so type (prev r) ̸= delta node .

define new delta from break width (#) ≡ mem [q + #].sc ← cur active width [#]− break width [#]

⟨ Insert a delta node to prepare for the next active node 892 ⟩ ≡
if r ̸= last active then
begin q ← get node (delta node size); link (q)← r; type (q)← delta node ;
subtype (q)← 0; { the subtype is not used }
do all six (new delta from break width); link (prev r)← q; prev prev r ← prev r ; prev r ← q;
end

This code is used in section 884.

390 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §893

893. When we create an active node, we also create the corresponding passive node.

⟨ Insert a new active node from best place [fit class] to cur p 893 ⟩ ≡
begin q ← get node (passive node size); link (q)← passive ; passive ← q; cur break (q)← cur p ;
stat incr (pass number); serial (q)← pass number ; tats
prev break (q)← best place [fit class];
q ← get node (active node size); break node (q)← passive ; line number (q)← best pl line [fit class] + 1;
fitness (q)← fit class ; type (q)← break type ; total demerits (q)← minimal demerits [fit class];
if do last line fit then ⟨ Store additional data in the new active node 1662 ⟩;
link (q)← r; link (prev r)← q; prev r ← q;
stat if tracing paragraphs > 0 then ⟨Print a symbolic description of the new break node 894 ⟩;
tats
end

This code is used in section 884.

894. ⟨Print a symbolic description of the new break node 894 ⟩ ≡
begin print nl ("@@"); print int (serial (passive)); print (":␣line␣"); print int (line number (q)− 1);
print char ("."); print int (fit class);
if break type = hyphenated then print char ("−");
print ("␣t="); print int (total demerits (q));
if do last line fit then ⟨Print additional data in the new active node 1663 ⟩;
print ("␣−>␣@@");
if prev break (passive) = null then print char ("0")
else print int (serial (prev break (passive)));
end

This code is used in section 893.

895. The length of lines depends on whether the user has specified \parshape or \hangindent. If
par shape ptr is not null, it points to a (2n + 1)-word record in mem , where the info in the first word
contains the value of n, and the other 2n words contain the left margins and line lengths for the first n lines
of the paragraph; the specifications for line n apply to all subsequent lines. If par shape ptr = null , the
shape of the paragraph depends on the value of n = hang after ; if n ≥ 0, hanging indentation takes place
on lines n + 1, n + 2, . . . , otherwise it takes place on lines 1, . . . , |n|. When hanging indentation is active,
the left margin is hang indent , if hang indent ≥ 0, else it is 0; the line length is hsize − |hang indent |. The
normal setting is par shape ptr = null , hang after = 1, and hang indent = 0. Note that if hang indent = 0,
the value of hang after is irrelevant.

⟨Global variables 13 ⟩ +≡
easy line : halfword ; { line numbers > easy line are equivalent in break nodes }
last special line : halfword ; { line numbers > last special line all have the same width }
first width : scaled ; { the width of all lines ≤ last special line , if no \parshape has been specified }
second width : scaled ; { the width of all lines > last special line }
first indent : scaled ; { left margin to go with first width }
second indent : scaled ; { left margin to go with second width }

§896 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 391

896. We compute the values of easy line and the other local variables relating to line length when the
line break procedure is initializing itself.

⟨Get ready to start line breaking 864 ⟩ +≡
if par shape ptr = null then
if hang indent = 0 then

begin last special line ← 0; second width ← hsize ; second indent ← 0;
end

else ⟨ Set line length parameters in preparation for hanging indentation 897 ⟩
else begin last special line ← info(par shape ptr)− 1;
second width ← mem [par shape ptr + 2 ∗ (last special line + 1)].sc ;
second indent ← mem [par shape ptr + 2 ∗ last special line + 1].sc ;
end;

if looseness = 0 then easy line ← last special line
else easy line ← max halfword

897. ⟨ Set line length parameters in preparation for hanging indentation 897 ⟩ ≡
begin last special line ← abs (hang after);
if hang after < 0 then
begin first width ← hsize − abs (hang indent);
if hang indent ≥ 0 then first indent ← hang indent
else first indent ← 0;
second width ← hsize ; second indent ← 0;
end

else begin first width ← hsize ; first indent ← 0; second width ← hsize − abs (hang indent);
if hang indent ≥ 0 then second indent ← hang indent
else second indent ← 0;
end;

end

This code is used in section 896.

898. When we come to the following code, we have just encountered the first active node r whose
line number field contains l. Thus we want to compute the length of the lth line of the current paragraph.
Furthermore, we want to set old l to the last number in the class of line numbers equivalent to l.

⟨Compute the new line width 898 ⟩ ≡
if l > easy line then
begin line width ← second width ; old l ← max halfword − 1;
end

else begin old l ← l;
if l > last special line then line width ← second width
else if par shape ptr = null then line width ← first width

else line width ← mem [par shape ptr + 2 ∗ l].sc ;
end

This code is used in section 883.

392 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §899

899. The remaining part of try break deals with the calculation of demerits for a break from r to cur p .
The first thing to do is calculate the badness, b. This value will always be between zero and inf bad + 1;

the latter value occurs only in the case of lines from r to cur p that cannot shrink enough to fit the necessary
width. In such cases, node r will be deactivated. We also deactivate node r when a break at cur p is forced,
since future breaks must go through a forced break.

⟨Consider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active; then
goto continue if a line from r to cur p is infeasible, otherwise record a new feasible break 899 ⟩ ≡

begin artificial demerits ← false ;
shortfall ← line width − cur active width [1]; {we’re this much too short }
if XeTeX protrude chars > 1 then shortfall ← shortfall + total pw (r, cur p);
if shortfall > 0 then
⟨ Set the value of b to the badness for stretching the line, and compute the corresponding fit class 900 ⟩

else ⟨ Set the value of b to the badness for shrinking the line, and compute the corresponding
fit class 901 ⟩;

if do last line fit then ⟨Adjust the additional data for last line 1660 ⟩;
found : if (b > inf bad) ∨ (pi = eject penalty) then ⟨Prepare to deactivate node r, and goto deactivate

unless there is a reason to consider lines of text from r to cur p 902 ⟩
else begin prev r ← r;
if b > threshold then goto continue ;
node r stays active ← true ;
end;
⟨Record a new feasible break 903 ⟩;
if node r stays active then goto continue ; { prev r has been set to r }

deactivate : ⟨Deactivate node r 908 ⟩;
end

This code is used in section 877.

§900 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 393

900. When a line must stretch, the available stretchability can be found in the subarray
cur active width [2 . . 5], in units of points, fil, fill, and filll.
The present section is part of TEX’s inner loop, and it is most often performed when the badness is infinite;

therefore it is worth while to make a quick test for large width excess and small stretchability, before calling
the badness subroutine.

⟨ Set the value of b to the badness for stretching the line, and compute the corresponding fit class 900 ⟩ ≡
if (cur active width [3] ̸= 0) ∨ (cur active width [4] ̸= 0) ∨ (cur active width [5] ̸= 0) then
begin if do last line fit then

begin if cur p = null then { the last line of a paragraph }
⟨Perform computations for last line and goto found 1657 ⟩;

shortfall ← 0;
end;

b← 0; fit class ← decent fit ; { infinite stretch }
end

else begin if shortfall > 7230584 then
if cur active width [2] < 1663497 then

begin b← inf bad ; fit class ← very loose fit ; goto done1 ;
end;

b← badness (shortfall , cur active width [2]);
if b > 12 then
if b > 99 then fit class ← very loose fit
else fit class ← loose fit

else fit class ← decent fit ;
done1 : end

This code is used in section 899.

901. Shrinkability is never infinite in a paragraph; we can shrink the line from r to cur p by at most
cur active width [6].

⟨ Set the value of b to the badness for shrinking the line, and compute the corresponding fit class 901 ⟩ ≡
begin if −shortfall > cur active width [6] then b← inf bad + 1
else b← badness (−shortfall , cur active width [6]);
if b > 12 then fit class ← tight fit else fit class ← decent fit ;
end

This code is used in section 899.

902. During the final pass, we dare not lose all active nodes, lest we lose touch with the line breaks already
found. The code shown here makes sure that such a catastrophe does not happen, by permitting overfull
boxes as a last resort. This particular part of TEX was a source of several subtle bugs before the correct
program logic was finally discovered; readers who seek to “improve” TEX should therefore think thrice before
daring to make any changes here.

⟨Prepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from r
to cur p 902 ⟩ ≡

begin if final pass ∧ (minimum demerits = awful bad)∧ (link (r) = last active)∧ (prev r = active) then
artificial demerits ← true { set demerits zero, this break is forced }

else if b > threshold then goto deactivate ;
node r stays active ← false ;
end

This code is used in section 899.

394 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §903

903. When we get to this part of the code, the line from r to cur p is feasible, its badness is b, and
its fitness classification is fit class . We don’t want to make an active node for this break yet, but we will
compute the total demerits and record them in the minimal demerits array, if such a break is the current
champion among all ways to get to cur p in a given line-number class and fitness class.

⟨Record a new feasible break 903 ⟩ ≡
if artificial demerits then d← 0
else ⟨Compute the demerits, d, from r to cur p 907 ⟩;
stat if tracing paragraphs > 0 then ⟨Print a symbolic description of this feasible break 904 ⟩;
tats
d← d+ total demerits (r); { this is the minimum total demerits from the beginning to cur p via r }
if d ≤ minimal demerits [fit class] then
begin minimal demerits [fit class]← d; best place [fit class]← break node (r); best pl line [fit class]← l;
if do last line fit then ⟨ Store additional data for this feasible break 1661 ⟩;
if d < minimum demerits then minimum demerits ← d;
end

This code is used in section 899.

904. ⟨Print a symbolic description of this feasible break 904 ⟩ ≡
begin if printed node ̸= cur p then
⟨Print the list between printed node and cur p , then set printed node ← cur p 905 ⟩;

print nl ("@");
if cur p = null then print esc("par")
else if type (cur p) ̸= glue node then

begin if type (cur p) = penalty node then print esc("penalty")
else if type (cur p) = disc node then print esc("discretionary")

else if type (cur p) = kern node then print esc("kern")
else print esc("math");

end;
print ("␣via␣@@");
if break node (r) = null then print char ("0")
else print int (serial (break node (r)));
print ("␣b=");
if b > inf bad then print char ("*") else print int (b);
print ("␣p="); print int (pi); print ("␣d=");
if artificial demerits then print char ("*") else print int (d);
end

This code is used in section 903.

905. ⟨Print the list between printed node and cur p , then set printed node ← cur p 905 ⟩ ≡
begin print nl ("");
if cur p = null then short display (link (printed node))
else begin save link ← link (cur p); link (cur p)← null ; print nl ("");
short display (link (printed node)); link (cur p)← save link ;
end;

printed node ← cur p ;
end

This code is used in section 904.

§906 X ETEX PART 38: BREAKING PARAGRAPHS INTO LINES 395

906. When the data for a discretionary break is being displayed, we will have printed the pre break and
post break lists; we want to skip over the third list, so that the discretionary data will not appear twice. The
following code is performed at the very end of try break .

⟨Update the value of printed node for symbolic displays 906 ⟩ ≡
if cur p = printed node then
if cur p ̸= null then
if type (cur p) = disc node then

begin t← replace count (cur p);
while t > 0 do
begin decr (t); printed node ← link (printed node);
end;

end

This code is used in section 877.

907. ⟨Compute the demerits, d, from r to cur p 907 ⟩ ≡
begin d← line penalty + b;
if abs (d) ≥ 10000 then d← 100000000 else d← d ∗ d;
if pi ̸= 0 then
if pi > 0 then d← d+ pi ∗ pi
else if pi > eject penalty then d← d− pi ∗ pi ;

if (break type = hyphenated) ∧ (type (r) = hyphenated) then
if cur p ̸= null then d← d+ double hyphen demerits
else d← d+ final hyphen demerits ;

if abs (fit class − fitness (r)) > 1 then d← d+ adj demerits ;
end

This code is used in section 903.

908. When an active node disappears, we must delete an adjacent delta node if the active node was at the
beginning or the end of the active list, or if it was surrounded by delta nodes. We also must preserve the
property that cur active width represents the length of material from link (prev r) to cur p .

define combine two deltas (#) ≡ mem [prev r + #].sc ← mem [prev r + #].sc +mem [r + #].sc
define downdate width (#) ≡ cur active width [#]← cur active width [#]−mem [prev r + #].sc

⟨Deactivate node r 908 ⟩ ≡
link (prev r)← link (r); free node (r, active node size);
if prev r = active then ⟨Update the active widths, since the first active node has been deleted 909 ⟩
else if type (prev r) = delta node then

begin r ← link (prev r);
if r = last active then

begin do all six (downdate width); link (prev prev r)← last active ;
free node (prev r , delta node size); prev r ← prev prev r ;
end

else if type (r) = delta node then
begin do all six (update width); do all six (combine two deltas); link (prev r)← link (r);
free node (r, delta node size);
end;

end

This code is used in section 899.

396 PART 38: BREAKING PARAGRAPHS INTO LINES X ETEX §909

909. The following code uses the fact that type (last active) ̸= delta node . If the active list has just become
empty, we do not need to update the active width array, since it will be initialized when an active node is
next inserted.

define update active (#) ≡ active width [#]← active width [#] +mem [r + #].sc

⟨Update the active widths, since the first active node has been deleted 909 ⟩ ≡
begin r ← link (active);
if type (r) = delta node then
begin do all six (update active); do all six (copy to cur active); link (active)← link (r);
free node (r, delta node size);
end;

end

This code is used in section 908.

§910 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 397

910. Breaking paragraphs into lines, continued. So far we have gotten a little way into the
line break routine, having covered its important try break subroutine. Now let’s consider the rest of the
process.
The main loop of line break traverses the given hlist, starting at link (temp head), and calls try break at

each legal breakpoint. A variable called auto breaking is set to true except within math formulas, since glue
nodes are not legal breakpoints when they appear in formulas.
The current node of interest in the hlist is pointed to by cur p . Another variable, prev p , is usually one

step behind cur p , but the real meaning of prev p is this: If type (cur p) = glue node then cur p is a legal
breakpoint if and only if auto breaking is true and prev p does not point to a glue node, penalty node,
explicit kern node, or math node.
The following declarations provide for a few other local variables that are used in special calculations.

⟨Local variables for line breaking 910 ⟩ ≡
auto breaking : boolean ; { is node cur p outside a formula? }
prev p : pointer ; { helps to determine when glue nodes are breakpoints }
q, r, s, prev s : pointer ; {miscellaneous nodes of temporary interest }
f : internal font number ; { used when calculating character widths }
See also sections 942 and 948.

This code is used in section 863.

398 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §911

911. The ‘loop’ in the following code is performed at most thrice per call of line break , since it is actually
a pass over the entire paragraph.

define update prev p ≡
begin prev p ← cur p ; global prev p ← cur p ;
end

⟨Find optimal breakpoints 911 ⟩ ≡
threshold ← pretolerance ;
if threshold ≥ 0 then
begin stat if tracing paragraphs > 0 then
begin begin diagnostic ; print nl ("@firstpass"); end; tats

second pass ← false ; final pass ← false ;
end

else begin threshold ← tolerance ; second pass ← true ; final pass ← (emergency stretch ≤ 0);
stat if tracing paragraphs > 0 then begin diagnostic ;
tats
end;

loop begin if threshold > inf bad then threshold ← inf bad ;
if second pass then ⟨ Initialize for hyphenating a paragraph 939 ⟩;
⟨Create an active breakpoint representing the beginning of the paragraph 912 ⟩;
cur p ← link (temp head); auto breaking ← true ;
update prev p ; { glue at beginning is not a legal breakpoint }
first p ← cur p ; { to access the first node of paragraph as the first active node has break node = null }
while (cur p ̸= null) ∧ (link (active) ̸= last active) do ⟨Call try break if cur p is a legal breakpoint;

on the second pass, also try to hyphenate the next word, if cur p is a glue node; then advance
cur p to the next node of the paragraph that could possibly be a legal breakpoint 914 ⟩;

if cur p = null then ⟨Try the final line break at the end of the paragraph, and goto done if the
desired breakpoints have been found 921 ⟩;

⟨Clean up the memory by removing the break nodes 913 ⟩;
if ¬second pass then

begin stat if tracing paragraphs > 0 then print nl ("@secondpass"); tats
threshold ← tolerance ; second pass ← true ; final pass ← (emergency stretch ≤ 0);
end { if at first you don’t succeed, . . . }

else begin stat if tracing paragraphs > 0 then print nl ("@emergencypass"); tats
background [2]← background [2] + emergency stretch ; final pass ← true ;
end;

end;
done : stat if tracing paragraphs > 0 then

begin end diagnostic(true); normalize selector ;
end;

tats
if do last line fit then ⟨Adjust the final line of the paragraph 1664 ⟩;

This code is used in section 863.

§912 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 399

912. The active node that represents the starting point does not need a corresponding passive node.

define store background (#) ≡ active width [#]← background [#]

⟨Create an active breakpoint representing the beginning of the paragraph 912 ⟩ ≡
q ← get node (active node size); type (q)← unhyphenated ; fitness (q)← decent fit ; link (q)← last active ;
break node (q)← null ; line number (q)← prev graf + 1; total demerits (q)← 0; link (active)← q;
if do last line fit then ⟨ Initialize additional fields of the first active node 1656 ⟩;
do all six (store background);
passive ← null ; printed node ← temp head ; pass number ← 0; font in short display ← null font

This code is used in section 911.

913. ⟨Clean up the memory by removing the break nodes 913 ⟩ ≡
q ← link (active);
while q ̸= last active do
begin cur p ← link (q);
if type (q) = delta node then free node (q, delta node size)
else free node (q, active node size);
q ← cur p ;
end;

q ← passive ;
while q ̸= null do
begin cur p ← link (q); free node (q, passive node size); q ← cur p ;
end

This code is used in sections 863 and 911.

400 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §914

914. Here is the main switch in the line break routine, where legal breaks are determined. As we move
through the hlist, we need to keep the active width array up to date, so that the badness of individual lines
is readily calculated by try break . It is convenient to use the short name act width for the component of
active width that represents real width as opposed to glue.

define act width ≡ active width [1] { length from first active node to current node }
define kern break ≡

begin if ¬is char node (link (cur p)) ∧ auto breaking then
if type (link (cur p)) = glue node then try break (0, unhyphenated);

act width ← act width + width (cur p);
end

⟨Call try break if cur p is a legal breakpoint; on the second pass, also try to hyphenate the next word, if
cur p is a glue node; then advance cur p to the next node of the paragraph that could possibly be a
legal breakpoint 914 ⟩ ≡

begin if is char node (cur p) then
⟨Advance cur p to the node following the present string of characters 915 ⟩;

case type (cur p) of
hlist node , vlist node , rule node : act width ← act width + width (cur p);
whatsit node : ⟨Advance past a whatsit node in the line break loop 1422 ⟩;
glue node : begin ⟨ If node cur p is a legal breakpoint, call try break ; then update the active widths by

including the glue in glue ptr (cur p) 916 ⟩;
if second pass ∧ auto breaking then ⟨Try to hyphenate the following word 943 ⟩;
end;

kern node : if subtype (cur p) = explicit then kern break
else act width ← act width + width (cur p);

ligature node : begin f ← font (lig char (cur p)); xtx ligature present ← true ;
act width ← act width + char width (f)(char info(f)(character (lig char (cur p))));
end;

disc node : ⟨Try to break after a discretionary fragment, then goto done5 917 ⟩;
math node : begin if subtype (cur p) < L code then auto breaking ← odd (subtype (cur p));
kern break ;
end;

penalty node : try break (penalty (cur p), unhyphenated);
mark node , ins node , adjust node : do nothing ;
othercases confusion ("paragraph")
endcases;
update prev p ; cur p ← link (cur p);

done5 : end

This code is used in section 911.

915. The code that passes over the characters of words in a paragraph is part of TEX’s inner loop, so it has
been streamlined for speed. We use the fact that ‘\parfillskip’ glue appears at the end of each paragraph;
it is therefore unnecessary to check if link (cur p) = null when cur p is a character node.

⟨Advance cur p to the node following the present string of characters 915 ⟩ ≡
begin update prev p ;
repeat f ← font (cur p); act width ← act width + char width (f)(char info(f)(character (cur p)));
cur p ← link (cur p);

until ¬is char node (cur p);
end

This code is used in section 914.

§916 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 401

916. When node cur p is a glue node, we look at prev p to see whether or not a breakpoint is legal at
cur p , as explained above.

⟨ If node cur p is a legal breakpoint, call try break ; then update the active widths by including the glue in
glue ptr (cur p) 916 ⟩ ≡

if auto breaking then
begin if is char node (prev p) then try break (0, unhyphenated)
else if precedes break (prev p) then try break (0, unhyphenated)
else if (type (prev p) = kern node) ∧ (subtype (prev p) ̸= explicit) then try break (0, unhyphenated);

end;
check shrinkage (glue ptr (cur p)); q ← glue ptr (cur p); act width ← act width + width (q);
active width [2 + stretch order (q)]← active width [2 + stretch order (q)] + stretch (q);
active width [6]← active width [6] + shrink (q)

This code is used in section 914.

917. The following code knows that discretionary texts contain only character nodes, kern nodes, box
nodes, rule nodes, and ligature nodes.

⟨Try to break after a discretionary fragment, then goto done5 917 ⟩ ≡
begin s← pre break (cur p); disc width ← 0;
if s = null then try break (ex hyphen penalty , hyphenated)
else begin repeat ⟨Add the width of node s to disc width 918 ⟩;

s← link (s);
until s = null ;
act width ← act width + disc width ; try break (hyphen penalty , hyphenated);
act width ← act width − disc width ;
end;

r ← replace count (cur p); s← link (cur p);
while r > 0 do
begin ⟨Add the width of node s to act width 919 ⟩;
decr (r); s← link (s);
end;

update prev p ; cur p ← s; goto done5 ;
end

This code is used in section 914.

918. ⟨Add the width of node s to disc width 918 ⟩ ≡
if is char node (s) then
begin f ← font (s); disc width ← disc width + char width (f)(char info(f)(character (s)));
end

else case type (s) of
ligature node : begin f ← font (lig char (s)); xtx ligature present ← true ;
disc width ← disc width + char width (f)(char info(f)(character (lig char (s))));
end;

hlist node , vlist node , rule node , kern node : disc width ← disc width + width (s);
whatsit node : if (is native word subtype (s)) ∨ (subtype (s) = glyph node) ∨ (subtype (s) =

pic node) ∨ (subtype (s) = pdf node) then disc width ← disc width + width (s)
else confusion ("disc3a");

othercases confusion ("disc3")
endcases

This code is used in section 917.

402 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §919

919. ⟨Add the width of node s to act width 919 ⟩ ≡
if is char node (s) then
begin f ← font (s); act width ← act width + char width (f)(char info(f)(character (s)));
end

else case type (s) of
ligature node : begin f ← font (lig char (s)); xtx ligature present ← true ;
act width ← act width + char width (f)(char info(f)(character (lig char (s))));
end;

hlist node , vlist node , rule node , kern node : act width ← act width + width (s);
whatsit node : if (is native word subtype (s)) ∨ (subtype (s) = glyph node) ∨ (subtype (s) =

pic node) ∨ (subtype (s) = pdf node) then act width ← act width + width (s)
else confusion ("disc4a");

othercases confusion ("disc4")
endcases

This code is used in section 917.

920. The forced line break at the paragraph’s end will reduce the list of breakpoints so that all active
nodes represent breaks at cur p = null . On the first pass, we insist on finding an active node that has the
correct “looseness.” On the final pass, there will be at least one active node, and we will match the desired
looseness as well as we can.
The global variable best bet will be set to the active node for the best way to break the paragraph, and a

few other variables are used to help determine what is best.

⟨Global variables 13 ⟩ +≡
best bet : pointer ; { use this passive node and its predecessors }
fewest demerits : integer ; { the demerits associated with best bet }
best line : halfword ; { line number following the last line of the new paragraph }
actual looseness : integer ; { the difference between line number (best bet) and the optimum best line }
line diff : integer ; { the difference between the current line number and the optimum best line }

921. ⟨Try the final line break at the end of the paragraph, and goto done if the desired breakpoints have
been found 921 ⟩ ≡

begin try break (eject penalty , hyphenated);
if link (active) ̸= last active then
begin ⟨Find an active node with fewest demerits 922 ⟩;
if looseness = 0 then goto done ;
⟨Find the best active node for the desired looseness 923 ⟩;
if (actual looseness = looseness) ∨ final pass then goto done ;
end;

end

This code is used in section 911.

922. ⟨Find an active node with fewest demerits 922 ⟩ ≡
r ← link (active); fewest demerits ← awful bad ;
repeat if type (r) ̸= delta node then

if total demerits (r) < fewest demerits then
begin fewest demerits ← total demerits (r); best bet ← r;
end;

r ← link (r);
until r = last active ;
best line ← line number (best bet)

This code is used in section 921.

§923 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 403

923. The adjustment for a desired looseness is a slightly more complicated version of the loop just
considered. Note that if a paragraph is broken into segments by displayed equations, each segment will
be subject to the looseness calculation, independently of the other segments.

⟨Find the best active node for the desired looseness 923 ⟩ ≡
begin r ← link (active); actual looseness ← 0;
repeat if type (r) ̸= delta node then

begin line diff ← line number (r)− best line ;
if ((line diff < actual looseness) ∧ (looseness ≤ line diff)) ∨

((line diff > actual looseness) ∧ (looseness ≥ line diff)) then
begin best bet ← r; actual looseness ← line diff ; fewest demerits ← total demerits (r);
end

else if (line diff = actual looseness) ∧ (total demerits (r) < fewest demerits) then
begin best bet ← r; fewest demerits ← total demerits (r);
end;

end;
r ← link (r);

until r = last active ;
best line ← line number (best bet);
end

This code is used in section 921.

924. Once the best sequence of breakpoints has been found (hurray), we call on the procedure
post line break to finish the remainder of the work. (By introducing this subprocedure, we are able to keep
line break from getting extremely long.)

⟨Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and
append them to the current vertical list 924 ⟩ ≡

post line break (d)

This code is used in section 863.

404 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §925

925. The total number of lines that will be set by post line break is best line − prev graf − 1. The last
breakpoint is specified by break node (best bet), and this passive node points to the other breakpoints via
the prev break links. The finishing-up phase starts by linking the relevant passive nodes in forward order,
changing prev break to next break . (The next break fields actually reside in the same memory space as the
prev break fields did, but we give them a new name because of their new significance.) Then the lines are
justified, one by one.

define next break ≡ prev break { new name for prev break after links are reversed }
⟨Declare subprocedures for line break 874 ⟩ +≡
procedure post line break (d : boolean);
label done , done1 ;
var q, r, s: pointer ; { temporary registers for list manipulation }
p, k: pointer ; w: scaled ; glue break : boolean ; {was a break at glue? }
ptmp : pointer ; disc break : boolean ; {was the current break at a discretionary node? }
post disc break : boolean ; { and did it have a nonempty post-break part? }
cur width : scaled ; {width of line number cur line }
cur indent : scaled ; { left margin of line number cur line }
t: quarterword ; { used for replacement counts in discretionary nodes }
pen : integer ; { use when calculating penalties between lines }
cur line : halfword ; { the current line number being justified }
LR ptr : pointer ; { stack of LR codes }

begin LR ptr ← LR save ;
⟨Reverse the links of the relevant passive nodes, setting cur p to the first breakpoint 926 ⟩;
cur line ← prev graf + 1;
repeat ⟨ Justify the line ending at breakpoint cur p , and append it to the current vertical list, together

with associated penalties and other insertions 928 ⟩;
incr (cur line); cur p ← next break (cur p);
if cur p ̸= null then

if ¬post disc break then ⟨Prune unwanted nodes at the beginning of the next line 927 ⟩;
until cur p = null ;
if (cur line ̸= best line) ∨ (link (temp head) ̸= null) then confusion ("line␣breaking");
prev graf ← best line − 1; LR save ← LR ptr ;
end;

926. The job of reversing links in a list is conveniently regarded as the job of taking items off one stack
and putting them on another. In this case we take them off a stack pointed to by q and having prev break
fields; we put them on a stack pointed to by cur p and having next break fields. Node r is the passive node
being moved from stack to stack.

⟨Reverse the links of the relevant passive nodes, setting cur p to the first breakpoint 926 ⟩ ≡
q ← break node (best bet); cur p ← null ;
repeat r ← q; q ← prev break (q); next break (r)← cur p ; cur p ← r;
until q = null

This code is used in section 925.

§927 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 405

927. Glue and penalty and kern and math nodes are deleted at the beginning of a line, except in the
anomalous case that the node to be deleted is actually one of the chosen breakpoints. Otherwise the pruning
done here is designed to match the lookahead computation in try break , where the break width values are
computed for non-discretionary breakpoints.

⟨Prune unwanted nodes at the beginning of the next line 927 ⟩ ≡
begin r ← temp head ;
loop begin q ← link (r);
if q = cur break (cur p) then goto done1 ; { cur break (cur p) is the next breakpoint }

{ now q cannot be null }
if is char node (q) then goto done1 ;
if non discardable (q) then goto done1 ;
if type (q) = kern node then
if (subtype (q) ̸= explicit) ∧ (subtype (q) ̸= space adjustment) then goto done1 ;

r ← q; { now type (q) = glue node , kern node , math node , or penalty node }
if type (q) = math node then

if TeXXeT en then ⟨Adjust the LR stack for the post line break routine 1518 ⟩;
end;

done1 : if r ̸= temp head then
begin link (r)← null ; flush node list (link (temp head)); link (temp head)← q;
end;

end

This code is used in section 925.

928. The current line to be justified appears in a horizontal list starting at link (temp head) and ending at
cur break (cur p). If cur break (cur p) is a glue node, we reset the glue to equal the right skip glue; otherwise
we append the right skip glue at the right. If cur break (cur p) is a discretionary node, we modify the list so
that the discretionary break is compulsory, and we set disc break to true . We also append the left skip glue
at the left of the line, unless it is zero.

⟨ Justify the line ending at breakpoint cur p , and append it to the current vertical list, together with
associated penalties and other insertions 928 ⟩ ≡

if TeXXeT en then ⟨ Insert LR nodes at the beginning of the current line and adjust the LR stack
based on LR nodes in this line 1517 ⟩;

⟨Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the
proper value of disc break 929 ⟩;

if TeXXeT en then ⟨ Insert LR nodes at the end of the current line 1519 ⟩;
⟨Put the \leftskip glue at the left and detach this line 935 ⟩;
⟨Call the packaging subroutine, setting just box to the justified box 937 ⟩;
⟨Append the new box to the current vertical list, followed by the list of special nodes taken out of the

box by the packager 936 ⟩;
⟨Append a penalty node, if a nonzero penalty is appropriate 938 ⟩

This code is used in section 925.

406 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §929

929. At the end of the following code, q will point to the final node on the list about to be justified.

⟨Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the
proper value of disc break 929 ⟩ ≡

q ← cur break (cur p); disc break ← false ; post disc break ← false ; glue break ← false ;
if q ̸= null then { q cannot be a char node }
if type (q) = glue node then
begin delete glue ref (glue ptr (q)); glue ptr (q)← right skip ; subtype (q)← right skip code + 1;
add glue ref (right skip); glue break ← true ; goto done ;
end

else begin if type (q) = disc node then
⟨Change discretionary to compulsory and set disc break ← true 930 ⟩

else if type (q) = kern node then width (q)← 0
else if type (q) = math node then

begin width (q)← 0;
if TeXXeT en then ⟨Adjust the LR stack for the post line break routine 1518 ⟩;
end;

end
else begin q ← temp head ;
while link (q) ̸= null do q ← link (q);
end;

done : { at this point q is the rightmost breakpoint; the only exception is the case of a discretionary break
with non-empty pre break , then q has been changed to the last node of the pre break list }

if XeTeX protrude chars > 0 then
begin
if disc break ∧ (is char node (q) ∨ (type (q) ̸= disc node))

{ q has been reset to the last node of pre break }
then
begin p← q; ptmp ← p;
end

else begin p← prev rightmost (link (temp head), q); { get link (p) = q }
ptmp ← p; p← find protchar right (link (temp head), p);
end; w ← right pw (p);
if w ̸= 0 then {we have found a marginal kern, append it after ptmp }

begin k ← new margin kern (−w, last rightmost char , right side); link (k)← link (ptmp);
link (ptmp)← k;
if (ptmp = q) then q ← link (q);
end;

end ; { if q was not a breakpoint at glue and has been reset to rightskip then we append rightskip
after q now }

if ¬glue break then
begin ⟨Put the \rightskip glue after node q 934 ⟩;
end;

This code is used in section 928.

930. ⟨Change discretionary to compulsory and set disc break ← true 930 ⟩ ≡
begin t← replace count (q);
⟨Destroy the t nodes following q, and make r point to the following node 931 ⟩;
if post break (q) ̸= null then ⟨Transplant the post-break list 932 ⟩;
if pre break (q) ̸= null then ⟨Transplant the pre-break list 933 ⟩;
link (q)← r; disc break ← true ;
end

This code is used in section 929.

§931 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 407

931. ⟨Destroy the t nodes following q, and make r point to the following node 931 ⟩ ≡
if t = 0 then r ← link (q)
else begin r ← q;
while t > 1 do

begin r ← link (r); decr (t);
end;

s← link (r); r ← link (s); link (s)← null ; flush node list (link (q)); replace count (q)← 0;
end

This code is used in section 930.

932. We move the post-break list from inside node q to the main list by reattaching it just before the
present node r, then resetting r.

⟨Transplant the post-break list 932 ⟩ ≡
begin s← post break (q);
while link (s) ̸= null do s← link (s);
link (s)← r; r ← post break (q); post break (q)← null ; post disc break ← true ;
end

This code is used in section 930.

933. We move the pre-break list from inside node q to the main list by reattaching it just after the present
node q, then resetting q.

⟨Transplant the pre-break list 933 ⟩ ≡
begin s← pre break (q); link (q)← s;
while link (s) ̸= null do s← link (s);
pre break (q)← null ; q ← s;
end

This code is used in section 930.

934. ⟨Put the \rightskip glue after node q 934 ⟩ ≡
r ← new param glue (right skip code); link (r)← link (q); link (q)← r; q ← r

This code is used in section 929.

935. The following code begins with q at the end of the list to be justified. It ends with q at the beginning
of that list, and with link (temp head) pointing to the remainder of the paragraph, if any.

⟨Put the \leftskip glue at the left and detach this line 935 ⟩ ≡
r ← link (q); link (q)← null ; q ← link (temp head); link (temp head)← r;

{ at this point q is the leftmost node; all discardable nodes have been discarded }
if XeTeX protrude chars > 0 then
begin p← q; p← find protchar left (p, false); { no more discardables }
w ← left pw (p);
if w ̸= 0 then
begin k ← new margin kern (−w, last leftmost char , left side); link (k)← q; q ← k;
end;

end;
if left skip ̸= zero glue then
begin r ← new param glue (left skip code); link (r)← q; q ← r;
end

This code is used in section 928.

408 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED X ETEX §936

936. ⟨Append the new box to the current vertical list, followed by the list of special nodes taken out of
the box by the packager 936 ⟩ ≡

if pre adjust head ̸= pre adjust tail then append list (pre adjust head)(pre adjust tail);
pre adjust tail ← null ; append to vlist (just box);
if adjust head ̸= adjust tail then append list (adjust head)(adjust tail);
adjust tail ← null

This code is used in section 928.

937. Now q points to the hlist that represents the current line of the paragraph. We need to compute the
appropriate line width, pack the line into a box of this size, and shift the box by the appropriate amount of
indentation.

⟨Call the packaging subroutine, setting just box to the justified box 937 ⟩ ≡
if cur line > last special line then
begin cur width ← second width ; cur indent ← second indent ;
end

else if par shape ptr = null then
begin cur width ← first width ; cur indent ← first indent ;
end

else begin cur width ← mem [par shape ptr + 2 ∗ cur line].sc ;
cur indent ← mem [par shape ptr + 2 ∗ cur line − 1].sc ;
end;

adjust tail ← adjust head ; pre adjust tail ← pre adjust head ; just box ← hpack (q, cur width , exactly);
shift amount (just box)← cur indent

This code is used in section 928.

§938 X ETEX PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 409

938. Penalties between the lines of a paragraph come from club and widow lines, from the inter line penalty
parameter, and from lines that end at discretionary breaks. Breaking between lines of a two-line paragraph
gets both club-line and widow-line penalties. The local variable pen will be set to the sum of all relevant
penalties for the current line, except that the final line is never penalized.

⟨Append a penalty node, if a nonzero penalty is appropriate 938 ⟩ ≡
if cur line + 1 ̸= best line then
begin q ← inter line penalties ptr ;
if q ̸= null then

begin r ← cur line ;
if r > penalty (q) then r ← penalty (q);
pen ← penalty (q + r);
end

else pen ← inter line penalty ;
q ← club penalties ptr ;
if q ̸= null then
begin r ← cur line − prev graf ;
if r > penalty (q) then r ← penalty (q);
pen ← pen + penalty (q + r);
end

else if cur line = prev graf + 1 then pen ← pen + club penalty ;
if d then q ← display widow penalties ptr
else q ← widow penalties ptr ;
if q ̸= null then

begin r ← best line − cur line − 1;
if r > penalty (q) then r ← penalty (q);
pen ← pen + penalty (q + r);
end

else if cur line + 2 = best line then
if d then pen ← pen + display widow penalty
else pen ← pen + widow penalty ;

if disc break then pen ← pen + broken penalty ;
if pen ̸= 0 then
begin r ← new penalty (pen); link (tail)← r; tail ← r;
end;

end

This code is used in section 928.

410 PART 40: PRE-HYPHENATION X ETEX §939

939. Pre-hyphenation. When the line-breaking routine is unable to find a feasible sequence of break-
points, it makes a second pass over the paragraph, attempting to hyphenate the hyphenatable words. The
goal of hyphenation is to insert discretionary material into the paragraph so that there are more potential
places to break.
The general rules for hyphenation are somewhat complex and technical, because we want to be able to

hyphenate words that are preceded or followed by punctuation marks, and because we want the rules to
work for languages other than English. We also must contend with the fact that hyphens might radically
alter the ligature and kerning structure of a word.
A sequence of characters will be considered for hyphenation only if it belongs to a “potentially hyphenatable

part” of the current paragraph. This is a sequence of nodes p0p1 . . . pm where p0 is a glue node, p1 . . . pm−1

are either character or ligature or whatsit or implicit kern or text direction nodes, and pm is a glue or
penalty or insertion or adjust or mark or whatsit or explicit kern node. (Therefore hyphenation is disabled
by boxes, math formulas, and discretionary nodes already inserted by the user.) The ligature nodes among
p1 . . . pm−1 are effectively expanded into the original non-ligature characters; the kern nodes and whatsits
are ignored. Each character c is now classified as either a nonletter (if lc code (c) = 0), a lowercase letter (if
lc code (c) = c), or an uppercase letter (otherwise); an uppercase letter is treated as if it were lc code (c) for
purposes of hyphenation. The characters generated by p1 . . . pm−1 may begin with nonletters; let c1 be the
first letter that is not in the middle of a ligature. Whatsit nodes preceding c1 are ignored; a whatsit found
after c1 will be the terminating node pm. All characters that do not have the same font as c1 will be treated
as nonletters. The hyphen char for that font must be between 0 and 255, otherwise hyphenation will not
be attempted. TEX looks ahead for as many consecutive letters c1 . . . cn as possible; however, n must be
less than max hyphenatable length + 1, so a character that would otherwise be cmax hyphenatable length+1

is effectively not a letter. Furthermore cn must not be in the middle of a ligature. In this way we obtain a
string of letters c1 . . . cn that are generated by nodes pa . . . pb, where 1 ≤ a ≤ b+1 ≤ m. If n ≥ l hyf +r hyf ,
this string qualifies for hyphenation; however, uc hyph must be positive, if c1 is uppercase.

The hyphenation process takes place in three stages. First, the candidate sequence c1 . . . cn is found; then
potential positions for hyphens are determined by referring to hyphenation tables; and finally, the nodes
pa . . . pb are replaced by a new sequence of nodes that includes the discretionary breaks found.
Fortunately, we do not have to do all this calculation very often, because of the way it has been taken out

of TEX’s inner loop. For example, when the second edition of the author’s 700-page book Seminumerical
Algorithms was typeset by TEX, only about 1.2 hyphenations needed to be tried per paragraph, since the
line breaking algorithm needed to use two passes on only about 5 per cent of the paragraphs.

⟨ Initialize for hyphenating a paragraph 939 ⟩ ≡
begin init if trie not ready then init trie ;
tini
cur lang ← init cur lang ; l hyf ← init l hyf ; r hyf ← init r hyf ; set hyph index ;
end

This code is used in section 911.

§940 X ETEX PART 40: PRE-HYPHENATION 411

940. The letters c1 . . . cn that are candidates for hyphenation are placed into an array called hc ; the number
n is placed into hn ; pointers to nodes pa−1 and pb in the description above are placed into variables ha and
hb ; and the font number is placed into hf .

⟨Global variables 13 ⟩ +≡
hc : array [0 . . hyphenatable length limit + 3] of 0 . . number usvs ; {word to be hyphenated }

{ note that element 0 needs to be a full UnicodeScalar, even though we basically work in UTF16 }
hn : small number ; { the number of positions occupied in hc , 0..64 in TeX }
ha , hb : pointer ; { nodes ha . . hb should be replaced by the hyphenated result }
hf : internal font number ; { font number of the letters in hc }
hu : array [0 . . hyphenatable length limit + 1] of 0 . . too big char ;

{ like hc , before conversion to lowercase }
hyf char : integer ; { hyphen character of the relevant font }
cur lang , init cur lang : 0 . . biggest lang ; { current hyphenation table of interest }
l hyf , r hyf , init l hyf , init r hyf : integer ; { limits on fragment sizes }
hyf bchar : halfword ; { boundary character after cn }
max hyph char : integer ;

941. ⟨ Set initial values of key variables 23 ⟩ +≡
max hyph char ← too big lang ;

942. Hyphenation routines need a few more local variables.

⟨Local variables for line breaking 910 ⟩ +≡
j: small number ; { an index into hc or hu }
c: UnicodeScalar ; { character being considered for hyphenation }

943. When the following code is activated, the line break procedure is in its second pass, and cur p points
to a glue node.

⟨Try to hyphenate the following word 943 ⟩ ≡
begin prev s ← cur p ; s← link (prev s);
if s ̸= null then
begin ⟨ Skip to node ha , or goto done1 if no hyphenation should be attempted 949 ⟩;
if l hyf + r hyf > max hyphenatable length then goto done1 ;
if is native word node (ha) then
begin ⟨Check that nodes after native word permit hyphenation; if not, goto done1 945 ⟩;
⟨Prepare a native word node for hyphenation 946 ⟩;
end

else begin ⟨ Skip to node hb , putting letters into hu and hc 950 ⟩;
end;

⟨Check that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters have
been found, otherwise goto done1 952 ⟩;

hyphenate ;
end;

done1 : end

This code is used in section 914.

412 PART 40: PRE-HYPHENATION X ETEX §944

944. ⟨Declare subprocedures for line break 874 ⟩ +≡
⟨Declare the function called reconstitute 960 ⟩
procedure hyphenate ;

label common ending , done , found , found1 , found2 ,not found , exit ;
var ⟨Local variables for hyphenation 954 ⟩
begin ⟨Find hyphen locations for the word in hc , or return 977 ⟩;
⟨ If no hyphens were found, return 955 ⟩;
⟨Replace nodes ha . . hb by a sequence of nodes that includes the discretionary hyphens 956 ⟩;

exit : end;
function max hyphenatable length : integer ;

begin if XeTeX hyphenatable length > hyphenatable length limit then
max hyphenatable length ← hyphenatable length limit

else max hyphenatable length ← XeTeX hyphenatable length ;
end;

945. ⟨Check that nodes after native word permit hyphenation; if not, goto done1 945 ⟩ ≡
s← link (ha);
loop begin if ¬(is char node (s)) then

case type (s) of
ligature node : do nothing ;
kern node : if subtype (s) ̸= normal then goto done6 ;
whatsit node , glue node , penalty node , ins node , adjust node ,mark node : goto done6 ;
othercases goto done1
endcases;

s← link (s);
end;

done6 :

This code is used in section 943.

§946 X ETEX PART 40: PRE-HYPHENATION 413

946. ⟨Prepare a native word node for hyphenation 946 ⟩ ≡
{ note that if there are chars with lccode = 0, we split them out into separate native word nodes }

hn ← 0;
restart : for l← 0 to native length (ha)− 1 do

begin c← get native usv (ha , l); set lc code (c);
if (hc [0] = 0) then
begin if (hn > 0) then
begin { we’ve got some letters, and now found a non-letter, so break off the tail of the

native word and link it after this node, and goto done3 }
⟨ Split the native word node at l and link the second part after ha 947 ⟩;
goto done3 ;
end

end
else if (hn = 0) ∧ (l > 0) then

begin { we’ve found the first letter after some non-letters, so break off the head of the
native word and restart }

⟨ Split the native word node at l and link the second part after ha 947 ⟩;
ha ← link (ha); goto restart ;
end

else if (hn = max hyphenatable length) then { reached max hyphenatable length }
goto done3

else begin { found a letter that is part of a potentially hyphenatable sequence }
incr (hn);
if c < ˝10000 then

begin hu [hn]← c; hc [hn]← hc [0];
end

else begin hu [hn]← (c− ˝10000) div ˝400+ ˝D800;
hc [hn]← (hc [0]− ˝10000) div ˝400+ ˝D800; incr (hn); hu [hn]← cmod ˝400+ ˝DC00;
hc [hn]← hc [0]mod ˝400+ ˝DC00; incr (l);
end;

hyf bchar ← non char ;
end

end;

This code is used in section 943.

947. ⟨ Split the native word node at l and link the second part after ha 947 ⟩ ≡
q ← new native word node (hf ,native length (ha)− l); subtype (q)← subtype (ha);
for i← l to native length (ha)− 1 do set native char (q, i− l, get native char (ha , i));
set native metrics (q,XeTeX use glyph metrics); link (q)← link (ha); link (ha)← q;
{ truncate text in node ha }

native length (ha)← l; set native metrics (ha ,XeTeX use glyph metrics);

This code is used in sections 946 and 946.

948. ⟨Local variables for line breaking 910 ⟩ +≡
l: integer ;
i: integer ;

414 PART 40: PRE-HYPHENATION X ETEX §949

949. The first thing we need to do is find the node ha just before the first letter.

⟨ Skip to node ha , or goto done1 if no hyphenation should be attempted 949 ⟩ ≡
loop begin if is char node (s) then

begin c← qo(character (s)); hf ← font (s);
end

else if type (s) = ligature node then
if lig ptr (s) = null then goto continue
else begin q ← lig ptr (s); c← qo(character (q)); hf ← font (q);
end

else if (type (s) = kern node) ∧ (subtype (s) = normal) then goto continue
else if (type (s) = math node) ∧ (subtype (s) ≥ L code) then goto continue
else if type (s) = whatsit node then

begin if (is native word subtype (s)) then
begin

{ we only consider the node if it contains at least one letter, otherwise we’ll skip it }
for l← 0 to native length (s)− 1 do

begin c← get native usv (s, l);
if lc code (c) ̸= 0 then
begin hf ← native font (s); prev s ← s;
if (lc code (c) = c) ∨ (uc hyph > 0) then goto done2
else goto done1 ;
end;

if c ≥ ˝10000 then incr (l);
end

end;
⟨Advance past a whatsit node in the pre-hyphenation loop 1423 ⟩;
goto continue
end

else goto done1 ;
set lc code (c);
if hc [0] ̸= 0 then
if (hc [0] = c) ∨ (uc hyph > 0) then goto done2
else goto done1 ;

continue : prev s ← s; s← link (prev s);
end;

done2 : hyf char ← hyphen char [hf];
if hyf char < 0 then goto done1 ;
if hyf char > biggest char then goto done1 ;
ha ← prev s

This code is used in section 943.

§950 X ETEX PART 40: PRE-HYPHENATION 415

950. The word to be hyphenated is now moved to the hu and hc arrays.

⟨ Skip to node hb , putting letters into hu and hc 950 ⟩ ≡
hn ← 0;
loop begin if is char node (s) then

begin if font (s) ̸= hf then goto done3 ;
hyf bchar ← character (s); c← qo(hyf bchar); set lc code (c);
if hc [0] = 0 then goto done3 ;
if hc [0] > max hyph char then goto done3 ;
if hn = max hyphenatable length then goto done3 ;
hb ← s; incr (hn); hu [hn]← c; hc [hn]← hc [0]; hyf bchar ← non char ;
end

else if type (s) = ligature node then ⟨Move the characters of a ligature node to hu and hc ; but goto
done3 if they are not all letters 951 ⟩

else if (type (s) = kern node) ∧ (subtype (s) = normal) then
begin hb ← s; hyf bchar ← font bchar [hf];
end

else goto done3 ;
s← link (s);
end;

done3 :

This code is used in section 943.

951. We let j be the index of the character being stored when a ligature node is being expanded, since
we do not want to advance hn until we are sure that the entire ligature consists of letters. Note that it is
possible to get to done3 with hn = 0 and hb not set to any value.

⟨Move the characters of a ligature node to hu and hc ; but goto done3 if they are not all letters 951 ⟩ ≡
begin if font (lig char (s)) ̸= hf then goto done3 ;
j ← hn ; q ← lig ptr (s); if q > null then hyf bchar ← character (q);
while q > null do
begin c← qo(character (q)); set lc code (c);
if hc [0] = 0 then goto done3 ;
if hc [0] > max hyph char then goto done3 ;
if j = max hyphenatable length then goto done3 ;
incr (j); hu [j]← c; hc [j]← hc [0];
q ← link (q);
end;

hb ← s; hn ← j;
if odd (subtype (s)) then hyf bchar ← font bchar [hf] else hyf bchar ← non char ;
end

This code is used in section 950.

416 PART 40: PRE-HYPHENATION X ETEX §952

952. ⟨Check that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters have
been found, otherwise goto done1 952 ⟩ ≡

if hn < l hyf + r hyf then goto done1 ; { l hyf and r hyf are ≥ 1 }
loop begin if ¬(is char node (s)) then

case type (s) of
ligature node : do nothing ;
kern node : if subtype (s) ̸= normal then goto done4 ;
whatsit node , glue node , penalty node , ins node , adjust node ,mark node : goto done4 ;
math node : if subtype (s) ≥ L code then goto done4 else goto done1 ;
othercases goto done1
endcases;

s← link (s);
end;

done4 :

This code is used in section 943.

§953 X ETEX PART 41: POST-HYPHENATION 417

953. Post-hyphenation. If a hyphen may be inserted between hc [j] and hc [j + 1], the hyphenation
procedure will set hyf [j] to some small odd number. But before we look at TEX’s hyphenation procedure,
which is independent of the rest of the line-breaking algorithm, let us consider what we will do with the
hyphens it finds, since it is better to work on this part of the program before forgetting what ha and hb ,
etc., are all about.

⟨Global variables 13 ⟩ +≡
hyf : array [0 . . hyphenatable length limit + 1] of 0 . . 9; { odd values indicate discretionary hyphens }
init list : pointer ; { list of punctuation characters preceding the word }
init lig : boolean ; { does init list represent a ligature? }
init lft : boolean ; { if so, did the ligature involve a left boundary? }

954. ⟨Local variables for hyphenation 954 ⟩ ≡
i, j, l: 0 . . hyphenatable length limit + 2; { indices into hc or hu }
q, r, s: pointer ; { temporary registers for list manipulation }
bchar : halfword ; { boundary character of hyphenated word, or non char }
See also sections 966, 976, and 983.

This code is used in section 944.

955. TEX will never insert a hyphen that has fewer than \lefthyphenmin letters before it or fewer than
\righthyphenmin after it; hence, a short word has comparatively little chance of being hyphenated. If no
hyphens have been found, we can save time by not having to make any changes to the paragraph.

⟨ If no hyphens were found, return 955 ⟩ ≡
for j ← l hyf to hn − r hyf do
if odd (hyf [j]) then goto found1 ;

return;
found1 :

This code is used in section 944.

418 PART 41: POST-HYPHENATION X ETEX §956

956. If hyphens are in fact going to be inserted, TEX first deletes the subsequence of nodes between ha
and hb . An attempt is made to preserve the effect that implicit boundary characters and punctuation marks
had on ligatures inside the hyphenated word, by storing a left boundary or preceding character in hu [0] and
by storing a possible right boundary in bchar . We set j ← 0 if hu [0] is to be part of the reconstruction;
otherwise j ← 1. The variable s will point to the tail of the current hlist, and q will point to the node
following hb , so that things can be hooked up after we reconstitute the hyphenated word.

⟨Replace nodes ha . . hb by a sequence of nodes that includes the discretionary hyphens 956 ⟩ ≡
if is native word node (ha) then
begin ⟨Hyphenate the native word node at ha 957 ⟩;
end

else begin q ← link (hb); link (hb)← null ; r ← link (ha); link (ha)← null ; bchar ← hyf bchar ;
if is char node (ha) then

if font (ha) ̸= hf then goto found2
else begin init list ← ha ; init lig ← false ; hu [0]← qo(character (ha));
end

else if type (ha) = ligature node then
if font (lig char (ha)) ̸= hf then goto found2
else begin init list ← lig ptr (ha); init lig ← true ; init lft ← (subtype (ha) > 1);
hu [0]← qo(character (lig char (ha)));
if init list = null then

if init lft then
begin hu [0]← max hyph char ; init lig ← false ;
end; { in this case a ligature will be reconstructed from scratch }

free node (ha , small node size);
end

else begin { no punctuation found; look for left boundary }
if ¬is char node (r) then
if type (r) = ligature node then
if subtype (r) > 1 then goto found2 ;

j ← 1; s← ha ; init list ← null ; goto common ending ;
end;

s← cur p ; {we have cur p ̸= ha because type (cur p) = glue node }
while link (s) ̸= ha do s← link (s);
j ← 0; goto common ending ;

found2 : s← ha ; j ← 0; hu [0]← max hyph char ; init lig ← false ; init list ← null ;
common ending : flush node list (r);
⟨Reconstitute nodes for the hyphenated word, inserting discretionary hyphens 967 ⟩;
flush list (init list);
end

This code is used in section 944.

§957 X ETEX PART 41: POST-HYPHENATION 419

957. ⟨Hyphenate the native word node at ha 957 ⟩ ≡
{ find the node immediately before the word to be hyphenated }

s← cur p ; {we have cur p ̸= ha because type (cur p) = glue node }
while link (s) ̸= ha do s← link (s); { for each hyphen position, create a native word node fragment for

the text before this point, and a disc node for the break, with the hyf char in the pre break text }
hyphen passed ← 0; { location of last hyphen we saw }
for j ← l hyf to hn − r hyf do
begin { if this is a valid break.... }
if odd (hyf [j]) then
begin { make a native word node for the fragment before the hyphen }
q ← new native word node (hf , j − hyphen passed); subtype (q)← subtype (ha);
for i← 0 to j − hyphen passed − 1 do set native char (q, i, get native char (ha , i+ hyphen passed));
set native metrics (q,XeTeX use glyph metrics); link (s)← q; { append the new node }
s← q; { make the disc node for the hyphenation point }
q ← new disc ; pre break (q)← new native character (hf , hyf char); link (s)← q; s← q;
hyphen passed ← j;
end

end; { make a native word node for the last fragment of the word }
hn ← native length (ha); { ensure trailing punctuation is not lost! }
q ← new native word node (hf , hn − hyphen passed); subtype (q)← subtype (ha);
for i← 0 to hn − hyphen passed − 1 do set native char (q, i, get native char (ha , i+ hyphen passed));
set native metrics (q,XeTeX use glyph metrics); link (s)← q; { append the new node }
s← q; q ← link (ha); link (s)← q; link (ha)← null ; flush node list (ha);

This code is used in section 956.

958. We must now face the fact that the battle is not over, even though the hyphens have been found: The
process of reconstituting a word can be nontrivial because ligatures might change when a hyphen is present.
The TEXbook discusses the difficulties of the word “difficult”, and the discretionary material surrounding a
hyphen can be considerably more complex than that. Suppose abcdef is a word in a font for which the only
ligatures are bc, cd, de, and ef. If this word permits hyphenation between b and c, the two patterns with
and without hyphenation are a b − cd ef and a bc de f. Thus the insertion of a hyphen might cause effects to
ripple arbitrarily far into the rest of the word. A further complication arises if additional hyphens appear
together with such rippling, e.g., if the word in the example just given could also be hyphenated between c

and d; TEX avoids this by simply ignoring the additional hyphens in such weird cases.
Still further complications arise in the presence of ligatures that do not delete the original characters.

When punctuation precedes the word being hyphenated, TEX’s method is not perfect under all possible
scenarios, because punctuation marks and letters can propagate information back and forth. For example,
suppose the original pre-hyphenation pair *a changes to *y via a |=: ligature, which changes to xy via a
=:| ligature; if pa−1 = x and pa = y, the reconstitution procedure isn’t smart enough to obtain xy again. In
such cases the font designer should include a ligature that goes from xa to xy.

420 PART 41: POST-HYPHENATION X ETEX §959

959. The processing is facilitated by a subroutine called reconstitute . Given a string of characters xj . . . xn,
there is a smallest index m ≥ j such that the “translation” of xj . . . xn by ligatures and kerning has the form
y1 . . . yt followed by the translation of xm+1 . . . xn, where y1 . . . yt is some nonempty sequence of character,
ligature, and kern nodes. We call xj . . . xm a “cut prefix” of xj . . . xn. For example, if x1x2x3 = fly, and if
the font contains ‘fl’ as a ligature and a kern between ‘fl’ and ‘y’, then m = 2, t = 2, and y1 will be a ligature
node for ‘fl’ followed by an appropriate kern node y2. In the most common case, xj forms no ligature with
xj+1 and we simply have m = j, y1 = xj . If m < n we can repeat the procedure on xm+1 . . . xn until the
entire translation has been found.
The reconstitute function returns the integer m and puts the nodes y1 . . . yt into a linked list starting at

link (hold head), getting the input xj . . . xn from the hu array. If xj = 256, we consider xj to be an implicit
left boundary character; in this case j must be strictly less than n. There is a parameter bchar , which
is either 256 or an implicit right boundary character assumed to be present just following xn. (The value
hu [n+ 1] is never explicitly examined, but the algorithm imagines that bchar is there.)

If there exists an index k in the range j ≤ k ≤ m such that hyf [k] is odd and such that the result of
reconstitute would have been different if xk+1 had been hchar , then reconstitute sets hyphen passed to the
smallest such k. Otherwise it sets hyphen passed to zero.
A special convention is used in the case j = 0: Then we assume that the translation of hu [0] appears

in a special list of charnodes starting at init list ; moreover, if init lig is true , then hu [0] will be a ligature
character, involving a left boundary if init lft is true . This facility is provided for cases when a hyphenated
word is preceded by punctuation (like single or double quotes) that might affect the translation of the
beginning of the word.

⟨Global variables 13 ⟩ +≡
hyphen passed : small number ; { first hyphen in a ligature, if any }

960. ⟨Declare the function called reconstitute 960 ⟩ ≡
function reconstitute (j, n : small number ; bchar , hchar : halfword): small number ;

label continue , done ;
var p: pointer ; { temporary register for list manipulation }
t: pointer ; { a node being appended to }
q: four quarters ; { character information or a lig/kern instruction }
cur rh : halfword ; { hyphen character for ligature testing }
test char : halfword ; { hyphen or other character for ligature testing }
w: scaled ; { amount of kerning }
k: font index ; { position of current lig/kern instruction }

begin hyphen passed ← 0; t← hold head ; w ← 0; link (hold head)← null ;
{ at this point ligature present = lft hit = rt hit = false }

⟨ Set up data structures with the cursor following position j 962 ⟩;
continue : ⟨ If there’s a ligature or kern at the cursor position, update the data structures, possibly

advancing j; continue until the cursor moves 963 ⟩;
⟨Append a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures is

nonempty 964 ⟩;
reconstitute ← j;
end;

This code is used in section 944.

§961 X ETEX PART 41: POST-HYPHENATION 421

961. The reconstitution procedure shares many of the global data structures by which TEX has processed
the words before they were hyphenated. There is an implied “cursor” between characters cur l and cur r ;
these characters will be tested for possible ligature activity. If ligature present then cur l is a ligature
character formed from the original characters following cur q in the current translation list. There is a
“ligature stack” between the cursor and character j + 1, consisting of pseudo-ligature nodes linked together
by their link fields. This stack is normally empty unless a ligature command has created a new character that
will need to be processed later. A pseudo-ligature is a special node having a character field that represents
a potential ligature and a lig ptr field that points to a char node or is null . We have

cur r =

 character (lig stack), if lig stack > null ;
qi (hu [j+1]), if lig stack = null and j < n;
bchar, if lig stack = null and j = n.

⟨Global variables 13 ⟩ +≡
cur l , cur r : halfword ; { characters before and after the cursor }
cur q : pointer ; {where a ligature should be detached }
lig stack : pointer ; { unfinished business to the right of the cursor }
ligature present : boolean ; { should a ligature node be made for cur l ? }
lft hit , rt hit : boolean ; { did we hit a ligature with a boundary character? }

962. define append charnode to t (#) ≡
begin link (t)← get avail ; t← link (t); font (t)← hf ; character (t)← #;
end

define set cur r ≡
begin if j < n then cur r ← qi (hu [j + 1]) else cur r ← bchar ;
if odd (hyf [j]) then cur rh ← hchar else cur rh ← non char ;
end

⟨ Set up data structures with the cursor following position j 962 ⟩ ≡
cur l ← qi (hu [j]); cur q ← t;
if j = 0 then
begin ligature present ← init lig ; p← init list ;
if ligature present then lft hit ← init lft ;
while p > null do

begin append charnode to t (character (p)); p← link (p);
end;

end
else if cur l < non char then append charnode to t (cur l);
lig stack ← null ; set cur r

This code is used in section 960.

422 PART 41: POST-HYPHENATION X ETEX §963

963. We may want to look at the lig/kern program twice, once for a hyphen and once for a normal letter.
(The hyphen might appear after the letter in the program, so we’d better not try to look for both at once.)

⟨ If there’s a ligature or kern at the cursor position, update the data structures, possibly advancing j;
continue until the cursor moves 963 ⟩ ≡

if cur l = non char then
begin k ← bchar label [hf];
if k = non address then goto done else q ← font info [k].qqqq ;
end

else begin q ← char info(hf)(cur l);
if char tag (q) ̸= lig tag then goto done ;
k ← lig kern start (hf)(q); q ← font info [k].qqqq ;
if skip byte (q) > stop flag then
begin k ← lig kern restart (hf)(q); q ← font info [k].qqqq ;
end;

end; { now k is the starting address of the lig/kern program }
if cur rh < non char then test char ← cur rh else test char ← cur r ;
loop begin if next char (q) = test char then

if skip byte (q) ≤ stop flag then
if cur rh < non char then
begin hyphen passed ← j; hchar ← non char ; cur rh ← non char ; goto continue ;
end

else begin if hchar < non char then
if odd (hyf [j]) then
begin hyphen passed ← j; hchar ← non char ;
end;

if op byte (q) < kern flag then
⟨Carry out a ligature replacement, updating the cursor structure and possibly advancing j;

goto continue if the cursor doesn’t advance, otherwise goto done 965 ⟩;
w ← char kern (hf)(q); goto done ; { this kern will be inserted below }
end;

if skip byte (q) ≥ stop flag then
if cur rh = non char then goto done
else begin cur rh ← non char ; goto continue ;

end;
k ← k + qo(skip byte (q)) + 1; q ← font info [k].qqqq ;
end;

done :

This code is used in section 960.

§964 X ETEX PART 41: POST-HYPHENATION 423

964. define wrap lig (#) ≡
if ligature present then

begin p← new ligature (hf , cur l , link (cur q));
if lft hit then
begin subtype (p)← 2; lft hit ← false ;
end;

if # then
if lig stack = null then
begin incr (subtype (p)); rt hit ← false ;
end;

link (cur q)← p; t← p; ligature present ← false ;
end

define pop lig stack ≡
begin if lig ptr (lig stack) > null then
begin link (t)← lig ptr (lig stack); { this is a charnode for hu [j + 1] }
t← link (t); incr (j);
end;

p← lig stack ; lig stack ← link (p); free node (p, small node size);
if lig stack = null then set cur r else cur r ← character (lig stack);
end { if lig stack isn’t null we have cur rh = non char }

⟨Append a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures is
nonempty 964 ⟩ ≡

wrap lig (rt hit);
if w ̸= 0 then
begin link (t)← new kern (w); t← link (t); w ← 0;
end;

if lig stack > null then
begin cur q ← t; cur l ← character (lig stack); ligature present ← true ; pop lig stack ;
goto continue ;
end

This code is used in section 960.

424 PART 41: POST-HYPHENATION X ETEX §965

965. ⟨Carry out a ligature replacement, updating the cursor structure and possibly advancing j; goto
continue if the cursor doesn’t advance, otherwise goto done 965 ⟩ ≡

begin if cur l = non char then lft hit ← true ;
if j = n then
if lig stack = null then rt hit ← true ;

check interrupt ; { allow a way out in case there’s an infinite ligature loop }
case op byte (q) of
qi (1), qi (5): begin cur l ← rem byte (q); { =:|, =:|> }
ligature present ← true ;
end;

qi (2), qi (6): begin cur r ← rem byte (q); { |=:, |=:> }
if lig stack > null then character (lig stack)← cur r
else begin lig stack ← new lig item (cur r);
if j = n then bchar ← non char
else begin p← get avail ; lig ptr (lig stack)← p; character (p)← qi (hu [j + 1]); font (p)← hf ;
end;

end;
end;

qi (3): begin cur r ← rem byte (q); { |=:| }
p← lig stack ; lig stack ← new lig item (cur r); link (lig stack)← p;
end;

qi (7), qi (11): begin wrap lig (false); { |=:|>, |=:|>> }
cur q ← t; cur l ← rem byte (q); ligature present ← true ;
end;

othercases begin cur l ← rem byte (q); ligature present ← true ; { =: }
if lig stack > null then pop lig stack
else if j = n then goto done

else begin append charnode to t (cur r); incr (j); set cur r ;
end;

end
endcases;
if op byte (q) > qi (4) then
if op byte (q) ̸= qi (7) then goto done ;

goto continue ;
end

This code is used in section 963.

966. Okay, we’re ready to insert the potential hyphenations that were found. When the following program
is executed, we want to append the word hu [1 . . hn] after node ha , and node q should be appended to
the result. During this process, the variable i will be a temporary index into hu ; the variable j will be an
index to our current position in hu ; the variable l will be the counterpart of j, in a discretionary branch; the
variable r will point to new nodes being created; and we need a few new local variables:

⟨Local variables for hyphenation 954 ⟩ +≡
major tail ,minor tail : pointer ;

{ the end of lists in the main and discretionary branches being reconstructed }
c: UnicodeScalar ; { character temporarily replaced by a hyphen }
c loc : 0 . . hyphenatable length limit ; {where that character came from }
r count : integer ; { replacement count for discretionary }
hyf node : pointer ; { the hyphen, if it exists }

§967 X ETEX PART 41: POST-HYPHENATION 425

967. When the following code is performed, hyf [0] and hyf [hn] will be zero.

⟨Reconstitute nodes for the hyphenated word, inserting discretionary hyphens 967 ⟩ ≡
repeat l← j; j ← reconstitute (j, hn , bchar , qi (hyf char)) + 1;
if hyphen passed = 0 then

begin link (s)← link (hold head);
while link (s) > null do s← link (s);
if odd (hyf [j − 1]) then
begin l← j; hyphen passed ← j − 1; link (hold head)← null ;
end;

end;
if hyphen passed > 0 then ⟨Create and append a discretionary node as an alternative to the

unhyphenated word, and continue to develop both branches until they become equivalent 968 ⟩;
until j > hn ;
link (s)← q

This code is used in section 956.

968. In this repeat loop we will insert another discretionary if hyf [j−1] is odd, when both branches of the
previous discretionary end at position j − 1. Strictly speaking, we aren’t justified in doing this, because we
don’t know that a hyphen after j − 1 is truly independent of those branches. But in almost all applications
we would rather not lose a potentially valuable hyphenation point. (Consider the word ‘difficult’, where the
letter ‘c’ is in position j.)

define advance major tail ≡
begin major tail ← link (major tail); incr (r count);
end

⟨Create and append a discretionary node as an alternative to the unhyphenated word, and continue to
develop both branches until they become equivalent 968 ⟩ ≡

repeat r ← get node (small node size); link (r)← link (hold head); type (r)← disc node ;
major tail ← r; r count ← 0;
while link (major tail) > null do advance major tail ;
i← hyphen passed ; hyf [i]← 0; ⟨Put the characters hu [l . . i] and a hyphen into pre break (r) 969 ⟩;
⟨Put the characters hu [i + 1 . .] into post break (r), appending to this list and to major tail until

synchronization has been achieved 970 ⟩;
⟨Move pointer s to the end of the current list, and set replace count (r) appropriately 972 ⟩;
hyphen passed ← j − 1; link (hold head)← null ;

until ¬odd (hyf [j − 1])

This code is used in section 967.

426 PART 41: POST-HYPHENATION X ETEX §969

969. The new hyphen might combine with the previous character via ligature or kern. At this point we
have l − 1 ≤ i < j and i < hn .

⟨Put the characters hu [l . . i] and a hyphen into pre break (r) 969 ⟩ ≡
minor tail ← null ; pre break (r)← null ; hyf node ← new character (hf , hyf char);
if hyf node ̸= null then
begin incr (i); c← hu [i]; hu [i]← hyf char ; free avail (hyf node);
end;

while l ≤ i do
begin l← reconstitute (l, i, font bchar [hf],non char) + 1;
if link (hold head) > null then

begin if minor tail = null then pre break (r)← link (hold head)
else link (minor tail)← link (hold head);
minor tail ← link (hold head);
while link (minor tail) > null do minor tail ← link (minor tail);
end;

end;
if hyf node ̸= null then
begin hu [i]← c; { restore the character in the hyphen position }
l← i; decr (i);
end

This code is used in section 968.

970. The synchronization algorithm begins with l = i+ 1 ≤ j.

⟨Put the characters hu [i + 1 . .] into post break (r), appending to this list and to major tail until
synchronization has been achieved 970 ⟩ ≡

minor tail ← null ; post break (r)← null ; c loc ← 0;
if bchar label [hf] ̸= non address then { put left boundary at beginning of new line }
begin decr (l); c← hu [l]; c loc ← l; hu [l]← max hyph char ;
end;

while l < j do
begin repeat l← reconstitute (l, hn , bchar ,non char) + 1;
if c loc > 0 then
begin hu [c loc]← c; c loc ← 0;
end;

if link (hold head) > null then
begin if minor tail = null then post break (r)← link (hold head)
else link (minor tail)← link (hold head);
minor tail ← link (hold head);
while link (minor tail) > null do minor tail ← link (minor tail);
end;

until l ≥ j;
while l > j do ⟨Append characters of hu [j . .] to major tail , advancing j 971 ⟩;
end

This code is used in section 968.

971. ⟨Append characters of hu [j . .] to major tail , advancing j 971 ⟩ ≡
begin j ← reconstitute (j, hn , bchar ,non char) + 1; link (major tail)← link (hold head);
while link (major tail) > null do advance major tail ;
end

This code is used in section 970.

§972 X ETEX PART 41: POST-HYPHENATION 427

972. Ligature insertion can cause a word to grow exponentially in size. Therefore we must test the size of
r count here, even though the hyphenated text was at most max hyphenatable length characters long.

⟨Move pointer s to the end of the current list, and set replace count (r) appropriately 972 ⟩ ≡
if r count > 127 then {we have to forget the discretionary hyphen }
begin link (s)← link (r); link (r)← null ; flush node list (r);
end

else begin link (s)← r; replace count (r)← r count ;
end;

s← major tail

This code is used in section 968.

428 PART 42: HYPHENATION X ETEX §973

973. Hyphenation. When a word hc [1 . . hn] has been set up to contain a candidate for hyphenation,
TEX first looks to see if it is in the user’s exception dictionary. If not, hyphens are inserted based on patterns
that appear within the given word, using an algorithm due to Frank M. Liang.
Let’s consider Liang’s method first, since it is much more interesting than the exception-lookup routine.

The algorithm begins by setting hyf [j] to zero for all j, and invalid characters are inserted into hc [0] and
hc [hn+1] to serve as delimiters. Then a reasonably fast method is used to see which of a given set of patterns
occurs in the word hc [0 . . (hn + 1)]. Each pattern p1 . . . pk of length k has an associated sequence of k + 1
numbers n0 . . . nk; and if the pattern occurs in hc [(j+1) . . (j+k)], TEX will set hyf [j+i]← max(hyf [j+i], ni)
for 0 ≤ i ≤ k. After this has been done for each pattern that occurs, a discretionary hyphen will be inserted
between hc [j] and hc [j + 1] when hyf [j] is odd, as we have already seen.
The set of patterns p1 . . . pk and associated numbers n0 . . . nk depends, of course, on the language whose

words are being hyphenated, and on the degree of hyphenation that is desired. A method for finding
appropriate p’s and n’s, from a given dictionary of words and acceptable hyphenations, is discussed in
Liang’s Ph.D. thesis (Stanford University, 1983); TEX simply starts with the patterns and works from there.

974. The patterns are stored in a compact table that is also efficient for retrieval, using a variant of
“trie memory” [cf. The Art of Computer Programming 3 (1973), 481–505]. We can find each pattern
p1 . . . pk by letting z0 be one greater than the relevant language index and then, for 1 ≤ i ≤ k, setting
zi ← trie link (zi−1) + pi; the pattern will be identified by the number zk. Since all the pattern information
is packed together into a single trie link array, it is necessary to prevent confusion between the data from
inequivalent patterns, so another table is provided such that trie char (zi) = pi for all i. There is also a table
trie op(zk) to identify the numbers n0 . . . nk associated with p1 . . . pk.
Comparatively few different number sequences n0 . . . nk actually occur, since most of the n’s are generally

zero. Therefore the number sequences are encoded in such a way that trie op(zk) is only one byte long. If
trie op(zk) ̸= min quarterword , when p1 . . . pk has matched the letters in hc [(l−k+1) . . l] of language t, we
perform all of the required operations for this pattern by carrying out the following little program: Set v ←
trie op(zk). Then set v ← v+op start [t], hyf [l−hyf distance [v]]← max(hyf [l−hyf distance [v]], hyf num [v]),
and v ← hyf next [v]; repeat, if necessary, until v = min quarterword .

⟨Types in the outer block 18 ⟩ +≡
trie pointer = 0 . . trie size ; { an index into trie }

975. define trie link (#) ≡ trie [#].rh { “downward” link in a trie }
define trie char (#) ≡ trie [#].b1 { character matched at this trie location }
define trie op(#) ≡ trie [#].b0 { program for hyphenation at this trie location }

⟨Global variables 13 ⟩ +≡
trie : array [trie pointer] of two halves ; { trie link , trie char , trie op }
hyf distance : array [1 . . trie op size] of small number ; { position k − j of nj }
hyf num : array [1 . . trie op size] of small number ; { value of nj }
hyf next : array [1 . . trie op size] of quarterword ; { continuation code }
op start : array [0 . . biggest lang] of 0 . . trie op size ; { offset for current language }

976. ⟨Local variables for hyphenation 954 ⟩ +≡
z: trie pointer ; { an index into trie }
v: integer ; { an index into hyf distance , etc. }

§977 X ETEX PART 42: HYPHENATION 429

977. Assuming that these auxiliary tables have been set up properly, the hyphenation algorithm is quite
short. In the following code we set hc [hn + 2] to the impossible value 256, in order to guarantee that
hc [hn + 3] will never be fetched.

⟨Find hyphen locations for the word in hc , or return 977 ⟩ ≡
for j ← 0 to hn do hyf [j]← 0;
⟨Look for the word hc [1 . . hn] in the exception table, and goto found (with hyf containing the hyphens)

if an entry is found 984 ⟩;
if trie char (cur lang + 1) ̸= qi (cur lang) then return; { no patterns for cur lang }
hc [0]← 0; hc [hn + 1]← 0; hc [hn + 2]← max hyph char ; { insert delimiters }
for j ← 0 to hn − r hyf + 1 do
begin z ← trie link (cur lang + 1) + hc [j]; l← j;
while hc [l] = qo(trie char (z)) do
begin if trie op(z) ̸= min quarterword then ⟨ Store maximum values in the hyf table 978 ⟩;
incr (l); z ← trie link (z) + hc [l];
end;

end;
found : for j ← 0 to l hyf − 1 do hyf [j]← 0;
for j ← 0 to r hyf − 1 do hyf [hn − j]← 0

This code is used in section 944.

978. ⟨ Store maximum values in the hyf table 978 ⟩ ≡
begin v ← trie op(z);
repeat v ← v + op start [cur lang]; i← l − hyf distance [v];
if hyf num [v] > hyf [i] then hyf [i]← hyf num [v];
v ← hyf next [v];

until v = min quarterword ;
end

This code is used in section 977.

979. The exception table that is built by TEX’s \hyphenation primitive is organized as an ordered hash
table [cf. Amble and Knuth, The Computer Journal 17 (1974), 135–142] using linear probing. If α and β
are words, we will say that α < β if |α| < |β| or if |α| = |β| and α is lexicographically smaller than β. (The
notation |α| stands for the length of α.) The idea of ordered hashing is to arrange the table so that a given
word α can be sought by computing a hash address h = h(α) and then looking in table positions h, h − 1,
. . . , until encountering the first word ≤ α. If this word is different from α, we can conclude that α is not in
the table.
The words in the table point to lists in mem that specify hyphen positions in their info fields. The list

for c1 . . . cn contains the number k if the word c1 . . . cn has a discretionary hyphen between ck and ck+1.

⟨Types in the outer block 18 ⟩ +≡
hyph pointer = 0 . . hyph size ; { an index into the ordered hash table }

980. ⟨Global variables 13 ⟩ +≡
hyph word : array [hyph pointer] of str number ; { exception words }
hyph list : array [hyph pointer] of pointer ; { lists of hyphen positions }
hyph count : hyph pointer ; { the number of words in the exception dictionary }

981. ⟨Local variables for initialization 19 ⟩ +≡
z: hyph pointer ; { runs through the exception dictionary }

430 PART 42: HYPHENATION X ETEX §982

982. ⟨ Set initial values of key variables 23 ⟩ +≡
for z ← 0 to hyph size do
begin hyph word [z]← 0; hyph list [z]← null ;
end;

hyph count ← 0;

983. The algorithm for exception lookup is quite simple, as soon as we have a few more local variables to
work with.

⟨Local variables for hyphenation 954 ⟩ +≡
h: hyph pointer ; { an index into hyph word and hyph list }
k: str number ; { an index into str start }
u: pool pointer ; { an index into str pool }

984. First we compute the hash code h, then we search until we either find the word or we don’t. Words
from different languages are kept separate by appending the language code to the string.

⟨Look for the word hc [1 . . hn] in the exception table, and goto found (with hyf containing the hyphens) if
an entry is found 984 ⟩ ≡

h← hc [1]; incr (hn); hc [hn]← cur lang ;
for j ← 2 to hn do h← (h+ h+ hc [j])mod hyph size ;
loop begin ⟨ If the string hyph word [h] is less than hc [1 . . hn], goto not found ; but if the two strings

are equal, set hyf to the hyphen positions and goto found 985 ⟩;
if h > 0 then decr (h) else h← hyph size ;
end;

not found : decr (hn)

This code is used in section 977.

985. ⟨ If the string hyph word [h] is less than hc [1 . . hn], goto not found ; but if the two strings are equal,
set hyf to the hyphen positions and goto found 985 ⟩ ≡

k ← hyph word [h];
if k = 0 then goto not found ;
if length (k) < hn then goto not found ;
if length (k) = hn then
begin j ← 1; u← str start macro(k);
repeat if so(str pool [u]) < hc [j] then goto not found ;

if so(str pool [u]) > hc [j] then goto done ;
incr (j); incr (u);

until j > hn ;
⟨ Insert hyphens as specified in hyph list [h] 986 ⟩;
decr (hn); goto found ;
end;

done :

This code is used in section 984.

986. ⟨ Insert hyphens as specified in hyph list [h] 986 ⟩ ≡
s← hyph list [h];
while s ̸= null do
begin hyf [info(s)]← 1; s← link (s);
end

This code is used in section 985.

§987 X ETEX PART 42: HYPHENATION 431

987. ⟨ Search hyph list for pointers to p 987 ⟩ ≡
for q ← 0 to hyph size do
begin if hyph list [q] = p then

begin print nl ("HYPH("); print int (q); print char (")");
end;

end

This code is used in section 197.

988. We have now completed the hyphenation routine, so the line break procedure is finished at last. Since
the hyphenation exception table is fresh in our minds, it’s a good time to deal with the routine that adds
new entries to it.
When TEX has scanned ‘\hyphenation’, it calls on a procedure named new hyph exceptions to do the

right thing.

define set cur lang ≡
if language ≤ 0 then cur lang ← 0
else if language > biggest lang then cur lang ← 0

else cur lang ← language

procedure new hyph exceptions ; { enters new exceptions }
label reswitch , exit , found ,not found ,not found1 ;
var n: 0 . . hyphenatable length limit + 1; { length of current word; not always a small number }
j: 0 . . hyphenatable length limit + 1; { an index into hc }
h: hyph pointer ; { an index into hyph word and hyph list }
k: str number ; { an index into str start }
p: pointer ; { head of a list of hyphen positions }
q: pointer ; { used when creating a new node for list p }
s, t: str number ; { strings being compared or stored }
u, v: pool pointer ; { indices into str pool }

begin scan left brace ; { a left brace must follow \hyphenation }
set cur lang ;
init if trie not ready then
begin hyph index ← 0; goto not found1 ;
end;

tini
set hyph index ;

not found1 : ⟨Enter as many hyphenation exceptions as are listed, until coming to a right brace; then
return 989 ⟩;

exit : end;

432 PART 42: HYPHENATION X ETEX §989

989. ⟨Enter as many hyphenation exceptions as are listed, until coming to a right brace; then
return 989 ⟩ ≡

n← 0; p← null ;
loop begin get x token ;
reswitch : case cur cmd of
letter , other char , char given : ⟨Append a new letter or hyphen 991 ⟩;
char num : begin scan char num ; cur chr ← cur val ; cur cmd ← char given ; goto reswitch ;

end;
spacer , right brace : begin if n > 1 then ⟨Enter a hyphenation exception 993 ⟩;
if cur cmd = right brace then return;
n← 0; p← null ;
end;

othercases ⟨Give improper \hyphenation error 990 ⟩
endcases;
end

This code is used in section 988.

990. ⟨Give improper \hyphenation error 990 ⟩ ≡
begin print err ("Improper␣"); print esc("hyphenation"); print ("␣will␣be␣flushed");
help2 ("Hyphenation␣exceptions␣must␣contain␣only␣letters")
("and␣hyphens.␣But␣continue;␣I´ll␣forgive␣and␣forget."); error ;
end

This code is used in section 989.

991. ⟨Append a new letter or hyphen 991 ⟩ ≡
if cur chr = "−" then ⟨Append the value n to list p 992 ⟩
else begin set lc code (cur chr);
if hc [0] = 0 then
begin print err ("Not␣a␣letter");
help2 ("Letters␣in␣\hyphenation␣words␣must␣have␣\lccode>0.")
("Proceed;␣I´ll␣ignore␣the␣character␣I␣just␣read."); error ;
end

else if n < max hyphenatable length then
begin incr (n);
if hc [0] < ˝10000 then hc [n]← hc [0]
else begin hc [n]← (hc [0]− ˝10000)div ˝400+˝D800; incr (n); hc [n]← hc [0]mod ˝400+˝DC00;
end;

end;
end

This code is used in section 989.

992. ⟨Append the value n to list p 992 ⟩ ≡
begin if n < max hyphenatable length then
begin q ← get avail ; link (q)← p; info(q)← n; p← q;
end;

end

This code is used in section 991.

§993 X ETEX PART 42: HYPHENATION 433

993. ⟨Enter a hyphenation exception 993 ⟩ ≡
begin incr (n); hc [n]← cur lang ; str room (n); h← 0;
for j ← 1 to n do
begin h← (h+ h+ hc [j])mod hyph size ; append char (hc [j]);
end;

s← make string ; ⟨ Insert the pair (s, p) into the exception table 994 ⟩;
end

This code is used in section 989.

994. ⟨ Insert the pair (s, p) into the exception table 994 ⟩ ≡
if hyph count = hyph size then overflow ("exception␣dictionary", hyph size);
incr (hyph count);
while hyph word [h] ̸= 0 do
begin ⟨ If the string hyph word [h] is less than or equal to s, interchange (hyph word [h], hyph list [h])

with (s, p) 995 ⟩;
if h > 0 then decr (h) else h← hyph size ;
end;

hyph word [h]← s; hyph list [h]← p

This code is used in section 993.

995. ⟨ If the string hyph word [h] is less than or equal to s, interchange (hyph word [h], hyph list [h]) with
(s, p) 995 ⟩ ≡

k ← hyph word [h];
if length (k) < length (s) then goto found ;
if length (k) > length (s) then goto not found ;
u← str start macro(k); v ← str start macro(s);
repeat if str pool [u] < str pool [v] then goto found ;
if str pool [u] > str pool [v] then goto not found ;
incr (u); incr (v);

until u = str start macro(k + 1);
found : q ← hyph list [h]; hyph list [h]← p; p← q;
t← hyph word [h]; hyph word [h]← s; s← t;

not found :

This code is used in section 994.

434 PART 43: INITIALIZING THE HYPHENATION TABLES X ETEX §996

996. Initializing the hyphenation tables. The trie for TEX’s hyphenation algorithm is built from a
sequence of patterns following a \patterns specification. Such a specification is allowed only in INITEX,
since the extra memory for auxiliary tables and for the initialization program itself would only clutter up
the production version of TEX with a lot of deadwood.
The first step is to build a trie that is linked, instead of packed into sequential storage, so that insertions

are readily made. After all patterns have been processed, INITEX compresses the linked trie by identifying
common subtries. Finally the trie is packed into the efficient sequential form that the hyphenation algorithm
actually uses.

⟨Declare subprocedures for line break 874 ⟩ +≡
init ⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩
tini

997. Before we discuss trie building in detail, let’s consider the simpler problem of creating the hyf distance ,
hyf num , and hyf next arrays.
Suppose, for example, that TEX reads the pattern ‘ab2cde1’. This is a pattern of length 5, with n0 . . . n5 =

00 2 0 0 1 in the notation above. We want the corresponding trie op code v to have hyf distance [v] = 3,
hyf num [v] = 2, and hyf next [v] = v′, where the auxiliary trie op code v′ has hyf distance [v′] = 0,
hyf num [v′] = 1, and hyf next [v′] = min quarterword .
TEX computes an appropriate value v with the new trie op subroutine below, by setting

v′ ← new trie op(0, 1,min quarterword), v ← new trie op(3, 2, v′).

This subroutine looks up its three parameters in a special hash table, assigning a new value only if these
three have not appeared before for the current language.
The hash table is called trie op hash , and the number of entries it contains is trie op ptr .

⟨Global variables 13 ⟩ +≡
init trie op hash : array [−trie op size . . trie op size] of 0 . . trie op size ;

{ trie op codes for quadruples }
trie used : array [ASCII code] of quarterword ; { largest opcode used so far for this language }
trie op lang : array [1 . . trie op size] of 0 . . biggest lang ; { language part of a hashed quadruple }
trie op val : array [1 . . trie op size] of quarterword ; { opcode corresponding to a hashed quadruple }
trie op ptr : 0 . . trie op size ; { number of stored ops so far }
tini

§998 X ETEX PART 43: INITIALIZING THE HYPHENATION TABLES 435

998. It’s tempting to remove the overflow stops in the following procedure; new trie op could return
min quarterword (thereby simply ignoring part of a hyphenation pattern) instead of aborting the job.
However, that would lead to different hyphenation results on different installations of TEX using the same
patterns. The overflow stops are necessary for portability of patterns.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ ≡
function new trie op(d, n : small number ; v : quarterword): quarterword ;
label exit ;
var h: −trie op size . . trie op size ; { trial hash location }
u: quarterword ; { trial op code }
l: 0 . . trie op size ; { pointer to stored data }

begin h← abs (n+ 313 ∗ d+ 361 ∗ v + 1009 ∗ cur lang)mod (trie op size + trie op size)− trie op size ;
loop begin l← trie op hash [h];
if l = 0 then { empty position found for a new op }

begin if trie op ptr = trie op size then overflow ("pattern␣memory␣ops", trie op size);
u← trie used [cur lang];
if u = max quarterword then
overflow ("pattern␣memory␣ops␣per␣language",max quarterword −min quarterword);

incr (trie op ptr); incr (u); trie used [cur lang]← u; hyf distance [trie op ptr]← d;
hyf num [trie op ptr]← n; hyf next [trie op ptr]← v; trie op lang [trie op ptr]← cur lang ;
trie op hash [h]← trie op ptr ; trie op val [trie op ptr]← u; new trie op ← u; return;
end;

if (hyf distance [l] = d) ∧ (hyf num [l] = n) ∧ (hyf next [l] = v) ∧ (trie op lang [l] = cur lang) then
begin new trie op ← trie op val [l]; return;
end;

if h > −trie op size then decr (h) else h← trie op size ;
end;

exit : end;

See also sections 1002, 1003, 1007, 1011, 1013, 1014, and 1020.

This code is used in section 996.

999. After new trie op has compressed the necessary opcode information, plenty of information is available
to unscramble the data into the final form needed by our hyphenation algorithm.

⟨ Sort the hyphenation op tables into proper order 999 ⟩ ≡
op start [0]← −min quarterword ;
for j ← 1 to biggest lang do op start [j]← op start [j − 1] + qo(trie used [j − 1]);
for j ← 1 to trie op ptr do trie op hash [j]← op start [trie op lang [j]] + trie op val [j]; { destination }
for j ← 1 to trie op ptr do
while trie op hash [j] > j do
begin k ← trie op hash [j];
t← hyf distance [k]; hyf distance [k]← hyf distance [j]; hyf distance [j]← t;
t← hyf num [k]; hyf num [k]← hyf num [j]; hyf num [j]← t;
t← hyf next [k]; hyf next [k]← hyf next [j]; hyf next [j]← t;
trie op hash [j]← trie op hash [k]; trie op hash [k]← k;
end

This code is used in section 1006.

436 PART 43: INITIALIZING THE HYPHENATION TABLES X ETEX §1000

1000. Before we forget how to initialize the data structures that have been mentioned so far, let’s write
down the code that gets them started.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
for k ← −trie op size to trie op size do trie op hash [k]← 0;
for k ← 0 to 255 do trie used [k]← min quarterword ;
trie op ptr ← 0;

1001. The linked trie that is used to preprocess hyphenation patterns appears in several global arrays.
Each node represents an instruction of the form “if you see character c, then perform operation o, move to
the next character, and go to node l; otherwise go to node r.” The four quantities c, o, l, and r are stored
in four arrays trie c , trie o , trie l , and trie r . The root of the trie is trie l [0], and the number of nodes is
trie ptr . Null trie pointers are represented by zero. To initialize the trie, we simply set trie l [0] and trie ptr
to zero. We also set trie c [0] to some arbitrary value, since the algorithm may access it.
The algorithms maintain the condition

trie c [trie r [z]] > trie c [z] whenever z ̸= 0 and trie r [z] ̸= 0;

in other words, sibling nodes are ordered by their c fields.

define trie root ≡ trie l [0] { root of the linked trie }
⟨Global variables 13 ⟩ +≡

init trie c : packed array [trie pointer] of packed ASCII code ; { characters to match }
trie o : packed array [trie pointer] of quarterword ; { operations to perform }
trie l : packed array [trie pointer] of trie pointer ; { left subtrie links }
trie r : packed array [trie pointer] of trie pointer ; { right subtrie links }
trie ptr : trie pointer ; { the number of nodes in the trie }
trie hash : packed array [trie pointer] of trie pointer ; { used to identify equivalent subtries }
tini

1002. Let us suppose that a linked trie has already been constructed. Experience shows that we can often
reduce its size by recognizing common subtries; therefore another hash table is introduced for this purpose,
somewhat similar to trie op hash . The new hash table will be initialized to zero.
The function trie node (p) returns p if p is distinct from other nodes that it has seen, otherwise it returns

the number of the first equivalent node that it has seen.
Notice that we might make subtries equivalent even if they correspond to patterns for different languages,

in which the trie ops might mean quite different things. That’s perfectly all right.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
function trie node (p : trie pointer): trie pointer ; { converts to a canonical form }

label exit ;
var h: trie pointer ; { trial hash location }
q: trie pointer ; { trial trie node }

begin h← abs (trie c [p] + 1009 ∗ trie o [p] + 2718 ∗ trie l [p] + 3142 ∗ trie r [p])mod trie size ;
loop begin q ← trie hash [h];
if q = 0 then
begin trie hash [h]← p; trie node ← p; return;
end;

if (trie c [q] = trie c [p]) ∧ (trie o [q] = trie o [p]) ∧ (trie l [q] = trie l [p]) ∧ (trie r [q] = trie r [p]) then
begin trie node ← q; return;
end;

if h > 0 then decr (h) else h← trie size ;
end;

exit : end;

§1003 X ETEX PART 43: INITIALIZING THE HYPHENATION TABLES 437

1003. A neat recursive procedure is now able to compress a trie by traversing it and applying trie node
to its nodes in “bottom up” fashion. We will compress the entire trie by clearing trie hash to zero and then
saying ‘trie root ← compress trie (trie root)’.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
function compress trie (p : trie pointer): trie pointer ;
begin if p = 0 then compress trie ← 0
else begin trie l [p]← compress trie (trie l [p]); trie r [p]← compress trie (trie r [p]);
compress trie ← trie node (p);
end;

end;

1004. The compressed trie will be packed into the trie array using a “top-down first-fit” procedure. This
is a little tricky, so the reader should pay close attention: The trie hash array is cleared to zero again and
renamed trie ref for this phase of the operation; later on, trie ref [p] will be nonzero only if the linked trie
node p is the smallest character in a family and if the characters c of that family have been allocated to
locations trie ref [p] + c in the trie array. Locations of trie that are in use will have trie link = 0, while
the unused holes in trie will be doubly linked with trie link pointing to the next larger vacant location and
trie back pointing to the next smaller one. This double linking will have been carried out only as far as
trie max , where trie max is the largest index of trie that will be needed. To save time at the low end of
the trie, we maintain array entries trie min [c] pointing to the smallest hole that is greater than c. Another
array trie taken tells whether or not a given location is equal to trie ref [p] for some p; this array is used to
ensure that distinct nodes in the compressed trie will have distinct trie ref entries.

define trie ref ≡ trie hash {where linked trie families go into trie }
define trie back (#) ≡ trie [#].lh { backward links in trie holes }

⟨Global variables 13 ⟩ +≡
init trie taken : packed array [1 . . trie size] of boolean ; { does a family start here? }
trie min : array [ASCII code] of trie pointer ; { the first possible slot for each character }
trie max : trie pointer ; { largest location used in trie }
trie not ready : boolean ; { is the trie still in linked form? }
tini

1005. Each time \patterns appears, it contributes further patterns to the future trie, which will be built
only when hyphenation is attempted or when a format file is dumped. The boolean variable trie not ready
will change to false when the trie is compressed; this will disable further patterns.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
trie not ready ← true ; trie root ← 0; trie c [0]← si (0); trie ptr ← 0;

1006. Here is how the trie-compression data structures are initialized. If storage is tight, it would be
possible to overlap trie op hash , trie op lang , and trie op val with trie , trie hash , and trie taken , because
we finish with the former just before we need the latter.

⟨Get ready to compress the trie 1006 ⟩ ≡
⟨ Sort the hyphenation op tables into proper order 999 ⟩;
for p← 0 to trie size do trie hash [p]← 0;
hyph root ← compress trie (hyph root); trie root ← compress trie (trie root);

{ identify equivalent subtries }
for p← 0 to trie ptr do trie ref [p]← 0;
for p← 0 to biggest char do trie min [p]← p+ 1;
trie link (0)← 1; trie max ← 0

This code is used in section 1020.

438 PART 43: INITIALIZING THE HYPHENATION TABLES X ETEX §1007

1007. The first fit procedure finds the smallest hole z in trie such that a trie family starting at a given
node p will fit into vacant positions starting at z. If c = trie c [p], this means that location z − c must not
already be taken by some other family, and that z− c+ c′ must be vacant for all characters c′ in the family.
The procedure sets trie ref [p] to z − c when the first fit has been found.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
procedure first fit (p : trie pointer); { packs a family into trie }
label not found , found ;
var h: trie pointer ; { candidate for trie ref [p] }
z: trie pointer ; { runs through holes }
q: trie pointer ; { runs through the family starting at p }
c: ASCII code ; { smallest character in the family }
l, r: trie pointer ; { left and right neighbors }
ll : 1 . . too big char ; { upper limit of trie min updating }

begin c← so(trie c [p]); z ← trie min [c]; { get the first conceivably good hole }
loop begin h← z − c;
⟨Ensure that trie max ≥ h+max hyph char 1008 ⟩;
if trie taken [h] then goto not found ;
⟨ If all characters of the family fit relative to h, then goto found , otherwise goto not found 1009 ⟩;

not found : z ← trie link (z); {move to the next hole }
end;

found : ⟨Pack the family into trie relative to h 1010 ⟩;
end;

1008. By making sure that trie max is at least h + max hyph char , we can be sure that trie max > z,
since h = z − c. It follows that location trie max will never be occupied in trie , and we will have
trie max ≥ trie link (z).

⟨Ensure that trie max ≥ h+max hyph char 1008 ⟩ ≡
if trie max < h+max hyph char then
begin if trie size ≤ h+max hyph char then overflow ("pattern␣memory", trie size);
repeat incr (trie max); trie taken [trie max]← false ; trie link (trie max)← trie max + 1;

trie back (trie max)← trie max − 1;
until trie max = h+max hyph char ;
end

This code is used in section 1007.

1009. ⟨ If all characters of the family fit relative to h, then goto found , otherwise goto not found 1009 ⟩ ≡
q ← trie r [p];
while q > 0 do
begin if trie link (h+ so(trie c [q])) = 0 then goto not found ;
q ← trie r [q];
end;

goto found

This code is used in section 1007.

§1010 X ETEX PART 43: INITIALIZING THE HYPHENATION TABLES 439

1010. ⟨Pack the family into trie relative to h 1010 ⟩ ≡
trie taken [h]← true ; trie ref [p]← h; q ← p;
repeat z ← h+ so(trie c [q]); l← trie back (z); r ← trie link (z); trie back (r)← l; trie link (l)← r;
trie link (z)← 0;
if l < max hyph char then

begin if z < max hyph char then ll ← z else ll ← max hyph char ;
repeat trie min [l]← r; incr (l);
until l = ll ;
end;

q ← trie r [q];
until q = 0

This code is used in section 1007.

1011. To pack the entire linked trie, we use the following recursive procedure.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
procedure trie pack (p : trie pointer); { pack subtries of a family }

var q: trie pointer ; { a local variable that need not be saved on recursive calls }
begin repeat q ← trie l [p];
if (q > 0) ∧ (trie ref [q] = 0) then

begin first fit (q); trie pack (q);
end;

p← trie r [p];
until p = 0;
end;

1012. When the whole trie has been allocated into the sequential table, we must go through it once again
so that trie contains the correct information. Null pointers in the linked trie will be represented by the
value 0, which properly implements an “empty” family.

⟨Move the data into trie 1012 ⟩ ≡
h.rh ← 0; h.b0 ← min quarterword ; h.b1 ← min quarterword ;

{ trie link ← 0, trie op ← min quarterword , trie char ← qi (0) }
if trie max = 0 then { no patterns were given }
begin for r ← 0 to 256 do trie [r]← h;
trie max ← 256;
end

else begin if hyph root > 0 then trie fix (hyph root);
if trie root > 0 then trie fix (trie root); { this fixes the non-holes in trie }
r ← 0; { now we will zero out all the holes }
repeat s← trie link (r); trie [r]← h; r ← s;
until r > trie max ;
end;

trie char (0)← qi ("?"); {make trie char (c) ̸= c for all c }
This code is used in section 1020.

440 PART 43: INITIALIZING THE HYPHENATION TABLES X ETEX §1013

1013. The fixing-up procedure is, of course, recursive. Since the linked trie usually has overlapping subtries,
the same data may be moved several times; but that causes no harm, and at most as much work is done as
it took to build the uncompressed trie.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
procedure trie fix (p : trie pointer); {moves p and its siblings into trie }
var q: trie pointer ; { a local variable that need not be saved on recursive calls }
c: ASCII code ; { another one that need not be saved }
z: trie pointer ; { trie reference; this local variable must be saved }

begin z ← trie ref [p];
repeat q ← trie l [p]; c← so(trie c [p]); trie link (z + c)← trie ref [q]; trie char (z + c)← qi (c);
trie op(z + c)← trie o [p];
if q > 0 then trie fix (q);
p← trie r [p];

until p = 0;
end;

1014. Now let’s go back to the easier problem, of building the linked trie. When INITEX has scanned the
‘\patterns’ control sequence, it calls on new patterns to do the right thing.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
procedure new patterns ; { initializes the hyphenation pattern data }

label done , done1 ;
var k, l: 0 . . hyphenatable length limit + 1;

{ indices into hc and hyf ; not always in small number range }
digit sensed : boolean ; { should the next digit be treated as a letter? }
v: quarterword ; { trie op code }
p, q: trie pointer ; { nodes of trie traversed during insertion }
first child : boolean ; { is p = trie l [q]? }
c: ASCII code ; { character being inserted }

begin if trie not ready then
begin set cur lang ; scan left brace ; { a left brace must follow \patterns }
⟨Enter all of the patterns into a linked trie, until coming to a right brace 1015 ⟩;
if saving hyph codes > 0 then ⟨ Store hyphenation codes for current language 1666 ⟩;
end

else begin print err ("Too␣late␣for␣"); print esc("patterns");
help1 ("All␣patterns␣must␣be␣given␣before␣typesetting␣begins."); error ;
link (garbage)← scan toks (false , false); flush list (def ref);
end;

end;

§1015 X ETEX PART 43: INITIALIZING THE HYPHENATION TABLES 441

1015. Novices are not supposed to be using \patterns, so the error messages are terse. (Note that all
error messages appear in TEX’s string pool, even if they are used only by INITEX.)

⟨Enter all of the patterns into a linked trie, until coming to a right brace 1015 ⟩ ≡
k ← 0; hyf [0]← 0; digit sensed ← false ;
loop begin get x token ;
case cur cmd of
letter , other char : ⟨Append a new letter or a hyphen level 1016 ⟩;
spacer , right brace : begin if k > 0 then ⟨ Insert a new pattern into the linked trie 1017 ⟩;

if cur cmd = right brace then goto done ;
k ← 0; hyf [0]← 0; digit sensed ← false ;
end;

othercases begin print err ("Bad␣"); print esc("patterns"); help1 ("(See␣Appendix␣H.)"); error ;
end

endcases;
end;

done :

This code is used in section 1014.

1016. ⟨Append a new letter or a hyphen level 1016 ⟩ ≡
if digit sensed ∨ (cur chr < "0") ∨ (cur chr > "9") then
begin if cur chr = "." then cur chr ← 0 { edge-of-word delimiter }
else begin cur chr ← lc code (cur chr);

if cur chr = 0 then
begin print err ("Nonletter"); help1 ("(See␣Appendix␣H.)"); error ;
end;

end;
if cur chr > max hyph char then max hyph char ← cur chr ;
if k < max hyphenatable length then

begin incr (k); hc [k]← cur chr ; hyf [k]← 0; digit sensed ← false ;
end;

end
else if k < max hyphenatable length then

begin hyf [k]← cur chr − "0"; digit sensed ← true ;
end

This code is used in section 1015.

442 PART 43: INITIALIZING THE HYPHENATION TABLES X ETEX §1017

1017. When the following code comes into play, the pattern p1 . . . pk appears in hc [1 . . k], and the
corresponding sequence of numbers n0 . . . nk appears in hyf [0 . . k].

⟨ Insert a new pattern into the linked trie 1017 ⟩ ≡
begin ⟨Compute the trie op code, v, and set l← 0 1019 ⟩;
q ← 0; hc [0]← cur lang ;
while l ≤ k do
begin c← hc [l]; incr (l); p← trie l [q]; first child ← true ;
while (p > 0) ∧ (c > so(trie c [p])) do
begin q ← p; p← trie r [q]; first child ← false ;
end;

if (p = 0) ∨ (c < so(trie c [p])) then
⟨ Insert a new trie node between q and p, and make p point to it 1018 ⟩;

q ← p; { now node q represents p1 . . . pl−1 }
end;

if trie o [q] ̸= min quarterword then
begin print err ("Duplicate␣pattern"); help1 ("(See␣Appendix␣H.)"); error ;
end;

trie o [q]← v;
end

This code is used in section 1015.

1018. ⟨ Insert a new trie node between q and p, and make p point to it 1018 ⟩ ≡
begin if trie ptr = trie size then overflow ("pattern␣memory", trie size);
incr (trie ptr); trie r [trie ptr]← p; p← trie ptr ; trie l [p]← 0;
if first child then trie l [q]← p else trie r [q]← p;
trie c [p]← si (c); trie o [p]← min quarterword ;
end

This code is used in sections 1017, 1666, and 1667.

1019. ⟨Compute the trie op code, v, and set l← 0 1019 ⟩ ≡
if hc [1] = 0 then hyf [0]← 0;
if hc [k] = 0 then hyf [k]← 0;
l← k; v ← min quarterword ;
loop begin if hyf [l] ̸= 0 then v ← new trie op(k − l, hyf [l], v);
if l > 0 then decr (l) else goto done1 ;
end;

done1 :

This code is used in section 1017.

§1020 X ETEX PART 43: INITIALIZING THE HYPHENATION TABLES 443

1020. Finally we put everything together: Here is how the trie gets to its final, efficient form. The following
packing routine is rigged so that the root of the linked tree gets mapped into location 1 of trie , as required
by the hyphenation algorithm. This happens because the first call of first fit will “take” location 1.

⟨Declare procedures for preprocessing hyphenation patterns 998 ⟩ +≡
procedure init trie ;
var p: trie pointer ; { pointer for initialization }
j, k, t: integer ; { all-purpose registers for initialization }
r, s: trie pointer ; { used to clean up the packed trie }
h: two halves ; { template used to zero out trie ’s holes }

begin incr (max hyph char); ⟨Get ready to compress the trie 1006 ⟩;
if trie root ̸= 0 then
begin first fit (trie root); trie pack (trie root);
end;

if hyph root ̸= 0 then ⟨Pack all stored hyph codes 1668 ⟩;
⟨Move the data into trie 1012 ⟩;
trie not ready ← false ;
end;

444 PART 44: BREAKING VERTICAL LISTS INTO PAGES X ETEX §1021

1021. Breaking vertical lists into pages. The vsplit procedure, which implements TEX’s \vsplit

operation, is considerably simpler than line break because it doesn’t have to worry about hyphenation, and
because its mission is to discover a single break instead of an optimum sequence of breakpoints. But before
we get into the details of vsplit , we need to consider a few more basic things.

1022. A subroutine called prune page top takes a pointer to a vlist and returns a pointer to a modified
vlist in which all glue, kern, and penalty nodes have been deleted before the first box or rule node. However,
the first box or rule is actually preceded by a newly created glue node designed so that the topmost baseline
will be at distance split top skip from the top, whenever this is possible without backspacing.
When the second argument s is false the deleted nodes are destroyed, otherwise they are collected in a

list starting at split disc .
In this routine and those that follow, we make use of the fact that a vertical list contains no character

nodes, hence the type field exists for each node in the list.

function prune page top(p : pointer ; s : boolean): pointer ; { adjust top after page break }
var prev p : pointer ; { lags one step behind p }
q, r: pointer ; { temporary variables for list manipulation }

begin prev p ← temp head ; link (temp head)← p;
while p ̸= null do
case type (p) of
hlist node , vlist node , rule node : ⟨ Insert glue for split top skip and set p← null 1023 ⟩;
whatsit node ,mark node , ins node : begin prev p ← p; p← link (prev p);

end;
glue node , kern node , penalty node : begin q ← p; p← link (q); link (q)← null ; link (prev p)← p;
if s then

begin if split disc = null then split disc ← q else link (r)← q;
r ← q;
end

else flush node list (q);
end;

othercases confusion ("pruning")
endcases;

prune page top ← link (temp head);
end;

1023. ⟨ Insert glue for split top skip and set p← null 1023 ⟩ ≡
begin q ← new skip param (split top skip code); link (prev p)← q; link (q)← p;
{ now temp ptr = glue ptr (q) }

if XeTeX upwards then
begin if width (temp ptr) > depth (p) then width (temp ptr)← width (temp ptr)− depth (p)
else width (temp ptr)← 0;
end

else begin if width (temp ptr) > height (p) then width (temp ptr)← width (temp ptr)− height (p)
else width (temp ptr)← 0;
end;

p← null ;
end

This code is used in section 1022.

§1024 X ETEX PART 44: BREAKING VERTICAL LISTS INTO PAGES 445

1024. The next subroutine finds the best place to break a given vertical list so as to obtain a box of
height h, with maximum depth d. A pointer to the beginning of the vertical list is given, and a pointer to
the optimum breakpoint is returned. The list is effectively followed by a forced break, i.e., a penalty node
with the eject penalty ; if the best break occurs at this artificial node, the value null is returned.
An array of six scaled distances is used to keep track of the height from the beginning of the list to the

current place, just as in line break . In fact, we use one of the same arrays, only changing its name to reflect
its new significance.

define active height ≡ active width { new name for the six distance variables }
define cur height ≡ active height [1] { the natural height }
define set height zero(#) ≡ active height [#]← 0 { initialize the height to zero }
define update heights = 90 { go here to record glue in the active height table }

function vert break (p : pointer ; h, d : scaled): pointer ; { finds optimum page break }
label done ,not found , update heights ;
var prev p : pointer ; { if p is a glue node, type (prev p) determines whether p is a legal breakpoint }
q, r: pointer ; { glue specifications }
pi : integer ; { penalty value }
b: integer ; { badness at a trial breakpoint }
least cost : integer ; { the smallest badness plus penalties found so far }
best place : pointer ; { the most recent break that leads to least cost }
prev dp : scaled ; { depth of previous box in the list }
t: small number ; { type of the node following a kern }

begin prev p ← p; { an initial glue node is not a legal breakpoint }
least cost ← awful bad ; do all six (set height zero); prev dp ← 0;
loop begin ⟨ If node p is a legal breakpoint, check if this break is the best known, and goto done if p is

null or if the page-so-far is already too full to accept more stuff 1026 ⟩;
prev p ← p; p← link (prev p);
end;

done : vert break ← best place ;
end;

1025. A global variable best height plus depth will be set to the natural size of the box that corresponds
to the optimum breakpoint found by vert break . (This value is used by the insertion-splitting algorithm of
the page builder.)

⟨Global variables 13 ⟩ +≡
best height plus depth : scaled ; { height of the best box, without stretching or shrinking }

446 PART 44: BREAKING VERTICAL LISTS INTO PAGES X ETEX §1026

1026. A subtle point to be noted here is that the maximum depth d might be negative, so cur height and
prev dp might need to be corrected even after a glue or kern node.

⟨ If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if the
page-so-far is already too full to accept more stuff 1026 ⟩ ≡

if p = null then pi ← eject penalty
else ⟨Use node p to update the current height and depth measurements; if this node is not a legal

breakpoint, goto not found or update heights , otherwise set pi to the associated penalty at the
break 1027 ⟩;

⟨Check if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-far
is already too full 1028 ⟩;

if (type (p) < glue node) ∨ (type (p) > kern node) then goto not found ;
update heights : ⟨Update the current height and depth measurements with respect to a glue or kern

node p 1030 ⟩;
not found : if prev dp > d then

begin cur height ← cur height + prev dp − d; prev dp ← d;
end;

This code is used in section 1024.

1027. ⟨Use node p to update the current height and depth measurements; if this node is not a legal
breakpoint, goto not found or update heights , otherwise set pi to the associated penalty at the
break 1027 ⟩ ≡

case type (p) of
hlist node , vlist node , rule node : begin
cur height ← cur height + prev dp + height (p); prev dp ← depth (p); goto not found ;
end;

whatsit node : ⟨Process whatsit p in vert break loop, goto not found 1425 ⟩;
glue node : if precedes break (prev p) then pi ← 0
else goto update heights ;

kern node : begin if link (p) = null then t← penalty node
else t← type (link (p));
if t = glue node then pi ← 0 else goto update heights ;
end;

penalty node : pi ← penalty (p);
mark node , ins node : goto not found ;
othercases confusion ("vertbreak")
endcases

This code is used in section 1026.

§1028 X ETEX PART 44: BREAKING VERTICAL LISTS INTO PAGES 447

1028. define deplorable ≡ 100000 {more than inf bad , but less than awful bad }
⟨Check if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-far

is already too full 1028 ⟩ ≡
if pi < inf penalty then
begin ⟨Compute the badness, b, using awful bad if the box is too full 1029 ⟩;
if b < awful bad then

if pi ≤ eject penalty then b← pi
else if b < inf bad then b← b+ pi

else b← deplorable ;
if b ≤ least cost then
begin best place ← p; least cost ← b; best height plus depth ← cur height + prev dp ;
end;

if (b = awful bad) ∨ (pi ≤ eject penalty) then goto done ;
end

This code is used in section 1026.

1029. ⟨Compute the badness, b, using awful bad if the box is too full 1029 ⟩ ≡
if cur height < h then
if (active height [3] ̸= 0) ∨ (active height [4] ̸= 0) ∨ (active height [5] ̸= 0) then b← 0
else b← badness (h− cur height , active height [2])

else if cur height − h > active height [6] then b← awful bad
else b← badness (cur height − h, active height [6])

This code is used in section 1028.

1030. Vertical lists that are subject to the vert break procedure should not contain infinite shrinkability,
since that would permit any amount of information to “fit” on one page.

⟨Update the current height and depth measurements with respect to a glue or kern node p 1030 ⟩ ≡
if type (p) = kern node then q ← p
else begin q ← glue ptr (p);
active height [2 + stretch order (q)]← active height [2 + stretch order (q)] + stretch (q);
active height [6]← active height [6] + shrink (q);
if (shrink order (q) ̸= normal) ∧ (shrink (q) ̸= 0) then
begin
print err ("Infinite␣glue␣shrinkage␣found␣in␣box␣being␣split");
help4 ("The␣box␣you␣are␣\vsplitting␣contains␣some␣infinitely")
("shrinkable␣glue,␣e.g.,␣`\vss´␣or␣`\vskip␣0pt␣minus␣1fil´.")
("Such␣glue␣doesn´t␣belong␣there;␣but␣you␣can␣safely␣proceed,")
("since␣the␣offensive␣shrinkability␣has␣been␣made␣finite."); error ; r ← new spec(q);
shrink order (r)← normal ; delete glue ref (q); glue ptr (p)← r; q ← r;
end;

end;
cur height ← cur height + prev dp + width (q); prev dp ← 0

This code is used in section 1026.

448 PART 44: BREAKING VERTICAL LISTS INTO PAGES X ETEX §1031

1031. Now we are ready to consider vsplit itself. Most of its work is accomplished by the two subroutines
that we have just considered.
Given the number of a vlist box n, and given a desired page height h, the vsplit function finds the best

initial segment of the vlist and returns a box for a page of height h. The remainder of the vlist, if any,
replaces the original box, after removing glue and penalties and adjusting for split top skip . Mark nodes
in the split-off box are used to set the values of split first mark and split bot mark ; we use the fact that
split first mark = null if and only if split bot mark = null .
The original box becomes “void” if and only if it has been entirely extracted. The extracted box is “void”

if and only if the original box was void (or if it was, erroneously, an hlist box).

⟨Declare the function called do marks 1636 ⟩
function vsplit (n : halfword ; h : scaled): pointer ; { extracts a page of height h from box n }

label exit , done ;
var v: pointer ; { the box to be split }
p: pointer ; { runs through the vlist }
q: pointer ; { points to where the break occurs }

begin cur val ← n; fetch box (v); flush node list (split disc); split disc ← null ;
if sa mark ̸= null then
if do marks (vsplit init , 0, sa mark) then sa mark ← null ;

if split first mark ̸= null then
begin delete token ref (split first mark); split first mark ← null ; delete token ref (split bot mark);
split bot mark ← null ;
end;
⟨Dispense with trivial cases of void or bad boxes 1032 ⟩;
q ← vert break (list ptr (v), h, split max depth);
⟨Look at all the marks in nodes before the break, and set the final link to null at the break 1033 ⟩;
q ← prune page top(q, saving vdiscards > 0); p← list ptr (v); free node (v, box node size);
if q ̸= null then q ← vpack (q, natural);
change box (q); { the eq level of the box stays the same }
vsplit ← vpackage (p, h, exactly , split max depth);

exit : end;

1032. ⟨Dispense with trivial cases of void or bad boxes 1032 ⟩ ≡
if v = null then
begin vsplit ← null ; return;
end;

if type (v) ̸= vlist node then
begin print err (""); print esc("vsplit"); print ("␣needs␣a␣"); print esc("vbox");
help2 ("The␣box␣you␣are␣trying␣to␣split␣is␣an␣\hbox.")
("I␣can´t␣split␣such␣a␣box,␣so␣I´ll␣leave␣it␣alone."); error ; vsplit ← null ; return;
end

This code is used in section 1031.

§1033 X ETEX PART 44: BREAKING VERTICAL LISTS INTO PAGES 449

1033. It’s possible that the box begins with a penalty node that is the “best” break, so we must be careful
to handle this special case correctly.

⟨Look at all the marks in nodes before the break, and set the final link to null at the break 1033 ⟩ ≡
p← list ptr (v);
if p = q then list ptr (v)← null
else loop begin if type (p) = mark node then

if mark class (p) ̸= 0 then ⟨Update the current marks for vsplit 1638 ⟩
else if split first mark = null then

begin split first mark ← mark ptr (p); split bot mark ← split first mark ;
token ref count (split first mark)← token ref count (split first mark) + 2;
end

else begin delete token ref (split bot mark); split bot mark ← mark ptr (p);
add token ref (split bot mark);
end;

if link (p) = q then
begin link (p)← null ; goto done ;
end;

p← link (p);
end;

done :

This code is used in section 1031.

450 PART 45: THE PAGE BUILDER X ETEX §1034

1034. The page builder. When TEX appends new material to its main vlist in vertical mode, it uses
a method something like vsplit to decide where a page ends, except that the calculations are done “on line”
as new items come in. The main complication in this process is that insertions must be put into their boxes
and removed from the vlist, in a more-or-less optimum manner.
We shall use the term “current page” for that part of the main vlist that is being considered as a candidate

for being broken off and sent to the user’s output routine. The current page starts at link (page head), and
it ends at page tail . We have page head = page tail if this list is empty.
Utter chaos would reign if the user kept changing page specifications while a page is being constructed,

so the page builder keeps the pertinent specifications frozen as soon as the page receives its first box or
insertion. The global variable page contents is empty when the current page contains only mark nodes and
content-less whatsit nodes; it is inserts only if the page contains only insertion nodes in addition to marks
and whatsits. Glue nodes, kern nodes, and penalty nodes are discarded until a box or rule node appears, at
which time page contents changes to box there . As soon as page contents becomes non-empty , the current
vsize and max depth are squirreled away into page goal and page max depth ; the latter values will be used
until the page has been forwarded to the user’s output routine. The \topskip adjustment is made when
page contents changes to box there .
Although page goal starts out equal to vsize , it is decreased by the scaled natural height-plus-depth of the

insertions considered so far, and by the \skip corrections for those insertions. Therefore it represents the
size into which the non-inserted material should fit, assuming that all insertions in the current page have
been made.
The global variables best page break and least page cost correspond respectively to the local variables

best place and least cost in the vert break routine that we have already studied; i.e., they record the location
and value of the best place currently known for breaking the current page. The value of page goal at the
time of the best break is stored in best size .

define inserts only = 1 { page contents when an insert node has been contributed, but no boxes }
define box there = 2 { page contents when a box or rule has been contributed }

⟨Global variables 13 ⟩ +≡
page tail : pointer ; { the final node on the current page }
page contents : empty . . box there ; {what is on the current page so far? }
page max depth : scaled ; {maximum box depth on page being built }
best page break : pointer ; { break here to get the best page known so far }
least page cost : integer ; { the score for this currently best page }
best size : scaled ; { its page goal }

§1035 X ETEX PART 45: THE PAGE BUILDER 451

1035. The page builder has another data structure to keep track of insertions. This is a list of four-
word nodes, starting and ending at page ins head . That is, the first element of the list is node r1 =
link (page ins head); node rj is followed by rj+1 = link (rj); and if there are n items we have rn+1 =
page ins head . The subtype field of each node in this list refers to an insertion number; for example,
‘\insert 250’ would correspond to a node whose subtype is qi (250) (the same as the subtype field of the
relevant ins node). These subtype fields are in increasing order, and subtype (page ins head) = qi (255), so
page ins head serves as a convenient sentinel at the end of the list. A record is present for each insertion
number that appears in the current page.

The type field in these nodes distinguishes two possibilities that might occur as we look ahead before
deciding on the optimum page break. If type (r) = inserting , then height (r) contains the total of the height-
plus-depth dimensions of the box and all its inserts seen so far. If type (r) = split up , then no more insertions
will be made into this box, because at least one previous insertion was too big to fit on the current page;
broken ptr (r) points to the node where that insertion will be split, if TEX decides to split it, broken ins (r)
points to the insertion node that was tentatively split, and height (r) includes also the natural height plus
depth of the part that would be split off.
In both cases, last ins ptr (r) points to the last ins node encountered for box qo(subtype (r)) that would be

at least partially inserted on the next page; and best ins ptr (r) points to the last such ins node that should
actually be inserted, to get the page with minimum badness among all page breaks considered so far. We
have best ins ptr (r) = null if and only if no insertion for this box should be made to produce this optimum
page.
The data structure definitions here use the fact that the height field appears in the fourth word of a box

node.

define page ins node size = 4 { number of words for a page insertion node }
define inserting = 0 { an insertion class that has not yet overflowed }
define split up = 1 { an overflowed insertion class }
define broken ptr (#) ≡ link (#+ 1) { an insertion for this class will break here if anywhere }
define broken ins (#) ≡ info(#+ 1) { this insertion might break at broken ptr }
define last ins ptr (#) ≡ link (#+ 2) { the most recent insertion for this subtype }
define best ins ptr (#) ≡ info(#+ 2) { the optimum most recent insertion }

⟨ Initialize the special list heads and constant nodes 838 ⟩ +≡
subtype (page ins head)← qi (255); type (page ins head)← split up ; link (page ins head)← page ins head ;

452 PART 45: THE PAGE BUILDER X ETEX §1036

1036. An array page so far records the heights and depths of everything on the current page. This array
contains six scaled numbers, like the similar arrays already considered in line break and vert break ; and it
also contains page goal and page depth , since these values are all accessible to the user via set page dimen
commands. The value of page so far [1] is also called page total . The stretch and shrink components of the
\skip corrections for each insertion are included in page so far , but the natural space components of these
corrections are not, since they have been subtracted from page goal .

The variable page depth records the depth of the current page; it has been adjusted so that it is at most
page max depth . The variable last glue points to the glue specification of the most recent node contributed
from the contribution list, if this was a glue node; otherwise last glue = max halfword . (If the contribution list
is nonempty, however, the value of last glue is not necessarily accurate.) The variables last penalty , last kern ,
and last node type are similar. And finally, insert penalties holds the sum of the penalties associated with
all split and floating insertions.

define page goal ≡ page so far [0] { desired height of information on page being built }
define page total ≡ page so far [1] { height of the current page }
define page shrink ≡ page so far [6] { shrinkability of the current page }
define page depth ≡ page so far [7] { depth of the current page }

⟨Global variables 13 ⟩ +≡
page so far : array [0 . . 7] of scaled ; { height and glue of the current page }
last glue : pointer ; { used to implement \lastskip }
last penalty : integer ; { used to implement \lastpenalty }
last kern : scaled ; { used to implement \lastkern }
last node type : integer ; { used to implement \lastnodetype }
insert penalties : integer ; { sum of the penalties for insertions that were held over }

1037. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("pagegoal", set page dimen , 0); primitive ("pagetotal", set page dimen , 1);
primitive ("pagestretch", set page dimen , 2); primitive ("pagefilstretch", set page dimen , 3);
primitive ("pagefillstretch", set page dimen , 4); primitive ("pagefilllstretch", set page dimen , 5);
primitive ("pageshrink", set page dimen , 6); primitive ("pagedepth", set page dimen , 7);

1038. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
set page dimen : case chr code of

0: print esc("pagegoal");
1: print esc("pagetotal");
2: print esc("pagestretch");
3: print esc("pagefilstretch");
4: print esc("pagefillstretch");
5: print esc("pagefilllstretch");
6: print esc("pageshrink");
othercases print esc("pagedepth")
endcases;

§1039 X ETEX PART 45: THE PAGE BUILDER 453

1039. define print plus end (#) ≡ print (#); end
define print plus (#) ≡

if page so far [#] ̸= 0 then
begin print ("␣plus␣"); print scaled (page so far [#]); print plus end

procedure print totals ;
begin print scaled (page total); print plus (2)(""); print plus (3)("fil"); print plus (4)("fill");
print plus (5)("filll");
if page shrink ̸= 0 then
begin print ("␣minus␣"); print scaled (page shrink);
end;

end;

1040. ⟨ Show the status of the current page 1040 ⟩ ≡
if page head ̸= page tail then
begin print nl ("###␣current␣page:");
if output active then print ("␣(held␣over␣for␣next␣output)");
show box (link (page head));
if page contents > empty then
begin print nl ("total␣height␣"); print totals ; print nl ("␣goal␣height␣");
print scaled (page goal); r ← link (page ins head);
while r ̸= page ins head do

begin print ln ; print esc("insert"); t← qo(subtype (r)); print int (t); print ("␣adds␣");
if count (t) = 1000 then t← height (r)
else t← x over n (height (r), 1000) ∗ count (t);
print scaled (t);
if type (r) = split up then
begin q ← page head ; t← 0;
repeat q ← link (q);

if (type (q) = ins node) ∧ (subtype (q) = subtype (r)) then incr (t);
until q = broken ins (r);
print (",␣#"); print int (t); print ("␣might␣split");
end;

r ← link (r);
end;

end;
end

This code is used in section 244.

1041. Here is a procedure that is called when the page contents is changing from empty to inserts only
or box there .

define set page so far zero(#) ≡ page so far [#]← 0

procedure freeze page specs (s : small number);
begin page contents ← s; page goal ← vsize ; page max depth ← max depth ; page depth ← 0;
do all six (set page so far zero); least page cost ← awful bad ;
stat if tracing pages > 0 then
begin begin diagnostic ; print nl ("%%␣goal␣height="); print scaled (page goal);
print (",␣max␣depth="); print scaled (page max depth); end diagnostic(false);
end; tats

end;

454 PART 45: THE PAGE BUILDER X ETEX §1042

1042. Pages are built by appending nodes to the current list in TEX’s vertical mode, which is at the
outermost level of the semantic nest. This vlist is split into two parts; the “current page” that we have been
talking so much about already, and the “contribution list” that receives new nodes as they are created. The
current page contains everything that the page builder has accounted for in its data structures, as described
above, while the contribution list contains other things that have been generated by other parts of TEX but
have not yet been seen by the page builder. The contribution list starts at link (contrib head), and it ends
at the current node in TEX’s vertical mode.

When TEX has appended new material in vertical mode, it calls the procedure build page , which tries to
catch up by moving nodes from the contribution list to the current page. This procedure will succeed in its
goal of emptying the contribution list, unless a page break is discovered, i.e., unless the current page has
grown to the point where the optimum next page break has been determined. In the latter case, the nodes
after the optimum break will go back onto the contribution list, and control will effectively pass to the user’s
output routine.
We make type (page head) = glue node , so that an initial glue node on the current page will not be

considered a valid breakpoint.

⟨ Initialize the special list heads and constant nodes 838 ⟩ +≡
type (page head)← glue node ; subtype (page head)← normal ;

1043. The global variable output active is true during the time the user’s output routine is driving TEX.

⟨Global variables 13 ⟩ +≡
output active : boolean ; { are we in the midst of an output routine? }

1044. ⟨ Set initial values of key variables 23 ⟩ +≡
output active ← false ; insert penalties ← 0;

1045. The page builder is ready to start a fresh page if we initialize the following state variables. (However,
the page insertion list is initialized elsewhere.)

⟨ Start a new current page 1045 ⟩ ≡
page contents ← empty ; page tail ← page head ; link (page head)← null ;
last glue ← max halfword ; last penalty ← 0; last kern ← 0; last node type ← −1; page depth ← 0;
page max depth ← 0

This code is used in sections 241 and 1071.

1046. At certain times box 255 is supposed to be void (i.e., null), or an insertion box is supposed to be
ready to accept a vertical list. If not, an error message is printed, and the following subroutine flushes the
unwanted contents, reporting them to the user.

procedure box error (n : eight bits);
begin error ; begin diagnostic ; print nl ("The␣following␣box␣has␣been␣deleted:");
show box (box (n)); end diagnostic(true); flush node list (box (n)); box (n)← null ;
end;

§1047 X ETEX PART 45: THE PAGE BUILDER 455

1047. The following procedure guarantees that a given box register does not contain an \hbox.

procedure ensure vbox (n : eight bits);
var p: pointer ; { the box register contents }
begin p← box (n);
if p ̸= null then
if type (p) = hlist node then

begin print err ("Insertions␣can␣only␣be␣added␣to␣a␣vbox");
help3 ("Tut␣tut:␣You´re␣trying␣to␣\insert␣into␣a")
("\box␣register␣that␣now␣contains␣an␣\hbox.")
("Proceed,␣and␣I´ll␣discard␣its␣present␣contents."); box error (n);
end;

end;

1048. TEX is not always in vertical mode at the time build page is called; the current mode reflects
what TEX should return to, after the contribution list has been emptied. A call on build page should be
immediately followed by ‘goto big switch ’, which is TEX’s central control point.

define contribute = 80 { go here to link a node into the current page }
⟨Declare the procedure called fire up 1066 ⟩
procedure build page ; { append contributions to the current page }

label exit , done , done1 , continue , contribute , update heights ;
var p: pointer ; { the node being appended }
q, r: pointer ; { nodes being examined }
b, c: integer ; { badness and cost of current page }
pi : integer ; { penalty to be added to the badness }
n: min quarterword . . biggest reg ; { insertion box number }
delta , h, w: scaled ; { sizes used for insertion calculations }

begin if (link (contrib head) = null) ∨ output active then return;
repeat continue : p← link (contrib head);
⟨Update the values of last glue , last penalty , and last kern 1050 ⟩;
⟨Move node p to the current page; if it is time for a page break, put the nodes following the break

back onto the contribution list, and return to the user’s output routine if there is one 1051 ⟩;
until link (contrib head) = null ;
⟨Make the contribution list empty by setting its tail to contrib head 1049 ⟩;

exit : end;

1049. define contrib tail ≡ nest [0].tail field { tail of the contribution list }
⟨Make the contribution list empty by setting its tail to contrib head 1049 ⟩ ≡

if nest ptr = 0 then tail ← contrib head { vertical mode }
else contrib tail ← contrib head { other modes }

This code is used in section 1048.

456 PART 45: THE PAGE BUILDER X ETEX §1050

1050. ⟨Update the values of last glue , last penalty , and last kern 1050 ⟩ ≡
if last glue ̸= max halfword then delete glue ref (last glue);
last penalty ← 0; last kern ← 0; last node type ← type (p) + 1;
if type (p) = glue node then
begin last glue ← glue ptr (p); add glue ref (last glue);
end

else begin last glue ← max halfword ;
if type (p) = penalty node then last penalty ← penalty (p)
else if type (p) = kern node then last kern ← width (p);
end

This code is used in section 1048.

1051. The code here is an example of a many-way switch into routines that merge together in different
places. Some people call this unstructured programming, but the author doesn’t see much wrong with it, as
long as the various labels have a well-understood meaning.

⟨Move node p to the current page; if it is time for a page break, put the nodes following the break back
onto the contribution list, and return to the user’s output routine if there is one 1051 ⟩ ≡

⟨ If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to update
the state of the current page; if this node is an insertion, goto contribute ; otherwise if this node is
not a legal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associated
with this breakpoint 1054 ⟩;

⟨Check if node p is a new champion breakpoint; then if it is time for a page break, prepare for output,
and either fire up the user’s output routine and return or ship out the page and goto done 1059 ⟩;

if (type (p) < glue node) ∨ (type (p) > kern node) then goto contribute ;
update heights : ⟨Update the current page measurements with respect to the glue or kern specified by

node p 1058 ⟩;
contribute : ⟨Make sure that page max depth is not exceeded 1057 ⟩;
⟨Link node p into the current page and goto done 1052 ⟩;

done1 : ⟨Recycle node p 1053 ⟩;
done :

This code is used in section 1048.

1052. ⟨Link node p into the current page and goto done 1052 ⟩ ≡
link (page tail)← p; page tail ← p; link (contrib head)← link (p); link (p)← null ; goto done

This code is used in section 1051.

1053. ⟨Recycle node p 1053 ⟩ ≡
link (contrib head)← link (p); link (p)← null ;
if saving vdiscards > 0 then
begin if page disc = null then page disc ← p else link (tail page disc)← p;
tail page disc ← p;
end

else flush node list (p)

This code is used in section 1051.

§1054 X ETEX PART 45: THE PAGE BUILDER 457

1054. The title of this section is already so long, it seems best to avoid making it more accurate but still
longer, by mentioning the fact that a kern node at the end of the contribution list will not be contributed
until we know its successor.

⟨ If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to update the
state of the current page; if this node is an insertion, goto contribute ; otherwise if this node is not a
legal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associated with
this breakpoint 1054 ⟩ ≡

case type (p) of
hlist node , vlist node , rule node : if page contents < box there then

⟨ Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1055 ⟩
else ⟨Prepare to move a box or rule node to the current page, then goto contribute 1056 ⟩;

whatsit node : ⟨Prepare to move whatsit p to the current page, then goto contribute 1424 ⟩;
glue node : if page contents < box there then goto done1
else if precedes break (page tail) then pi ← 0
else goto update heights ;

kern node : if page contents < box there then goto done1
else if link (p) = null then return

else if type (link (p)) = glue node then pi ← 0
else goto update heights ;

penalty node : if page contents < box there then goto done1 else pi ← penalty (p);
mark node : goto contribute ;
ins node : ⟨Append an insertion to the current page and goto contribute 1062 ⟩;
othercases confusion ("page")
endcases

This code is used in section 1051.

1055. ⟨ Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1055 ⟩ ≡
begin if page contents = empty then freeze page specs (box there)
else page contents ← box there ;
q ← new skip param (top skip code); { now temp ptr = glue ptr (q) }
if XeTeX upwards then
begin if width (temp ptr) > depth (p) then width (temp ptr)← width (temp ptr)− depth (p)
else width (temp ptr)← 0;
end

else begin if width (temp ptr) > height (p) then width (temp ptr)← width (temp ptr)− height (p)
else width (temp ptr)← 0;
end;

link (q)← p; link (contrib head)← q; goto continue ;
end

This code is used in section 1054.

1056. ⟨Prepare to move a box or rule node to the current page, then goto contribute 1056 ⟩ ≡
begin page total ← page total + page depth + height (p); page depth ← depth (p); goto contribute ;
end

This code is used in section 1054.

1057. ⟨Make sure that page max depth is not exceeded 1057 ⟩ ≡
if page depth > page max depth then
begin page total ← page total + page depth − page max depth ;
page depth ← page max depth ;
end;

This code is used in section 1051.

458 PART 45: THE PAGE BUILDER X ETEX §1058

1058. ⟨Update the current page measurements with respect to the glue or kern specified by node p 1058 ⟩ ≡
if type (p) = kern node then q ← p
else begin q ← glue ptr (p);
page so far [2 + stretch order (q)]← page so far [2 + stretch order (q)] + stretch (q);
page shrink ← page shrink + shrink (q);
if (shrink order (q) ̸= normal) ∧ (shrink (q) ̸= 0) then
begin
print err ("Infinite␣glue␣shrinkage␣found␣on␣current␣page");
help4 ("The␣page␣about␣to␣be␣output␣contains␣some␣infinitely")
("shrinkable␣glue,␣e.g.,␣`\vss´␣or␣`\vskip␣0pt␣minus␣1fil´.")
("Such␣glue␣doesn´t␣belong␣there;␣but␣you␣can␣safely␣proceed,")
("since␣the␣offensive␣shrinkability␣has␣been␣made␣finite."); error ; r ← new spec(q);
shrink order (r)← normal ; delete glue ref (q); glue ptr (p)← r; q ← r;
end;

end;
page total ← page total + page depth + width (q); page depth ← 0

This code is used in section 1051.

1059. ⟨Check if node p is a new champion breakpoint; then if it is time for a page break, prepare for
output, and either fire up the user’s output routine and return or ship out the page and goto
done 1059 ⟩ ≡

if pi < inf penalty then
begin ⟨Compute the badness, b, of the current page, using awful bad if the box is too full 1061 ⟩;
if b < awful bad then

if pi ≤ eject penalty then c← pi
else if b < inf bad then c← b+ pi + insert penalties

else c← deplorable
else c← b;
if insert penalties ≥ 10000 then c← awful bad ;
stat if tracing pages > 0 then ⟨Display the page break cost 1060 ⟩;
tats
if c ≤ least page cost then
begin best page break ← p; best size ← page goal ; least page cost ← c; r ← link (page ins head);
while r ̸= page ins head do

begin best ins ptr (r)← last ins ptr (r); r ← link (r);
end;

end;
if (c = awful bad) ∨ (pi ≤ eject penalty) then

begin fire up(p); { output the current page at the best place }
if output active then return; { user’s output routine will act }
goto done ; { the page has been shipped out by default output routine }
end;

end

This code is used in section 1051.

§1060 X ETEX PART 45: THE PAGE BUILDER 459

1060. ⟨Display the page break cost 1060 ⟩ ≡
begin begin diagnostic ; print nl ("%"); print ("␣t="); print totals ;
print ("␣g="); print scaled (page goal);
print ("␣b=");
if b = awful bad then print char ("*") else print int (b);
print ("␣p="); print int (pi); print ("␣c=");
if c = awful bad then print char ("*") else print int (c);
if c ≤ least page cost then print char ("#");
end diagnostic(false);
end

This code is used in section 1059.

1061. ⟨Compute the badness, b, of the current page, using awful bad if the box is too full 1061 ⟩ ≡
if page total < page goal then
if (page so far [3] ̸= 0) ∨ (page so far [4] ̸= 0) ∨ (page so far [5] ̸= 0) then b← 0
else b← badness (page goal − page total , page so far [2])

else if page total − page goal > page shrink then b← awful bad
else b← badness (page total − page goal , page shrink)

This code is used in section 1059.

1062. ⟨Append an insertion to the current page and goto contribute 1062 ⟩ ≡
begin if page contents = empty then freeze page specs (inserts only);
n← subtype (p); r ← page ins head ;
while n ≥ subtype (link (r)) do r ← link (r);
n← qo(n);
if subtype (r) ̸= qi (n) then ⟨Create a page insertion node with subtype (r) = qi (n), and include the glue

correction for box n in the current page state 1063 ⟩;
if type (r) = split up then insert penalties ← insert penalties + float cost (p)
else begin last ins ptr (r)← p; delta ← page goal − page total − page depth + page shrink ;

{ this much room is left if we shrink the maximum }
if count (n) = 1000 then h← height (p)
else h← x over n (height (p), 1000) ∗ count (n); { this much room is needed }
if ((h ≤ 0) ∨ (h ≤ delta)) ∧ (height (p) + height (r) ≤ dimen (n)) then

begin page goal ← page goal − h; height (r)← height (r) + height (p);
end

else ⟨Find the best way to split the insertion, and change type (r) to split up 1064 ⟩;
end;

goto contribute ;
end

This code is used in section 1054.

460 PART 45: THE PAGE BUILDER X ETEX §1063

1063. We take note of the value of \skip n and the height plus depth of \box n only when the first
\insert n node is encountered for a new page. A user who changes the contents of \box n after that first
\insert n had better be either extremely careful or extremely lucky, or both.

⟨Create a page insertion node with subtype (r) = qi (n), and include the glue correction for box n in the
current page state 1063 ⟩ ≡

begin q ← get node (page ins node size); link (q)← link (r); link (r)← q; r ← q; subtype (r)← qi (n);
type (r)← inserting ; ensure vbox (n);
if box (n) = null then height (r)← 0
else height (r)← height (box (n)) + depth (box (n));
best ins ptr (r)← null ;
q ← skip(n);
if count (n) = 1000 then h← height (r)
else h← x over n (height (r), 1000) ∗ count (n);
page goal ← page goal − h− width (q);
page so far [2 + stretch order (q)]← page so far [2 + stretch order (q)] + stretch (q);
page shrink ← page shrink + shrink (q);
if (shrink order (q) ̸= normal) ∧ (shrink (q) ̸= 0) then
begin print err ("Infinite␣glue␣shrinkage␣inserted␣from␣"); print esc("skip"); print int (n);
help3 ("The␣correction␣glue␣for␣page␣breaking␣with␣insertions")
("must␣have␣finite␣shrinkability.␣But␣you␣may␣proceed,")
("since␣the␣offensive␣shrinkability␣has␣been␣made␣finite."); error ;
end;

end

This code is used in section 1062.

1064. Here is the code that will split a long footnote between pages, in an emergency. The current situation
deserves to be recapitulated: Node p is an insertion into box n; the insertion will not fit, in its entirety, either
because it would make the total contents of box n greater than \dimen n, or because it would make the
incremental amount of growth h greater than the available space delta , or both. (This amount h has been
weighted by the insertion scaling factor, i.e., by \count n over 1000.) Now we will choose the best way to
break the vlist of the insertion, using the same criteria as in the \vsplit operation.

⟨Find the best way to split the insertion, and change type (r) to split up 1064 ⟩ ≡
begin if count (n) ≤ 0 then w ← max dimen
else begin w ← page goal − page total − page depth ;
if count (n) ̸= 1000 then w ← x over n (w, count (n)) ∗ 1000;
end;

if w > dimen (n)− height (r) then w ← dimen (n)− height (r);
q ← vert break (ins ptr (p), w, depth (p)); height (r)← height (r) + best height plus depth ;
stat if tracing pages > 0 then ⟨Display the insertion split cost 1065 ⟩;
tats
if count (n) ̸= 1000 then best height plus depth ← x over n (best height plus depth , 1000) ∗ count (n);
page goal ← page goal − best height plus depth ; type (r)← split up ; broken ptr (r)← q;
broken ins (r)← p;
if q = null then insert penalties ← insert penalties + eject penalty
else if type (q) = penalty node then insert penalties ← insert penalties + penalty (q);
end

This code is used in section 1062.

§1065 X ETEX PART 45: THE PAGE BUILDER 461

1065. ⟨Display the insertion split cost 1065 ⟩ ≡
begin begin diagnostic ; print nl ("%␣split"); print int (n); print ("␣to␣"); print scaled (w);
print char (","); print scaled (best height plus depth);
print ("␣p=");
if q = null then print int (eject penalty)
else if type (q) = penalty node then print int (penalty (q))
else print char ("0");

end diagnostic(false);
end

This code is used in section 1064.

1066. When the page builder has looked at as much material as could appear before the next page break,
it makes its decision. The break that gave minimum badness will be used to put a completed “page” into
box 255, with insertions appended to their other boxes.
We also set the values of top mark , first mark , and bot mark . The program uses the fact that bot mark ̸=

null implies first mark ̸= null ; it also knows that bot mark = null implies top mark = first mark = null .
The fire up subroutine prepares to output the current page at the best place; then it fires up the user’s

output routine, if there is one, or it simply ships out the page. There is one parameter, c, which represents
the node that was being contributed to the page when the decision to force an output was made.

⟨Declare the procedure called fire up 1066 ⟩ ≡
procedure fire up(c : pointer);
label exit ;
var p, q, r, s: pointer ; { nodes being examined and/or changed }
prev p : pointer ; { predecessor of p }
n: min quarterword . . biggest reg ; { insertion box number }
wait : boolean ; { should the present insertion be held over? }
save vbadness : integer ; { saved value of vbadness }
save vfuzz : scaled ; { saved value of vfuzz }
save split top skip : pointer ; { saved value of split top skip }

begin ⟨ Set the value of output penalty 1067 ⟩;
if sa mark ̸= null then
if do marks (fire up init , 0, sa mark) then sa mark ← null ;

if bot mark ̸= null then
begin if top mark ̸= null then delete token ref (top mark);
top mark ← bot mark ; add token ref (top mark); delete token ref (first mark); first mark ← null ;
end;
⟨Put the optimal current page into box 255, update first mark and bot mark , append insertions to their

boxes, and put the remaining nodes back on the contribution list 1068 ⟩;
if sa mark ̸= null then
if do marks (fire up done , 0, sa mark) then sa mark ← null ;

if (top mark ̸= null) ∧ (first mark = null) then
begin first mark ← top mark ; add token ref (top mark);
end;

if output routine ̸= null then
if dead cycles ≥ max dead cycles then
⟨Explain that too many dead cycles have occurred in a row 1078 ⟩

else ⟨Fire up the user’s output routine and return 1079 ⟩;
⟨Perform the default output routine 1077 ⟩;

exit : end;

This code is used in section 1048.

462 PART 45: THE PAGE BUILDER X ETEX §1067

1067. ⟨ Set the value of output penalty 1067 ⟩ ≡
if type (best page break) = penalty node then
begin geq word define (int base + output penalty code , penalty (best page break));
penalty (best page break)← inf penalty ;
end

else geq word define (int base + output penalty code , inf penalty)

This code is used in section 1066.

1068. As the page is finally being prepared for output, pointer p runs through the vlist, with prev p trailing
behind; pointer q is the tail of a list of insertions that are being held over for a subsequent page.

⟨Put the optimal current page into box 255, update first mark and bot mark , append insertions to their
boxes, and put the remaining nodes back on the contribution list 1068 ⟩ ≡

if c = best page break then best page break ← null ; { c not yet linked in }
⟨Ensure that box 255 is empty before output 1069 ⟩;
insert penalties ← 0; { this will count the number of insertions held over }
save split top skip ← split top skip ;
if holding inserts ≤ 0 then ⟨Prepare all the boxes involved in insertions to act as queues 1072 ⟩;
q ← hold head ; link (q)← null ; prev p ← page head ; p← link (prev p);
while p ̸= best page break do
begin if type (p) = ins node then

begin if holding inserts ≤ 0 then ⟨Either insert the material specified by node p into the
appropriate box, or hold it for the next page; also delete node p from the current page 1074 ⟩;

end
else if type (p) = mark node then

if mark class (p) ̸= 0 then ⟨Update the current marks for fire up 1641 ⟩
else ⟨Update the values of first mark and bot mark 1070 ⟩;

prev p ← p; p← link (prev p);
end;

split top skip ← save split top skip ; ⟨Break the current page at node p, put it in box 255, and put the
remaining nodes on the contribution list 1071 ⟩;

⟨Delete the page-insertion nodes 1073 ⟩
This code is used in section 1066.

1069. ⟨Ensure that box 255 is empty before output 1069 ⟩ ≡
if box (255) ̸= null then
begin print err (""); print esc("box"); print ("255␣is␣not␣void");
help2 ("You␣shouldn´t␣use␣\box255␣except␣in␣\output␣routines.")
("Proceed,␣and␣I´ll␣discard␣its␣present␣contents."); box error (255);
end

This code is used in section 1068.

1070. ⟨Update the values of first mark and bot mark 1070 ⟩ ≡
begin if first mark = null then
begin first mark ← mark ptr (p); add token ref (first mark);
end;

if bot mark ̸= null then delete token ref (bot mark);
bot mark ← mark ptr (p); add token ref (bot mark);
end

This code is used in section 1068.

§1071 X ETEX PART 45: THE PAGE BUILDER 463

1071. When the following code is executed, the current page runs from node link (page head) to node
prev p , and the nodes from p to page tail are to be placed back at the front of the contribution list.
Furthermore the heldover insertions appear in a list from link (hold head) to q; we will put them into the
current page list for safekeeping while the user’s output routine is active. We might have q = hold head ; and
p = null if and only if prev p = page tail . Error messages are suppressed within vpackage , since the box
might appear to be overfull or underfull simply because the stretch and shrink from the \skip registers for
inserts are not actually present in the box.

⟨Break the current page at node p, put it in box 255, and put the remaining nodes on the contribution
list 1071 ⟩ ≡

if p ̸= null then
begin if link (contrib head) = null then
if nest ptr = 0 then tail ← page tail
else contrib tail ← page tail ;

link (page tail)← link (contrib head); link (contrib head)← p; link (prev p)← null ;
end;

save vbadness ← vbadness ; vbadness ← inf bad ; save vfuzz ← vfuzz ; vfuzz ← max dimen ;
{ inhibit error messages }

box (255)← vpackage (link (page head), best size , exactly , page max depth); vbadness ← save vbadness ;
vfuzz ← save vfuzz ;
if last glue ̸= max halfword then delete glue ref (last glue);
⟨ Start a new current page 1045 ⟩; { this sets last glue ← max halfword }
if q ̸= hold head then
begin link (page head)← link (hold head); page tail ← q;
end

This code is used in section 1068.

1072. If many insertions are supposed to go into the same box, we want to know the position of the
last node in that box, so that we don’t need to waste time when linking further information into it. The
last ins ptr fields of the page insertion nodes are therefore used for this purpose during the packaging phase.

⟨Prepare all the boxes involved in insertions to act as queues 1072 ⟩ ≡
begin r ← link (page ins head);
while r ̸= page ins head do
begin if best ins ptr (r) ̸= null then

begin n← qo(subtype (r)); ensure vbox (n);
if box (n) = null then box (n)← new null box ;
p← box (n) + list offset ;
while link (p) ̸= null do p← link (p);
last ins ptr (r)← p;
end;

r ← link (r);
end;

end

This code is used in section 1068.

1073. ⟨Delete the page-insertion nodes 1073 ⟩ ≡
r ← link (page ins head);
while r ̸= page ins head do
begin q ← link (r); free node (r, page ins node size); r ← q;
end;

link (page ins head)← page ins head

This code is used in section 1068.

464 PART 45: THE PAGE BUILDER X ETEX §1074

1074. We will set best ins ptr ← null and package the box corresponding to insertion node r, just after
making the final insertion into that box. If this final insertion is ‘split up ’, the remainder after splitting and
pruning (if any) will be carried over to the next page.

⟨Either insert the material specified by node p into the appropriate box, or hold it for the next page; also
delete node p from the current page 1074 ⟩ ≡

begin r ← link (page ins head);
while subtype (r) ̸= subtype (p) do r ← link (r);
if best ins ptr (r) = null then wait ← true
else begin wait ← false ; s← last ins ptr (r); link (s)← ins ptr (p);
if best ins ptr (r) = p then ⟨Wrap up the box specified by node r, splitting node p if called for; set

wait ← true if node p holds a remainder after splitting 1075 ⟩
else begin while link (s) ̸= null do s← link (s);

last ins ptr (r)← s;
end;

end;
⟨Either append the insertion node p after node q, and remove it from the current page, or delete

node (p) 1076 ⟩;
end

This code is used in section 1068.

1075. ⟨Wrap up the box specified by node r, splitting node p if called for; set wait ← true if node p
holds a remainder after splitting 1075 ⟩ ≡

begin if type (r) = split up then
if (broken ins (r) = p) ∧ (broken ptr (r) ̸= null) then

begin while link (s) ̸= broken ptr (r) do s← link (s);
link (s)← null ; split top skip ← split top ptr (p); ins ptr (p)← prune page top(broken ptr (r), false);
if ins ptr (p) ̸= null then
begin temp ptr ← vpack (ins ptr (p),natural); height (p)← height (temp ptr) + depth (temp ptr);
free node (temp ptr , box node size); wait ← true ;
end;

end;
best ins ptr (r)← null ; n← qo(subtype (r)); temp ptr ← list ptr (box (n));
free node (box (n), box node size); box (n)← vpack (temp ptr ,natural);
end

This code is used in section 1074.

1076. ⟨Either append the insertion node p after node q, and remove it from the current page, or delete
node (p) 1076 ⟩ ≡

link (prev p)← link (p); link (p)← null ;
if wait then
begin link (q)← p; q ← p; incr (insert penalties);
end

else begin delete glue ref (split top ptr (p)); free node (p, ins node size);
end;

p← prev p

This code is used in section 1074.

§1077 X ETEX PART 45: THE PAGE BUILDER 465

1077. The list of heldover insertions, running from link (page head) to page tail , must be moved to the
contribution list when the user has specified no output routine.

⟨Perform the default output routine 1077 ⟩ ≡
begin if link (page head) ̸= null then
begin if link (contrib head) = null then
if nest ptr = 0 then tail ← page tail else contrib tail ← page tail

else link (page tail)← link (contrib head);
link (contrib head)← link (page head); link (page head)← null ; page tail ← page head ;
end;

flush node list (page disc); page disc ← null ; ship out (box (255)); box (255)← null ;
end

This code is used in section 1066.

1078. ⟨Explain that too many dead cycles have occurred in a row 1078 ⟩ ≡
begin print err ("Output␣loop−−−"); print int (dead cycles); print ("␣consecutive␣dead␣cycles");
help3 ("I´ve␣concluded␣that␣your␣\output␣is␣awry;␣it␣never␣does␣a")
("\shipout,␣so␣I´m␣shipping␣\box255␣out␣myself.␣Next␣time")
("increase␣\maxdeadcycles␣if␣you␣want␣me␣to␣be␣more␣patient!"); error ;
end

This code is used in section 1066.

1079. ⟨Fire up the user’s output routine and return 1079 ⟩ ≡
begin output active ← true ; incr (dead cycles); push nest ; mode ← −vmode ;
prev depth ← ignore depth ; mode line ← −line ; begin token list (output routine , output text);
new save level (output group); normal paragraph ; scan left brace ; return;
end

This code is used in section 1066.

1080. When the user’s output routine finishes, it has constructed a vlist in internal vertical mode, and
TEX will do the following:

⟨Resume the page builder after an output routine has come to an end 1080 ⟩ ≡
begin if (loc ̸= null) ∨ ((token type ̸= output text) ∧ (token type ̸= backed up)) then
⟨Recover from an unbalanced output routine 1081 ⟩;

end token list ; { conserve stack space in case more outputs are triggered }
end graf ; unsave ; output active ← false ; insert penalties ← 0;
⟨Ensure that box 255 is empty after output 1082 ⟩;
if tail ̸= head then { current list goes after heldover insertions }
begin link (page tail)← link (head); page tail ← tail ;
end;

if link (page head) ̸= null then { and both go before heldover contributions }
begin if link (contrib head) = null then contrib tail ← page tail ;
link (page tail)← link (contrib head); link (contrib head)← link (page head); link (page head)← null ;
page tail ← page head ;
end;

flush node list (page disc); page disc ← null ; pop nest ; build page ;
end

This code is used in section 1154.

466 PART 45: THE PAGE BUILDER X ETEX §1081

1081. ⟨Recover from an unbalanced output routine 1081 ⟩ ≡
begin print err ("Unbalanced␣output␣routine");
help2 ("Your␣sneaky␣output␣routine␣has␣problematic␣{´s␣and/or␣}´s.")
("I␣can´t␣handle␣that␣very␣well;␣good␣luck."); error ;
repeat get token ;
until loc = null ;
end { loops forever if reading from a file, since null = min halfword ≤ 0 }

This code is used in section 1080.

1082. ⟨Ensure that box 255 is empty after output 1082 ⟩ ≡
if box (255) ̸= null then
begin print err ("Output␣routine␣didn´t␣use␣all␣of␣"); print esc("box"); print int (255);
help3 ("Your␣\output␣commands␣should␣empty␣\box255,")
("e.g.,␣by␣saying␣`\shipout\box255´.")
("Proceed;␣I´ll␣discard␣its␣present␣contents."); box error (255);
end

This code is used in section 1080.

§1083 X ETEX PART 46: THE CHIEF EXECUTIVE 467

1083. The chief executive. We come now to the main control routine, which contains the master
switch that causes all the various pieces of TEX to do their things, in the right order.

In a sense, this is the grand climax of the program: It applies all the tools that we have worked so hard
to construct. In another sense, this is the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can’t fully understand what is going on without paging back
and forth to be reminded of conventions that are defined elsewhere. We are now at the hub of the web, the
central nervous system that touches most of the other parts and ties them together.
The structure of main control itself is quite simple. There’s a label called big switch , at which point the

next token of input is fetched using get x token . Then the program branches at high speed into one of about
100 possible directions, based on the value of the current mode and the newly fetched command code; the
sum abs (mode) + cur cmd indicates what to do next. For example, the case ‘vmode + letter ’ arises when a
letter occurs in vertical mode (or internal vertical mode); this case leads to instructions that initialize a new
paragraph and enter horizontal mode.
The big case statement that contains this multiway switch has been labeled reswitch , so that the program

can goto reswitch when the next token has already been fetched. Most of the cases are quite short; they
call an “action procedure” that does the work for that case, and then they either goto reswitch or they “fall
through” to the end of the case statement, which returns control back to big switch . Thus, main control is
not an extremely large procedure, in spite of the multiplicity of things it must do; it is small enough to be
handled by Pascal compilers that put severe restrictions on procedure size.
One case is singled out for special treatment, because it accounts for most of TEX’s activities in typical

applications. The process of reading simple text and converting it into char node records, while looking for
ligatures and kerns, is part of TEX’s “inner loop”; the whole program runs efficiently when its inner loop is
fast, so this part has been written with particular care.

468 PART 46: THE CHIEF EXECUTIVE X ETEX §1084

1084. We shall concentrate first on the inner loop of main control , deferring consideration of the other
cases until later.

define big switch = 60 { go here to branch on the next token of input }
define main loop = 70 { go here to typeset a string of consecutive characters }
define collect native = 71 { go here to collect characters in a ”native” font string }
define collected = 72
define main loop wrapup = 80 { go here to finish a character or ligature }
define main loop move = 90 { go here to advance the ligature cursor }
define main loop move lig = 95 { same, when advancing past a generated ligature }
define main loop lookahead = 100 { go here to bring in another character, if any }
define main lig loop = 110 { go here to check for ligatures or kerning }
define append normal space = 120 { go here to append a normal space between words }
define pdfbox crop = 1 { pdf box type passed to find pic file }
define pdfbox media = 2
define pdfbox bleed = 3
define pdfbox trim = 4
define pdfbox art = 5
define pdfbox none = 6

⟨Declare action procedures for use by main control 1097 ⟩
⟨Declare the procedure called handle right brace 1122 ⟩
procedure main control ; { governs TEX’s activities }
label big switch , reswitch ,main loop ,main loop wrapup ,main loop move ,main loop move + 1,

main loop move + 2,main loop move lig ,main loop lookahead ,main loop lookahead + 1,
main lig loop ,main lig loop+1,main lig loop+2, collect native , collected , append normal space , exit ;

var t: integer ; { general-purpose temporary variable }
begin if every job ̸= null then begin token list (every job , every job text);

big switch : get x token ;
reswitch : ⟨Give diagnostic information, if requested 1085 ⟩;
case abs (mode) + cur cmd of
hmode + letter , hmode + other char , hmode + char given : goto main loop ;
hmode + char num : begin scan usv num ; cur chr ← cur val ; goto main loop ; end;
hmode + no boundary : begin get x token ;
if (cur cmd = letter) ∨ (cur cmd = other char) ∨ (cur cmd = char given) ∨ (cur cmd = char num)

then cancel boundary ← true ;
goto reswitch ;
end;

othercases begin if abs (mode) = hmode then check for post char toks (big switch);
case abs (mode) + cur cmd of
hmode + spacer : if space factor = 1000 then goto append normal space

else app space ;
hmode + ex space ,mmode + ex space : goto append normal space ;
⟨Cases of main control that are not part of the inner loop 1099 ⟩
end
end

endcases; { of the big case statement }
goto big switch ;

main loop : ⟨Append character cur chr and the following characters (if any) to the current hlist in the
current font; goto reswitch when a non-character has been fetched 1088 ⟩;

append normal space : check for post char toks (big switch);
⟨Append a normal inter-word space to the current list, then goto big switch 1095 ⟩;

exit : end;

§1085 X ETEX PART 46: THE CHIEF EXECUTIVE 469

1085. When a new token has just been fetched at big switch , we have an ideal place to monitor TEX’s
activity.

⟨Give diagnostic information, if requested 1085 ⟩ ≡
if interrupt ̸= 0 then
if OK to interrupt then
begin back input ; check interrupt ; goto big switch ;
end;

debug if panicking then check mem (false); gubed
if tracing commands > 0 then show cur cmd chr

This code is used in section 1084.

1086. The following part of the program was first written in a structured manner, according to the
philosophy that “premature optimization is the root of all evil.” Then it was rearranged into pieces of
spaghetti so that the most common actions could proceed with little or no redundancy.
The original unoptimized form of this algorithm resembles the reconstitute procedure, which was described

earlier in connection with hyphenation. Again we have an implied “cursor” between characters cur l and
cur r . The main difference is that the lig stack can now contain a charnode as well as pseudo-ligatures; that
stack is now usually nonempty, because the next character of input (if any) has been appended to it. In
main control we have

cur r =

{
character (lig stack), if lig stack > null ;
font bchar [cur font], otherwise;

except when character (lig stack) = font false bchar [cur font]. Several additional global variables are needed.

⟨Global variables 13 ⟩ +≡
main f : internal font number ; { the current font }
main i : four quarters ; { character information bytes for cur l }
main j : four quarters ; { ligature/kern command }
main k : font index ; { index into font info }
main p : pointer ; { temporary register for list manipulation }
main pp ,main ppp : pointer ; {more temporary registers for list manipulation }
main h : pointer ; { temp for hyphen offset in native-font text }
is hyph : boolean ; {whether the last char seen is the font’s hyphenchar }
space class : integer ;
prev class : integer ;
main s : integer ; { space factor value }
bchar : halfword ; { boundary character of current font, or non char }
false bchar : halfword ; { nonexistent character matching bchar , or non char }
cancel boundary : boolean ; { should the left boundary be ignored? }
ins disc : boolean ; { should we insert a discretionary node? }

1087. The boolean variables of the main loop are normally false, and always reset to false before the loop
is left. That saves us the extra work of initializing each time.

⟨ Set initial values of key variables 23 ⟩ +≡
ligature present ← false ; cancel boundary ← false ; lft hit ← false ; rt hit ← false ; ins disc ← false ;

470 PART 46: THE CHIEF EXECUTIVE X ETEX §1088

1088. We leave the space factor unchanged if sf code (cur chr) = 0; otherwise we set it equal to
sf code (cur chr), except that it should never change from a value less than 1000 to a value exceeding 1000.
The most common case is sf code (cur chr) = 1000, so we want that case to be fast.
The overall structure of the main loop is presented here. Some program labels are inside the individual

sections.

define adjust space factor ≡
main s ← sf code (cur chr)mod ˝10000;
if main s = 1000 then space factor ← 1000
else if main s < 1000 then

begin if main s > 0 then space factor ← main s ;
end

else if space factor < 1000 then space factor ← 1000
else space factor ← main s

define check for inter char toks (#) ≡ { check for a spacing token list, goto # if found, or big switch in
case of the initial letter of a run }

cur ptr ← null ; space class ← sf code (cur chr) div ˝10000;
if XeTeX inter char tokens en ∧ space class ̸= char class ignored then
begin { class 4096 = ignored (for combining marks etc) }
if prev class = char class boundary then

begin { boundary }
if (state ̸= token list) ∨ (token type ̸= backed up char) then

begin find sa element (inter char val , char class boundary ∗ char class limit + space class ,
false);

if (cur ptr ̸= null) ∧ (sa ptr (cur ptr) ̸= null) then
begin if cur cmd ̸= letter then cur cmd ← other char ;
cur tok ← (cur cmd ∗max char val) + cur chr ; back input ;
token type ← backed up char ; begin token list (sa ptr (cur ptr), inter char text);
goto big switch ;
end

end
end

else begin find sa element (inter char val , prev class ∗ char class limit + space class , false);
if (cur ptr ̸= null) ∧ (sa ptr (cur ptr) ̸= null) then
begin if cur cmd ̸= letter then cur cmd ← other char ;
cur tok ← (cur cmd ∗max char val) + cur chr ; back input ; token type ← backed up char ;
begin token list (sa ptr (cur ptr), inter char text); prev class ← char class boundary ;
goto #;
end;

end;
prev class ← space class ;
end

define check for post char toks (#) ≡
if XeTeX inter char tokens en ∧ (space class ̸= char class ignored) ∧ (prev class ̸=

char class boundary) then
begin prev class ← char class boundary ;
find sa element (inter char val , space class ∗ char class limit + char class boundary , false);

{ boundary }
if (cur ptr ̸= null) ∧ (sa ptr (cur ptr) ̸= null) then
begin if cur cs = 0 then
begin if cur cmd = char num then cur cmd ← other char ;
cur tok ← (cur cmd ∗max char val) + cur chr ;
end

§1088 X ETEX PART 46: THE CHIEF EXECUTIVE 471

else cur tok ← cs token flag + cur cs ;
back input ; begin token list (sa ptr (cur ptr), inter char text); goto #;
end;

end

⟨Append character cur chr and the following characters (if any) to the current hlist in the current font;
goto reswitch when a non-character has been fetched 1088 ⟩ ≡

prev class ← char class boundary ; { boundary }
{ added code for native font support }

if is native font (cur font) then
begin if mode > 0 then
if language ̸= clang then fix language ;

main h ← 0; main f ← cur font ; native len ← 0;
collect native : adjust space factor ; check for inter char toks (collected);
if (cur chr > ˝FFFF) then

begin native room (2); append native ((cur chr − ˝10000) div 1024 + ˝D800);
append native ((cur chr − ˝10000)mod 1024 + ˝DC00);
end

else begin native room (1); append native (cur chr);
end;

is hyph ← (cur chr = hyphen char [main f])∨ (XeTeX dash break en ∧ ((cur chr = ˝2014)∨ (cur chr =
˝2013)));

if (main h = 0) ∧ is hyph then main h ← native len ;
{ try to collect as many chars as possible in the same font }

get next ;
if (cur cmd = letter) ∨ (cur cmd = other char) ∨ (cur cmd = char given) then goto collect native ;
x token ;
if (cur cmd = letter) ∨ (cur cmd = other char) ∨ (cur cmd = char given) then goto collect native ;
if cur cmd = char num then
begin scan usv num ; cur chr ← cur val ; goto collect native ;
end;

check for post char toks (collected);
collected : if (font mapping [main f] ̸= 0) then

begin main k ← apply mapping (font mapping [main f],native text ,native len); native len ← 0;
native room (main k); main h ← 0;
for main p ← 0 to main k − 1 do
begin append native (mapped text [main p]);
if (main h = 0) ∧ ((mapped text [main p] = hyphen char [main f]) ∨ (XeTeX dash break en ∧

((mapped text [main p] = ˝2014) ∨ (mapped text [main p] = ˝2013)))) then
main h ← native len ;

end
end;

if tracing lost chars > 0 then
begin temp ptr ← 0;
while (temp ptr < native len) do

begin main k ← native text [temp ptr]; incr (temp ptr);
if (main k ≥ ˝D800) ∧ (main k < ˝DC00) then
begin main k ← ˝10000+ (main k − ˝D800) ∗ 1024;
main k ← main k + native text [temp ptr]− ˝DC00; incr (temp ptr);
end;

if map char to glyph (main f ,main k) = 0 then char warning (main f ,main k);
end

end;

472 PART 46: THE CHIEF EXECUTIVE X ETEX §1088

main k ← native len ; main pp ← tail ;
if mode = hmode then
begin main ppp ← head ; { find node preceding tail, skipping discretionaries }
while (main ppp ̸= main pp) ∧ (link (main ppp) ̸= main pp) do
begin if (¬is char node (main ppp)) ∧ (type (main ppp) = disc node) then
begin temp ptr ← main ppp ;
for main p ← 1 to replace count (temp ptr) do main ppp ← link (main ppp);
end;

if main ppp ̸= main pp then main ppp ← link (main ppp);
end;

temp ptr ← 0;
repeat if main h = 0 then main h ← main k ;
if is native word node (main pp) ∧ (native font (main pp) = main f) ∧ (main ppp ̸=

main pp) ∧ (¬is char node (main ppp)) ∧ (type (main ppp) ̸= disc node) then
begin { make a new temp string that contains the concatenated text of tail + the current

word/fragment }
main k ← main h + native length (main pp); native room (main k);
save native len ← native len ;
for main p ← 0 to native length (main pp)− 1 do
append native (get native char (main pp ,main p));

for main p ← 0 to main h − 1 do append native (native text [temp ptr +main p]);
do locale linebreaks (save native len ,main k); native len ← save native len ;

{ discard the temp string }
main k ← native len −main h − temp ptr ;

{ and set main k to remaining length of new word }
temp ptr ← main h ; { pointer to remaining fragment }
main h ← 0;
while (main h < main k) ∧ (native text [temp ptr + main h] ̸=

hyphen char [main f]) ∧ ((¬XeTeX dash break en) ∨ ((native text [temp ptr +main h] ̸=
˝2014) ∧ (native text [temp ptr +main h] ̸= ˝2013))) do incr (main h);
{ look for next hyphen or end of text }

if (main h < main k) then incr (main h); { remove the preceding node from the list }
link (main ppp)← link (main pp); link (main pp)← null ; flush node list (main pp);
main pp ← tail ;
while (link (main ppp) ̸= main pp) do main ppp ← link (main ppp);
end

else begin do locale linebreaks (temp ptr ,main h); { append fragment of current word }
temp ptr ← temp ptr +main h ; { advance ptr to remaining fragment }
main k ← main k −main h ; { decrement remaining length }
main h ← 0;
while (main h < main k) ∧ (native text [temp ptr + main h] ̸=

hyphen char [main f]) ∧ ((¬XeTeX dash break en) ∨ ((native text [temp ptr +main h] ̸=
˝2014) ∧ (native text [temp ptr +main h] ̸= ˝2013))) do incr (main h);
{ look for next hyphen or end of text }

if (main h < main k) then incr (main h);
end;

if (main k > 0) ∨ is hyph then
begin tail append (new disc); { add a break if we aren’t at end of text (must be a hyphen), or

if last char in original text was a hyphen }
main pp ← tail ;
end;

until main k = 0;

§1088 X ETEX PART 46: THE CHIEF EXECUTIVE 473

end
else begin { must be restricted hmode, so no need for line-breaking or discretionaries }

{ but there might already be explicit disc node s in the list }
main ppp ← head ; { find node preceding tail, skipping discretionaries }
while (main ppp ̸= main pp) ∧ (link (main ppp) ̸= main pp) do

begin if (¬is char node (main ppp)) ∧ (type (main ppp) = disc node) then
begin temp ptr ← main ppp ;
for main p ← 1 to replace count (temp ptr) do main ppp ← link (main ppp);
end;

if main ppp ̸= main pp then main ppp ← link (main ppp);
end;

if is native word node (main pp) ∧ (native font (main pp) = main f) ∧ (main ppp ̸=
main pp) ∧ (¬is char node (main ppp)) ∧ (type (main ppp) ̸= disc node) then

begin { total string length for the new merged whatsit }
link (main pp)← new native word node (main f ,main k + native length (main pp));
tail ← link (main pp); { copy text from the old one into the new }
for main p ← 0 to native length (main pp)− 1 do
set native char (tail ,main p , get native char (main pp ,main p)); { append the new text }

for main p ← 0 to main k − 1 do
set native char (tail ,main p + native length (main pp),native text [main p]);

set native metrics (tail ,XeTeX use glyph metrics); { remove the preceding node from the list }
main p ← head ;
if main p ̸= main pp then
while link (main p) ̸= main pp do main p ← link (main p);

link (main p)← link (main pp); link (main pp)← null ; flush node list (main pp);
end

else begin { package the current string into a native word whatsit }
link (main pp)← new native word node (main f ,main k); tail ← link (main pp);
for main p ← 0 to main k − 1 do set native char (tail ,main p ,native text [main p]);
set native metrics (tail ,XeTeX use glyph metrics);
end

end;
if XeTeX interword space shaping state > 0 then

begin { tail is a word we have just appended. If it is preceded by another word with a normal
inter-word space between (all in the same font), then we will measure that space in context and
replace it with an adjusted glue value if it differs from the font’s normal space. }
{ First we look for the most recent native word in the list and set main pp to it. This is potentially
expensive, in the case of very long paragraphs, but in practice it’s negligible compared to the
cost of shaping and measurement. }

main p ← head ; main pp ← null ;
while main p ̸= tail do
begin if is native word node (main p) then main pp ← main p ;
main p ← link (main p);
end;

if (main pp ̸= null) then
begin { check if the font matches; if so, check the intervening nodes }
if (native font (main pp) = main f) then
begin main p ← link (main pp);

{ Skip nodes that should be invisible to inter-word spacing, so that e.g., ‘\nobreak\ ’
doesn’t prevent contextual measurement. This loop is guaranteed to end safely because it’ll
eventually hit tail , which is a native word node, if nothing else intervenes. }

while node is invisible to interword space (main p) do main p ← link (main p);

474 PART 46: THE CHIEF EXECUTIVE X ETEX §1088

if ¬is char node (main p) ∧ (type (main p) = glue node) then
begin { We found a glue node: we might have an inter-word space to deal with. Again,

skip nodes that should be invisible to inter-word spacing. We leave main p pointing to
the glue node; main pp is the preceding word. }

main ppp ← link (main p);
while node is invisible to interword space (main ppp) do main ppp ← link (main ppp);
if main ppp = tail then

begin { We found a candidate inter-word space! Collect the characters of both words,
separated by a single space, into a native word node and measure its overall width. }

temp ptr ← new native word node (main f ,native length (main pp)+1+native length (tail));
main k ← 0;
for t← 0 to native length (main pp)− 1 do
begin set native char (temp ptr ,main k , get native char (main pp , t)); incr (main k);
end;

set native char (temp ptr ,main k , "␣"); incr (main k);
for t← 0 to native length (tail)− 1 do
begin set native char (temp ptr ,main k , get native char (tail , t)); incr (main k);
end;

set native metrics (temp ptr ,XeTeX use glyph metrics); { The contextual space width is
the difference between this width and the sum of the two words measured separately. }

t← width (temp ptr)− width (main pp)− width (tail);
free node (temp ptr ,native size (temp ptr)); { If the desired width differs from the font’s

default word space, we will insert a suitable kern after the existing glue. Because kerns
are discardable, this will behave OK during line breaking, and it’s easier than actually
modifying/replacing the glue node. }

if t ̸= width (font glue [main f]) then
begin temp ptr ← new kern (t− width (font glue [main f]));
subtype (temp ptr)← space adjustment ; link (temp ptr)← link (main p);
link (main p)← temp ptr ;
end

end
end

end
end

end;
if cur ptr ̸= null then goto big switch
else goto reswitch ;
end; { End of added code for native fonts }

adjust space factor ;
check for inter char toks (big switch); main f ← cur font ; bchar ← font bchar [main f];
false bchar ← font false bchar [main f];
if mode > 0 then
if language ̸= clang then fix language ;

fast get avail (lig stack); font (lig stack)← main f ; cur l ← qi (cur chr); character (lig stack)← cur l ;
cur q ← tail ;
if cancel boundary then
begin cancel boundary ← false ; main k ← non address ;
end

else main k ← bchar label [main f];
if main k = non address then goto main loop move + 2; { no left boundary processing }
cur r ← cur l ; cur l ← non char ; goto main lig loop + 1; { begin with cursor after left boundary }

main loop wrapup : ⟨Make a ligature node, if ligature present ; insert a null discretionary, if

§1088 X ETEX PART 46: THE CHIEF EXECUTIVE 475

appropriate 1089 ⟩;
main loop move : ⟨ If the cursor is immediately followed by the right boundary, goto reswitch ; if it’s

followed by an invalid character, goto big switch ; otherwise move the cursor one step to the right
and goto main lig loop 1090 ⟩;

main loop lookahead : ⟨Look ahead for another character, or leave lig stack empty if there’s none there 1092 ⟩;
main lig loop : ⟨ If there’s a ligature/kern command relevant to cur l and cur r , adjust the text

appropriately; exit to main loop wrapup 1093 ⟩;
main loop move lig : ⟨Move the cursor past a pseudo-ligature, then goto main loop lookahead or

main lig loop 1091 ⟩
This code is used in section 1084.

1089. If link (cur q) is nonnull when wrapup is invoked, cur q points to the list of characters that were
consumed while building the ligature character cur l .
A discretionary break is not inserted for an explicit hyphen when we are in restricted horizontal mode. In

particular, this avoids putting discretionary nodes inside of other discretionaries.

define pack lig (#) ≡ { the parameter is either rt hit or false }
begin main p ← new ligature (main f , cur l , link (cur q));
if lft hit then
begin subtype (main p)← 2; lft hit ← false ;
end;

if # then
if lig stack = null then

begin incr (subtype (main p)); rt hit ← false ;
end;

link (cur q)← main p ; tail ← main p ; ligature present ← false ;
end

define wrapup(#) ≡
if cur l < non char then
begin if link (cur q) > null then
if character (tail) = qi (hyphen char [main f]) then ins disc ← true ;

if ligature present then pack lig (#);
if ins disc then
begin ins disc ← false ;
if mode > 0 then tail append (new disc);
end;

end

⟨Make a ligature node, if ligature present ; insert a null discretionary, if appropriate 1089 ⟩ ≡
wrapup(rt hit)

This code is used in section 1088.

476 PART 46: THE CHIEF EXECUTIVE X ETEX §1090

1090. ⟨ If the cursor is immediately followed by the right boundary, goto reswitch ; if it’s followed by
an invalid character, goto big switch ; otherwise move the cursor one step to the right and goto
main lig loop 1090 ⟩ ≡

if lig stack = null then goto reswitch ;
cur q ← tail ; cur l ← character (lig stack);

main loop move + 1: if ¬is char node (lig stack) then goto main loop move lig ;
main loop move + 2: if (cur chr < font bc [main f]) ∨ (cur chr > font ec [main f]) then

begin char warning (main f , cur chr); free avail (lig stack); goto big switch ;
end;

main i ← char info(main f)(cur l);
if ¬char exists (main i) then
begin char warning (main f , cur chr); free avail (lig stack); goto big switch ;
end;

link (tail)← lig stack ; tail ← lig stack {main loop lookahead is next }
This code is used in section 1088.

1091. Here we are at main loop move lig . When we begin this code we have cur q = tail and cur l =
character (lig stack).

⟨Move the cursor past a pseudo-ligature, then goto main loop lookahead or main lig loop 1091 ⟩ ≡
main p ← lig ptr (lig stack);
if main p > null then tail append (main p); { append a single character }
temp ptr ← lig stack ; lig stack ← link (temp ptr); free node (temp ptr , small node size);
main i ← char info(main f)(cur l); ligature present ← true ;
if lig stack = null then
if main p > null then goto main loop lookahead
else cur r ← bchar

else cur r ← character (lig stack);
goto main lig loop

This code is used in section 1088.

1092. The result of \char can participate in a ligature or kern, so we must look ahead for it.

⟨Look ahead for another character, or leave lig stack empty if there’s none there 1092 ⟩ ≡
get next ; { set only cur cmd and cur chr , for speed }
if cur cmd = letter then goto main loop lookahead + 1;
if cur cmd = other char then goto main loop lookahead + 1;
if cur cmd = char given then goto main loop lookahead + 1;
x token ; { now expand and set cur cmd , cur chr , cur tok }
if cur cmd = letter then goto main loop lookahead + 1;
if cur cmd = other char then goto main loop lookahead + 1;
if cur cmd = char given then goto main loop lookahead + 1;
if cur cmd = char num then
begin scan char num ; cur chr ← cur val ; goto main loop lookahead + 1;
end;

if cur cmd = no boundary then bchar ← non char ;
cur r ← bchar ; lig stack ← null ; goto main lig loop ;

main loop lookahead + 1: adjust space factor ; check for inter char toks (big switch);
fast get avail (lig stack); font (lig stack)← main f ; cur r ← qi (cur chr); character (lig stack)← cur r ;
if cur r = false bchar then cur r ← non char { this prevents spurious ligatures }

This code is used in section 1088.

§1093 X ETEX PART 46: THE CHIEF EXECUTIVE 477

1093. Even though comparatively few characters have a lig/kern program, several of the instructions here
count as part of TEX’s inner loop, since a potentially long sequential search must be performed. For example,
tests with Computer Modern Roman showed that about 40 per cent of all characters actually encountered
in practice had a lig/kern program, and that about four lig/kern commands were investigated for every such
character.
At the beginning of this code we have main i = char info(main f)(cur l).

⟨ If there’s a ligature/kern command relevant to cur l and cur r , adjust the text appropriately; exit to
main loop wrapup 1093 ⟩ ≡

if char tag (main i) ̸= lig tag then goto main loop wrapup ;
if cur r = non char then goto main loop wrapup ;
main k ← lig kern start (main f)(main i); main j ← font info [main k].qqqq ;
if skip byte (main j) ≤ stop flag then goto main lig loop + 2;
main k ← lig kern restart (main f)(main j);

main lig loop + 1: main j ← font info [main k].qqqq ;
main lig loop + 2: if next char (main j) = cur r then

if skip byte (main j) ≤ stop flag then ⟨Do ligature or kern command, returning to main lig loop or
main loop wrapup or main loop move 1094 ⟩;

if skip byte (main j) = qi (0) then incr (main k)
else begin if skip byte (main j) ≥ stop flag then goto main loop wrapup ;
main k ← main k + qo(skip byte (main j)) + 1;
end;

goto main lig loop + 1

This code is used in section 1088.

478 PART 46: THE CHIEF EXECUTIVE X ETEX §1094

1094. When a ligature or kern instruction matches a character, we know from read font info that the
character exists in the font, even though we haven’t verified its existence in the normal way.
This section could be made into a subroutine, if the code inside main control needs to be shortened.

⟨Do ligature or kern command, returning to main lig loop or main loop wrapup or main loop move 1094 ⟩ ≡
begin if op byte (main j) ≥ kern flag then
begin wrapup(rt hit); tail append (new kern (char kern (main f)(main j))); goto main loop move ;
end;

if cur l = non char then lft hit ← true
else if lig stack = null then rt hit ← true ;
check interrupt ; { allow a way out in case there’s an infinite ligature loop }
case op byte (main j) of
qi (1), qi (5): begin cur l ← rem byte (main j); { =:|, =:|> }
main i ← char info(main f)(cur l); ligature present ← true ;
end;

qi (2), qi (6): begin cur r ← rem byte (main j); { |=:, |=:> }
if lig stack = null then { right boundary character is being consumed }

begin lig stack ← new lig item (cur r); bchar ← non char ;
end

else if is char node (lig stack) then { link (lig stack) = null }
begin main p ← lig stack ; lig stack ← new lig item (cur r); lig ptr (lig stack)← main p ;
end

else character (lig stack)← cur r ;
end;

qi (3): begin cur r ← rem byte (main j); { |=:| }
main p ← lig stack ; lig stack ← new lig item (cur r); link (lig stack)← main p ;
end;

qi (7), qi (11): begin wrapup(false); { |=:|>, |=:|>> }
cur q ← tail ; cur l ← rem byte (main j); main i ← char info(main f)(cur l);
ligature present ← true ;
end;

othercases begin cur l ← rem byte (main j); ligature present ← true ; { =: }
if lig stack = null then goto main loop wrapup
else goto main loop move + 1;
end

endcases;
if op byte (main j) > qi (4) then
if op byte (main j) ̸= qi (7) then goto main loop wrapup ;

if cur l < non char then goto main lig loop ;
main k ← bchar label [main f]; goto main lig loop + 1;
end

This code is used in section 1093.

§1095 X ETEX PART 46: THE CHIEF EXECUTIVE 479

1095. The occurrence of blank spaces is almost part of TEX’s inner loop, since we usually encounter
about one space for every five non-blank characters. Therefore main control gives second-highest priority to
ordinary spaces.
When a glue parameter like \spaceskip is set to ‘0pt’, we will see to it later that the corresponding glue

specification is precisely zero glue , not merely a pointer to some specification that happens to be full of
zeroes. Therefore it is simple to test whether a glue parameter is zero or not.

⟨Append a normal inter-word space to the current list, then goto big switch 1095 ⟩ ≡
if space skip = zero glue then
begin ⟨Find the glue specification, main p , for text spaces in the current font 1096 ⟩;
temp ptr ← new glue (main p);
end

else temp ptr ← new param glue (space skip code);
link (tail)← temp ptr ; tail ← temp ptr ; goto big switch

This code is used in section 1084.

1096. Having font glue allocated for each text font saves both time and memory. If any of the three spacing
parameters are subsequently changed by the use of \fontdimen, the find font dimen procedure deallocates
the font glue specification allocated here.

⟨Find the glue specification, main p , for text spaces in the current font 1096 ⟩ ≡
begin main p ← font glue [cur font];
if main p = null then
begin main p ← new spec(zero glue); main k ← param base [cur font] + space code ;
width (main p)← font info [main k].sc ; { that’s space (cur font) }
stretch (main p)← font info [main k + 1].sc ; { and space stretch (cur font) }
shrink (main p)← font info [main k + 2].sc ; { and space shrink (cur font) }
font glue [cur font]← main p ;
end;

end

This code is used in sections 1095 and 1097.

1097. ⟨Declare action procedures for use by main control 1097 ⟩ ≡
procedure app space ; { handle spaces when space factor ̸= 1000 }

var q: pointer ; { glue node }
begin if (space factor ≥ 2000) ∧ (xspace skip ̸= zero glue) then q ← new param glue (xspace skip code)
else begin if space skip ̸= zero glue then main p ← space skip
else ⟨Find the glue specification, main p , for text spaces in the current font 1096 ⟩;
main p ← new spec(main p);
⟨Modify the glue specification in main p according to the space factor 1098 ⟩;
q ← new glue (main p); glue ref count (main p)← null ;
end;

link (tail)← q; tail ← q;
end;

See also sections 1101, 1103, 1104, 1105, 1108, 1114, 1115, 1118, 1123, 1124, 1129, 1133, 1138, 1140, 1145, 1147, 1149, 1150,

1153, 1155, 1157, 1159, 1164, 1167, 1171, 1173, 1177, 1181, 1183, 1185, 1189, 1190, 1192, 1196, 1205, 1209, 1213, 1214,

1217, 1219, 1226, 1228, 1230, 1235, 1245, 1248, 1254, 1265, 1324, 1329, 1333, 1342, 1347, 1356, 1403, and 1439.

This code is used in section 1084.

1098. ⟨Modify the glue specification in main p according to the space factor 1098 ⟩ ≡
if space factor ≥ 2000 then width (main p)← width (main p) + extra space (cur font);
stretch (main p)← xn over d (stretch (main p), space factor , 1000);
shrink (main p)← xn over d (shrink (main p), 1000, space factor)

This code is used in section 1097.

480 PART 46: THE CHIEF EXECUTIVE X ETEX §1099

1099. Whew—that covers the main loop. We can now proceed at a leisurely pace through the other
combinations of possibilities.

define any mode (#) ≡ vmode + #, hmode + #,mmode + # { for mode-independent commands }
⟨Cases of main control that are not part of the inner loop 1099 ⟩ ≡
any mode (relax), vmode + spacer ,mmode + spacer ,mmode + no boundary : do nothing ;
any mode (ignore spaces): begin if cur chr = 0 then

begin ⟨Get the next non-blank non-call token 440 ⟩;
goto reswitch ;
end

else begin t← scanner status ; scanner status ← normal ; get next ; scanner status ← t;
if cur cs < hash base then cur cs ← prim lookup(cur cs − single base)
else cur cs ← prim lookup(text (cur cs));
if cur cs ̸= undefined primitive then

begin cur cmd ← prim eq type (cur cs); cur chr ← prim equiv (cur cs);
cur tok ← cs token flag + prim eqtb base + cur cs ; goto reswitch ;
end;

end;
end;

vmode + stop : if its all over then return; { this is the only way out }
⟨Forbidden cases detected in main control 1102 ⟩ any mode (mac param): report illegal case ;
⟨Math-only cases in non-math modes, or vice versa 1100 ⟩: insert dollar sign ;
⟨Cases of main control that build boxes and lists 1110 ⟩
⟨Cases of main control that don’t depend on mode 1264 ⟩
⟨Cases of main control that are for extensions to TEX 1402 ⟩
This code is used in section 1084.

1100. Here is a list of cases where the user has probably gotten into or out of math mode by mistake. TEX
will insert a dollar sign and rescan the current token.

define non math (#) ≡ vmode + #, hmode + #

⟨Math-only cases in non-math modes, or vice versa 1100 ⟩ ≡
non math (sup mark),non math (sub mark),non math (math char num),non math (math given),

non math (XeTeX math given),non math (math comp),non math (delim num),non math (left right),
non math (above),non math (radical),non math (math style),non math (math choice),
non math (vcenter),non math (non script),non math (mkern),non math (limit switch),
non math (mskip),non math (math accent),mmode + endv ,mmode + par end ,mmode + stop ,
mmode + vskip ,mmode + un vbox ,mmode + valign ,mmode + hrule

This code is used in section 1099.

1101. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure insert dollar sign ;

begin back input ; cur tok ← math shift token + "$"; print err ("Missing␣$␣inserted");
help2 ("I´ve␣inserted␣a␣begin−math/end−math␣symbol␣since␣I␣think")
("you␣left␣one␣out.␣Proceed,␣with␣fingers␣crossed."); ins error ;
end;

§1102 X ETEX PART 46: THE CHIEF EXECUTIVE 481

1102. When erroneous situations arise, TEX usually issues an error message specific to the particular error.
For example, ‘\noalign’ should not appear in any mode, since it is recognized by the align peek routine in
all of its legitimate appearances; a special error message is given when ‘\noalign’ occurs elsewhere. But
sometimes the most appropriate error message is simply that the user is not allowed to do what he or she
has attempted. For example, ‘\moveleft’ is allowed only in vertical mode, and ‘\lower’ only in non-vertical
modes. Such cases are enumerated here and in the other sections referred to under ‘See also’

⟨Forbidden cases detected in main control 1102 ⟩ ≡
vmode + vmove , hmode + hmove ,mmode + hmove , any mode (last item),

See also sections 1152, 1165, and 1198.

This code is used in section 1099.

1103. The ‘you cant ’ procedure prints a line saying that the current command is illegal in the current
mode; it identifies these things symbolically.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure you cant ;

begin print err ("You␣can´t␣use␣`"); print cmd chr (cur cmd , cur chr); print ("´␣in␣");
print mode (mode);
end;

1104. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure report illegal case ;

begin you cant ; help4 ("Sorry,␣but␣I´m␣not␣programmed␣to␣handle␣this␣case;")
("I´ll␣just␣pretend␣that␣you␣didn´t␣ask␣for␣it.")
("If␣you´re␣in␣the␣wrong␣mode,␣you␣might␣be␣able␣to")
("return␣to␣the␣right␣one␣by␣typing␣`I}´␣or␣`I$´␣or␣`I\par´.");
error ;
end;

1105. Some operations are allowed only in privileged modes, i.e., in cases that mode > 0. The privileged
function is used to detect violations of this rule; it issues an error message and returns false if the current
mode is negative.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
function privileged : boolean ;

begin if mode > 0 then privileged ← true
else begin report illegal case ; privileged ← false ;
end;

end;

1106. Either \dump or \end will cause main control to enter the endgame, since both of them have ‘stop ’
as their command code.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("end", stop , 0);
primitive ("dump", stop , 1);

1107. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
stop : if chr code = 1 then print esc("dump") else print esc("end");

482 PART 46: THE CHIEF EXECUTIVE X ETEX §1108

1108. We don’t want to leave main control immediately when a stop command is sensed, because it may
be necessary to invoke an \output routine several times before things really grind to a halt. (The output
routine might even say ‘\gdef\end{...}’, to prolong the life of the job.) Therefore its all over is true only
when the current page and contribution list are empty, and when the last output was not a “dead cycle.”

⟨Declare action procedures for use by main control 1097 ⟩ +≡
function its all over : boolean ; { do this when \end or \dump occurs }
label exit ;
begin if privileged then
begin if (page head = page tail) ∧ (head = tail) ∧ (dead cycles = 0) then
begin its all over ← true ; return;
end;

back input ; {we will try to end again after ejecting residual material }
tail append (new null box); width (tail)← hsize ; tail append (new glue (fill glue));
tail append (new penalty (− 1́0000000000));
build page ; { append \hbox to \hsize{}\vfill\penalty−’10000000000 }
end;

its all over ← false ;
exit : end;

§1109 X ETEX PART 47: BUILDING BOXES AND LISTS 483

1109. Building boxes and lists. The most important parts of main control are concerned with TEX’s
chief mission of box-making. We need to control the activities that put entries on vlists and hlists, as well as
the activities that convert those lists into boxes. All of the necessary machinery has already been developed;
it remains for us to “push the buttons” at the right times.

1110. As an introduction to these routines, let’s consider one of the simplest cases: What happens when
‘\hrule’ occurs in vertical mode, or ‘\vrule’ in horizontal mode or math mode? The code in main control
is short, since the scan rule spec routine already does most of what is required; thus, there is no need for a
special action procedure.
Note that baselineskip calculations are disabled after a rule in vertical mode, by setting prev depth ←

ignore depth .

⟨Cases of main control that build boxes and lists 1110 ⟩ ≡
vmode + hrule , hmode + vrule ,mmode + vrule : begin tail append (scan rule spec);

if abs (mode) = vmode then prev depth ← ignore depth
else if abs (mode) = hmode then space factor ← 1000;
end;

See also sections 1111, 1117, 1121, 1127, 1144, 1146, 1148, 1151, 1156, 1158, 1163, 1166, 1170, 1176, 1180, 1184, 1188, 1191,
1194, 1204, 1208, 1212, 1216, 1218, 1221, 1225, 1229, 1234, 1244, and 1247.

This code is used in section 1099.

1111. The processing of things like \hskip and \vskip is slightly more complicated. But the code in
main control is very short, since it simply calls on the action routine append glue . Similarly, \kern activates
append kern .

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + vskip , hmode + hskip ,mmode + hskip ,mmode +mskip : append glue ;
any mode (kern),mmode +mkern : append kern ;

1112. The hskip and vskip command codes are used for control sequences like \hss and \vfil as well as
for \hskip and \vskip. The difference is in the value of cur chr .

define fil code = 0 { identifies \hfil and \vfil }
define fill code = 1 { identifies \hfill and \vfill }
define ss code = 2 { identifies \hss and \vss }
define fil neg code = 3 { identifies \hfilneg and \vfilneg }
define skip code = 4 { identifies \hskip and \vskip }
define mskip code = 5 { identifies \mskip }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("hskip", hskip , skip code);
primitive ("hfil", hskip ,fil code); primitive ("hfill", hskip ,fill code);
primitive ("hss", hskip , ss code); primitive ("hfilneg", hskip ,fil neg code);
primitive ("vskip", vskip , skip code);
primitive ("vfil", vskip ,fil code); primitive ("vfill", vskip ,fill code);
primitive ("vss", vskip , ss code); primitive ("vfilneg", vskip ,fil neg code);
primitive ("mskip",mskip ,mskip code);
primitive ("kern", kern , explicit); primitive ("mkern",mkern ,mu glue);

484 PART 47: BUILDING BOXES AND LISTS X ETEX §1113

1113. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
hskip : case chr code of
skip code : print esc("hskip");
fil code : print esc("hfil");
fill code : print esc("hfill");
ss code : print esc("hss");
othercases print esc("hfilneg")
endcases;

vskip : case chr code of
skip code : print esc("vskip");
fil code : print esc("vfil");
fill code : print esc("vfill");
ss code : print esc("vss");
othercases print esc("vfilneg")
endcases;

mskip : print esc("mskip");
kern : print esc("kern");
mkern : print esc("mkern");

1114. All the work relating to glue creation has been relegated to the following subroutine. It does not
call build page , because it is used in at least one place where that would be a mistake.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append glue ;

var s: small number ; {modifier of skip command }
begin s← cur chr ;
case s of
fil code : cur val ← fil glue ;
fill code : cur val ← fill glue ;
ss code : cur val ← ss glue ;
fil neg code : cur val ← fil neg glue ;
skip code : scan glue (glue val);
mskip code : scan glue (mu val);
end; { now cur val points to the glue specification }
tail append (new glue (cur val));
if s ≥ skip code then
begin decr (glue ref count (cur val));
if s > skip code then subtype (tail)← mu glue ;
end;

end;

1115. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append kern ;

var s: quarterword ; { subtype of the kern node }
begin s← cur chr ; scan dimen (s = mu glue , false , false); tail append (new kern (cur val));
subtype (tail)← s;
end;

§1116 X ETEX PART 47: BUILDING BOXES AND LISTS 485

1116. Many of the actions related to box-making are triggered by the appearance of braces in the
input. For example, when the user says ‘\hbox to 100pt{⟨ hlist ⟩}’ in vertical mode, the information
about the box size (100pt, exactly) is put onto save stack with a level boundary word just above it, and
cur group ← adjusted hbox group ; TEX enters restricted horizontal mode to process the hlist. The right
brace eventually causes save stack to be restored to its former state, at which time the information about
the box size (100pt, exactly) is available once again; a box is packaged and we leave restricted horizontal
mode, appending the new box to the current list of the enclosing mode (in this case to the current list of
vertical mode), followed by any vertical adjustments that were removed from the box by hpack .
The next few sections of the program are therefore concerned with the treatment of left and right curly

braces.

1117. If a left brace occurs in the middle of a page or paragraph, it simply introduces a new level of
grouping, and the matching right brace will not have such a drastic effect. Such grouping affects neither the
mode nor the current list.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
non math (left brace): new save level (simple group);
any mode (begin group): new save level (semi simple group);
any mode (end group): if cur group = semi simple group then unsave
else off save ;

1118. We have to deal with errors in which braces and such things are not properly nested. Sometimes
the user makes an error of commission by inserting an extra symbol, but sometimes the user makes an error
of omission. TEX can’t always tell one from the other, so it makes a guess and tries to avoid getting into a
loop.
The off save routine is called when the current group code is wrong. It tries to insert something into the

user’s input that will help clean off the top level.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure off save ;

var p: pointer ; { inserted token }
begin if cur group = bottom level then ⟨Drop current token and complain that it was unmatched 1120 ⟩
else begin back input ; p← get avail ; link (temp head)← p; print err ("Missing␣");
⟨Prepare to insert a token that matches cur group , and print what it is 1119 ⟩;
print ("␣inserted"); ins list (link (temp head));
help5 ("I´ve␣inserted␣something␣that␣you␣may␣have␣forgotten.")
("(See␣the␣<inserted␣text>␣above.)")
("With␣luck,␣this␣will␣get␣me␣unwedged.␣But␣if␣you")
("really␣didn´t␣forget␣anything,␣try␣typing␣`2´␣now;␣then")
("my␣insertion␣and␣my␣current␣dilemma␣will␣both␣disappear."); error ;
end;

end;

486 PART 47: BUILDING BOXES AND LISTS X ETEX §1119

1119. At this point, link (temp head) = p, a pointer to an empty one-word node.

⟨Prepare to insert a token that matches cur group , and print what it is 1119 ⟩ ≡
case cur group of
semi simple group : begin info(p)← cs token flag + frozen end group ; print esc("endgroup");
end;

math shift group : begin info(p)← math shift token + "$"; print char ("$");
end;

math left group : begin info(p)← cs token flag + frozen right ; link (p)← get avail ; p← link (p);
info(p)← other token + "."; print esc("right.");
end;

othercases begin info(p)← right brace token + "}"; print char ("}");
end

endcases

This code is used in section 1118.

1120. ⟨Drop current token and complain that it was unmatched 1120 ⟩ ≡
begin print err ("Extra␣"); print cmd chr (cur cmd , cur chr);
help1 ("Things␣are␣pretty␣mixed␣up,␣but␣I␣think␣the␣worst␣is␣over.");
error ;
end

This code is used in section 1118.

1121. The routine for a right brace character branches into many subcases, since a variety of things may
happen, depending on cur group . Some types of groups are not supposed to be ended by a right brace; error
messages are given in hopes of pinpointing the problem. Most branches of this routine will be filled in later,
when we are ready to understand them; meanwhile, we must prepare ourselves to deal with such errors.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (right brace): handle right brace ;

1122. ⟨Declare the procedure called handle right brace 1122 ⟩ ≡
procedure handle right brace ;
var p, q: pointer ; { for short-term use }
d: scaled ; { holds split max depth in insert group }
f : integer ; { holds floating penalty in insert group }

begin case cur group of
simple group : unsave ;
bottom level : begin print err ("Too␣many␣}´s");
help2 ("You´ve␣closed␣more␣groups␣than␣you␣opened.")
("Such␣booboos␣are␣generally␣harmless,␣so␣keep␣going."); error ;
end;

semi simple group ,math shift group ,math left group : extra right brace ;
⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩
othercases confusion ("rightbrace")
endcases;
end;

This code is used in section 1084.

§1123 X ETEX PART 47: BUILDING BOXES AND LISTS 487

1123. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure extra right brace ;

begin print err ("Extra␣},␣or␣forgotten␣");
case cur group of
semi simple group : print esc("endgroup");
math shift group : print char ("$");
math left group : print esc("right");
end;
help5 ("I´ve␣deleted␣a␣group−closing␣symbol␣because␣it␣seems␣to␣be")
("spurious,␣as␣in␣`$x}$´.␣But␣perhaps␣the␣}␣is␣legitimate␣and")
("you␣forgot␣something␣else,␣as␣in␣`\hbox{$x}´.␣In␣such␣cases")
("the␣way␣to␣recover␣is␣to␣insert␣both␣the␣forgotten␣and␣the")
("deleted␣material,␣e.g.,␣by␣typing␣`I$}´."); error ; incr (align state);
end;

1124. Here is where we clear the parameters that are supposed to revert to their default values after every
paragraph and when internal vertical mode is entered.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure normal paragraph ;
begin if looseness ̸= 0 then eq word define (int base + looseness code , 0);
if hang indent ̸= 0 then eq word define (dimen base + hang indent code , 0);
if hang after ̸= 1 then eq word define (int base + hang after code , 1);
if par shape ptr ̸= null then eq define (par shape loc , shape ref ,null);
if inter line penalties ptr ̸= null then eq define (inter line penalties loc , shape ref ,null);
end;

488 PART 47: BUILDING BOXES AND LISTS X ETEX §1125

1125. Now let’s turn to the question of how \hbox is treated. We actually need to consider also
a slightly larger context, since constructions like ‘\setbox3=\hbox...’ and ‘\leaders\hbox...’ and
‘\lower3.8pt\hbox...’ are supposed to invoke quite different actions after the box has been packaged.
Conversely, constructions like ‘\setbox3=’ can be followed by a variety of different kinds of boxes, and we
would like to encode such things in an efficient way.
In other words, there are two problems: to represent the context of a box, and to represent its type.
The first problem is solved by putting a “context code” on the save stack , just below the two entries

that give the dimensions produced by scan spec . The context code is either a (signed) shift amount,
or it is a large integer ≥ box flag , where box flag = 230. Codes box flag through global box flag − 1
represent ‘\setbox0’ through ‘\setbox32767’; codes global box flag through ship out flag − 1 represent
‘\global\setbox0’ through ‘\global\setbox32767’; code ship out flag represents ‘\shipout’; and codes
leader flag through leader flag + 2 represent ‘\leaders’, ‘\cleaders’, and ‘\xleaders’.
The second problem is solved by giving the command code make box to all control sequences that produce

a box, and by using the following chr code values to distinguish between them: box code , copy code ,
last box code , vsplit code , vtop code , vtop code + vmode , and vtop code + hmode , where the latter two are
used to denote \vbox and \hbox, respectively.

define box flag ≡ 1́0000000000 { context code for ‘\setbox0’ }
define global box flag ≡ 1́0000100000 { context code for ‘\global\setbox0’ }
define ship out flag ≡ 1́0000200000 { context code for ‘\shipout’ }
define leader flag ≡ 1́0000200001 { context code for ‘\leaders’ }
define box code = 0 { chr code for ‘\box’ }
define copy code = 1 { chr code for ‘\copy’ }
define last box code = 2 { chr code for ‘\lastbox’ }
define vsplit code = 3 { chr code for ‘\vsplit’ }
define vtop code = 4 { chr code for ‘\vtop’ }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("moveleft", hmove , 1); primitive ("moveright", hmove , 0);
primitive ("raise", vmove , 1); primitive ("lower", vmove , 0);

primitive ("box",make box , box code); primitive ("copy",make box , copy code);
primitive ("lastbox",make box , last box code); primitive ("vsplit",make box , vsplit code);
primitive ("vtop",make box , vtop code);
primitive ("vbox",make box , vtop code + vmode); primitive ("hbox",make box , vtop code + hmode);
primitive ("shipout", leader ship , a leaders − 1); { ship out flag = leader flag − 1 }
primitive ("leaders", leader ship , a leaders); primitive ("cleaders", leader ship , c leaders);
primitive ("xleaders", leader ship , x leaders);

§1126 X ETEX PART 47: BUILDING BOXES AND LISTS 489

1126. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
hmove : if chr code = 1 then print esc("moveleft") else print esc("moveright");
vmove : if chr code = 1 then print esc("raise") else print esc("lower");
make box : case chr code of

box code : print esc("box");
copy code : print esc("copy");
last box code : print esc("lastbox");
vsplit code : print esc("vsplit");
vtop code : print esc("vtop");
vtop code + vmode : print esc("vbox");
othercases print esc("hbox")
endcases;

leader ship : if chr code = a leaders then print esc("leaders")
else if chr code = c leaders then print esc("cleaders")
else if chr code = x leaders then print esc("xleaders")

else print esc("shipout");

1127. Constructions that require a box are started by calling scan box with a specified context code. The
scan box routine verifies that a make box command comes next and then it calls begin box .

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + hmove , hmode + vmove ,mmode + vmove : begin t← cur chr ; scan normal dimen ;

if t = 0 then scan box (cur val) else scan box (−cur val);
end;

any mode (leader ship): scan box (leader flag − a leaders + cur chr);
any mode (make box): begin box (0);

1128. The global variable cur box will point to a newly made box. If the box is void, we will have
cur box = null . Otherwise we will have type (cur box) = hlist node or vlist node or rule node ; the rule node
case can occur only with leaders.

⟨Global variables 13 ⟩ +≡
cur box : pointer ; { box to be placed into its context }

1129. The box end procedure does the right thing with cur box , if box context represents the context as
explained above.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure box end (box context : integer);

var p: pointer ; { ord noad for new box in math mode }
a: small number ; { global prefix }

begin if box context < box flag then
⟨Append box cur box to the current list, shifted by box context 1130 ⟩

else if box context < ship out flag then ⟨ Store cur box in a box register 1131 ⟩
else if cur box ̸= null then

if box context > ship out flag then ⟨Append a new leader node that uses cur box 1132 ⟩
else ship out (cur box);

end;

490 PART 47: BUILDING BOXES AND LISTS X ETEX §1130

1130. The global variable adjust tail will be non-null if and only if the current box might include adjust-
ments that should be appended to the current vertical list.

⟨Append box cur box to the current list, shifted by box context 1130 ⟩ ≡
begin if cur box ̸= null then
begin shift amount (cur box)← box context ;
if abs (mode) = vmode then
begin if pre adjust tail ̸= null then

begin if pre adjust head ̸= pre adjust tail then append list (pre adjust head)(pre adjust tail);
pre adjust tail ← null ;
end;

append to vlist (cur box);
if adjust tail ̸= null then
begin if adjust head ̸= adjust tail then append list (adjust head)(adjust tail);
adjust tail ← null ;
end;

if mode > 0 then build page ;
end

else begin if abs (mode) = hmode then space factor ← 1000
else begin p← new noad ; math type (nucleus (p))← sub box ; info(nucleus (p))← cur box ;
cur box ← p;
end;

link (tail)← cur box ; tail ← cur box ;
end;

end;
end

This code is used in section 1129.

1131. ⟨ Store cur box in a box register 1131 ⟩ ≡
begin if box context < global box flag then
begin cur val ← box context − box flag ; a← 0;
end

else begin cur val ← box context − global box flag ; a← 4;
end;

if cur val < 256 then define (box base + cur val , box ref , cur box)
else sa def box ;
end

This code is used in section 1129.

1132. ⟨Append a new leader node that uses cur box 1132 ⟩ ≡
begin ⟨Get the next non-blank non-relax non-call token 438 ⟩;
if ((cur cmd = hskip) ∧ (abs (mode) ̸= vmode)) ∨ ((cur cmd = vskip) ∧ (abs (mode) = vmode)) then
begin append glue ; subtype (tail)← box context − (leader flag − a leaders);
leader ptr (tail)← cur box ;
end

else begin print err ("Leaders␣not␣followed␣by␣proper␣glue");
help3 ("You␣should␣say␣`\leaders␣<box␣or␣rule><hskip␣or␣vskip>´.")
("I␣found␣the␣<box␣or␣rule>,␣but␣there´s␣no␣suitable")
("<hskip␣or␣vskip>,␣so␣I´m␣ignoring␣these␣leaders."); back error ; flush node list (cur box);
end;

end

This code is used in section 1129.

§1133 X ETEX PART 47: BUILDING BOXES AND LISTS 491

1133. Now that we can see what eventually happens to boxes, we can consider the first steps in their
creation. The begin box routine is called when box context is a context specification, cur chr specifies the
type of box desired, and cur cmd = make box .

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure begin box (box context : integer);

label exit , done ;
var p, q: pointer ; { run through the current list }
r: pointer ; { running behind p }
fm : boolean ; { a final \beginM \endM node pair? }
tx : pointer ; { effective tail node }
m: quarterword ; { the length of a replacement list }
k: halfword ; { 0 or vmode or hmode }
n: halfword ; { a box number }

begin case cur chr of
box code : begin scan register num ; fetch box (cur box); change box (null);

{ the box becomes void, at the same level }
end;

copy code : begin scan register num ; fetch box (q); cur box ← copy node list (q);
end;

last box code : ⟨ If the current list ends with a box node, delete it from the list and make cur box point to
it; otherwise set cur box ← null 1134 ⟩;

vsplit code : ⟨ Split off part of a vertical box, make cur box point to it 1136 ⟩;
othercases ⟨ Initiate the construction of an hbox or vbox, then return 1137 ⟩
endcases;
box end (box context); { in simple cases, we use the box immediately }

exit : end;

492 PART 47: BUILDING BOXES AND LISTS X ETEX §1134

1134. Note that the condition ¬is char node (tail) implies that head ̸= tail , since head is a one-word node.

define fetch effective tail eTeX (#) ≡ { extract tx , drop \beginM \endM pair }
q ← head ; p← null ;
repeat r ← p; p← q; fm ← false ;
if ¬is char node (q) then

if type (q) = disc node then
begin for m← 1 to replace count (q) do p← link (p);
if p = tx then #;
end

else if (type (q) = math node) ∧ (subtype (q) = begin M code) then fm ← true ;
q ← link (p);

until q = tx ; { found r. .p. .q = tx }
q ← link (tx); link (p)← q; link (tx)← null ;
if q = null then
if fm then confusion ("tail1")
else tail ← p

else if fm then { r. .p = begin M . .q = end M }
begin tail ← r; link (r)← null ; flush node list (p); end

define check effective tail (#) ≡ find effective tail eTeX
define fetch effective tail ≡ fetch effective tail eTeX

⟨ If the current list ends with a box node, delete it from the list and make cur box point to it; otherwise set
cur box ← null 1134 ⟩ ≡

begin cur box ← null ;
if abs (mode) = mmode then
begin you cant ; help1 ("Sorry;␣this␣\lastbox␣will␣be␣void."); error ;
end

else if (mode = vmode) ∧ (head = tail) then
begin you cant ; help2 ("Sorry...I␣usually␣can´t␣take␣things␣from␣the␣current␣page.")
("This␣\lastbox␣will␣therefore␣be␣void."); error ;
end

else begin check effective tail (goto done);
if ¬is char node (tx) then

if (type (tx) = hlist node) ∨ (type (tx) = vlist node) then
⟨Remove the last box, unless it’s part of a discretionary 1135 ⟩;

done : end;
end

This code is used in section 1133.

1135. ⟨Remove the last box, unless it’s part of a discretionary 1135 ⟩ ≡
begin fetch effective tail (goto done); cur box ← tx ; shift amount (cur box)← 0;
end

This code is used in section 1134.

§1136 X ETEX PART 47: BUILDING BOXES AND LISTS 493

1136. Here we deal with things like ‘\vsplit 13 to 100pt’.

⟨ Split off part of a vertical box, make cur box point to it 1136 ⟩ ≡
begin scan register num ; n← cur val ;
if ¬scan keyword ("to") then
begin print err ("Missing␣`to´␣inserted");
help2 ("I´m␣working␣on␣`\vsplit<box␣number>␣to␣<dimen>´;")
("will␣look␣for␣the␣<dimen>␣next."); error ;
end;

scan normal dimen ; cur box ← vsplit (n, cur val);
end

This code is used in section 1133.

1137. Here is where we enter restricted horizontal mode or internal vertical mode, in order to make a box.

⟨ Initiate the construction of an hbox or vbox, then return 1137 ⟩ ≡
begin k ← cur chr − vtop code ; saved (0)← box context ;
if k = hmode then
if (box context < box flag) ∧ (abs (mode) = vmode) then scan spec(adjusted hbox group , true)
else scan spec(hbox group , true)

else begin if k = vmode then scan spec(vbox group , true)
else begin scan spec(vtop group , true); k ← vmode ;
end;

normal paragraph ;
end;

push nest ; mode ← −k;
if k = vmode then
begin prev depth ← ignore depth ;
if every vbox ̸= null then begin token list (every vbox , every vbox text);
end

else begin space factor ← 1000;
if every hbox ̸= null then begin token list (every hbox , every hbox text);
end;

return;
end

This code is used in section 1133.

1138. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure scan box (box context : integer); { the next input should specify a box or perhaps a rule }

begin ⟨Get the next non-blank non-relax non-call token 438 ⟩;
if cur cmd = make box then begin box (box context)
else if (box context ≥ leader flag) ∧ ((cur cmd = hrule) ∨ (cur cmd = vrule)) then

begin cur box ← scan rule spec ; box end (box context);
end

else begin
print err ("A␣<box>␣was␣supposed␣to␣be␣here");
help3 ("I␣was␣expecting␣to␣see␣\hbox␣or␣\vbox␣or␣\copy␣or␣\box␣or")
("something␣like␣that.␣So␣you␣might␣find␣something␣missing␣in")
("your␣output.␣But␣keep␣trying;␣you␣can␣fix␣this␣later."); back error ;
end;

end;

494 PART 47: BUILDING BOXES AND LISTS X ETEX §1139

1139. When the right brace occurs at the end of an \hbox or \vbox or \vtop construction, the package
routine comes into action. We might also have to finish a paragraph that hasn’t ended.

⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ ≡
hbox group : package (0);
adjusted hbox group : begin adjust tail ← adjust head ; pre adjust tail ← pre adjust head ; package (0);
end;

vbox group : begin end graf ; package (0);
end;

vtop group : begin end graf ; package (vtop code);
end;

See also sections 1154, 1172, 1186, 1187, 1222, 1227, and 1240.

This code is used in section 1122.

1140. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure package (c : small number);

var h: scaled ; { height of box }
p: pointer ; { first node in a box }
d: scaled ; {max depth }
u, v: integer ; { saved values for upwards mode flag }

begin d← box max depth ; u← XeTeX upwards state ; unsave ; save ptr ← save ptr − 3;
v ← XeTeX upwards state ; XeTeX upwards state ← u;
if mode = −hmode then cur box ← hpack (link (head), saved (2), saved (1))
else begin cur box ← vpackage (link (head), saved (2), saved (1), d);
if c = vtop code then ⟨Readjust the height and depth of cur box , for \vtop 1141 ⟩;
end;

XeTeX upwards state ← v; pop nest ; box end (saved (0));
end;

1141. The height of a ‘\vtop’ box is inherited from the first item on its list, if that item is an hlist node ,
vlist node , or rule node ; otherwise the \vtop height is zero.

⟨Readjust the height and depth of cur box , for \vtop 1141 ⟩ ≡
begin h← 0; p← list ptr (cur box);
if p ̸= null then
if type (p) ≤ rule node then h← height (p);

depth (cur box)← depth (cur box)− h+ height (cur box); height (cur box)← h;
end

This code is used in section 1140.

1142. A paragraph begins when horizontal-mode material occurs in vertical mode, or when the paragraph
is explicitly started by ‘\indent’ or ‘\noindent’.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("indent", start par , 1); primitive ("noindent", start par , 0);

1143. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
start par : if chr code = 0 then print esc("noindent") else print esc("indent");

§1144 X ETEX PART 47: BUILDING BOXES AND LISTS 495

1144. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + start par : new graf (cur chr > 0);
vmode + letter , vmode + other char , vmode + char num , vmode + char given , vmode +math shift ,

vmode + un hbox , vmode + vrule , vmode + accent , vmode + discretionary , vmode + hskip ,
vmode + valign , vmode + ex space , vmode + no boundary :

begin back input ; new graf (true);
end;

1145. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
function norm min (h : integer): small number ;

begin if h ≤ 0 then norm min ← 1 else if h ≥ 63 then norm min ← 63 else norm min ← h;
end;

procedure new graf (indented : boolean);
begin prev graf ← 0;
if (mode = vmode) ∨ (head ̸= tail) then tail append (new param glue (par skip code));
push nest ; mode ← hmode ; space factor ← 1000; set cur lang ; clang ← cur lang ;
prev graf ← (norm min (left hyphen min) ∗ 1́00 + norm min (right hyphen min)) ∗ 2́00000 + cur lang ;
if indented then
begin tail ← new null box ; link (head)← tail ; width (tail)← par indent ; end;

if every par ̸= null then begin token list (every par , every par text);
if nest ptr = 1 then build page ; { put par skip glue on current page }
end;

1146. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
hmode + start par ,mmode + start par : indent in hmode ;

1147. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure indent in hmode ;

var p, q: pointer ;
begin if cur chr > 0 then { \indent }
begin p← new null box ; width (p)← par indent ;
if abs (mode) = hmode then space factor ← 1000
else begin q ← new noad ; math type (nucleus (q))← sub box ; info(nucleus (q))← p; p← q;
end;

tail append (p);
end;

end;

1148. A paragraph ends when a par end command is sensed, or when we are in horizontal mode when
reaching the right brace of vertical-mode routines like \vbox, \insert, or \output.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + par end : begin normal paragraph ;
if mode > 0 then build page ;
end;

hmode + par end : begin if align state < 0 then off save ;
{ this tries to recover from an alignment that didn’t end properly }

end graf ; { this takes us to the enclosing mode, if mode > 0 }
if mode = vmode then build page ;
end;

hmode + stop , hmode + vskip , hmode + hrule , hmode + un vbox , hmode + halign : head for vmode ;

496 PART 47: BUILDING BOXES AND LISTS X ETEX §1149

1149. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure head for vmode ;

begin if mode < 0 then
if cur cmd ̸= hrule then off save
else begin print err ("You␣can´t␣use␣`"); print esc("hrule");
print ("´␣here␣except␣with␣leaders");
help2 ("To␣put␣a␣horizontal␣rule␣in␣an␣hbox␣or␣an␣alignment,")
("you␣should␣use␣\leaders␣or␣\hrulefill␣(see␣The␣TeXbook)."); error ;
end

else begin back input ; cur tok ← par token ; back input ; token type ← inserted ;
end;

end;

1150. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure end graf ;

begin if mode = hmode then
begin if head = tail then pop nest { null paragraphs are ignored }
else line break (false);
if LR save ̸= null then

begin flush list (LR save); LR save ← null ;
end;

normal paragraph ; error count ← 0;
end;

end;

1151. Insertion and adjustment and mark nodes are constructed by the following pieces of the program.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (insert), hmode + vadjust ,mmode + vadjust : begin insert or adjust ;
any mode (mark): make mark ;

1152. ⟨Forbidden cases detected in main control 1102 ⟩ +≡
vmode + vadjust ,

1153. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure begin insert or adjust ;

begin if cur cmd = vadjust then cur val ← 255
else begin scan eight bit int ;
if cur val = 255 then
begin print err ("You␣can´t␣"); print esc("insert"); print int (255);
help1 ("I´m␣changing␣to␣\insert0;␣box␣255␣is␣special."); error ; cur val ← 0;
end;

end;
saved (0)← cur val ;
if (cur cmd = vadjust) ∧ scan keyword ("pre") then saved (1)← 1
else saved (1)← 0;
save ptr ← save ptr + 2; new save level (insert group); scan left brace ; normal paragraph ; push nest ;
mode ← −vmode ; prev depth ← ignore depth ;
end;

§1154 X ETEX PART 47: BUILDING BOXES AND LISTS 497

1154. ⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
insert group : begin end graf ; q ← split top skip ; add glue ref (q); d← split max depth ;
f ← floating penalty ; unsave ; save ptr ← save ptr − 2;

{ now saved (0) is the insertion number, or 255 for vadjust }
p← vpack (link (head),natural); pop nest ;
if saved (0) < 255 then
begin tail append (get node (ins node size)); type (tail)← ins node ; subtype (tail)← qi (saved (0));
height (tail)← height (p) + depth (p); ins ptr (tail)← list ptr (p); split top ptr (tail)← q;
depth (tail)← d; float cost (tail)← f ;
end

else begin tail append (get node (small node size)); type (tail)← adjust node ;
adjust pre (tail)← saved (1); { the subtype is used for adjust pre }
adjust ptr (tail)← list ptr (p); delete glue ref (q);
end;

free node (p, box node size);
if nest ptr = 0 then build page ;
end;

output group : ⟨Resume the page builder after an output routine has come to an end 1080 ⟩;

1155. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure make mark ;

var p: pointer ; { new node }
c: halfword ; { the mark class }

begin if cur chr = 0 then c← 0
else begin scan register num ; c← cur val ;
end;

p← scan toks (false , true); p← get node (small node size); mark class (p)← c; type (p)← mark node ;
subtype (p)← 0; { the subtype is not used }
mark ptr (p)← def ref ; link (tail)← p; tail ← p;
end;

1156. Penalty nodes get into a list via the break penalty command.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (break penalty): append penalty ;

1157. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append penalty ;

begin scan int ; tail append (new penalty (cur val));
if mode = vmode then build page ;
end;

1158. The remove item command removes a penalty, kern, or glue node if it appears at the tail of the
current list, using a brute-force linear scan. Like \lastbox, this command is not allowed in vertical mode
(except internal vertical mode), since the current list in vertical mode is sent to the page builder. But if we
happen to be able to implement it in vertical mode, we do.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (remove item): delete last ;

498 PART 47: BUILDING BOXES AND LISTS X ETEX §1159

1159. When delete last is called, cur chr is the type of node that will be deleted, if present.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure delete last ;
label exit ;
var p, q: pointer ; { run through the current list }
r: pointer ; { running behind p }
fm : boolean ; { a final \beginM \endM node pair? }
tx : pointer ; { effective tail node }
m: quarterword ; { the length of a replacement list }

begin if (mode = vmode) ∧ (tail = head) then
⟨Apologize for inability to do the operation now, unless \unskip follows non-glue 1160 ⟩

else begin check effective tail (return);
if ¬is char node (tx) then
if type (tx) = cur chr then

begin fetch effective tail (return); flush node list (tx);
end;

end;
exit : end;

1160. ⟨Apologize for inability to do the operation now, unless \unskip follows non-glue 1160 ⟩ ≡
begin if (cur chr ̸= glue node) ∨ (last glue ̸= max halfword) then
begin you cant ; help2 ("Sorry...I␣usually␣can´t␣take␣things␣from␣the␣current␣page.")
("Try␣`I\vskip−\lastskip´␣instead.");
if cur chr = kern node then help line [0]← ("Try␣`I\kern−\lastkern´␣instead.")
else if cur chr ̸= glue node then

help line [0]← ("Perhaps␣you␣can␣make␣the␣output␣routine␣do␣it.");
error ;
end;

end

This code is used in section 1159.

1161. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("unpenalty", remove item , penalty node);
primitive ("unkern", remove item , kern node);
primitive ("unskip", remove item , glue node);
primitive ("unhbox", un hbox , box code);
primitive ("unhcopy", un hbox , copy code);
primitive ("unvbox", un vbox , box code);
primitive ("unvcopy", un vbox , copy code);

1162. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
remove item : if chr code = glue node then print esc("unskip")
else if chr code = kern node then print esc("unkern")
else print esc("unpenalty");

un hbox : if chr code = copy code then print esc("unhcopy")
else print esc("unhbox");

un vbox : if chr code = copy code then print esc("unvcopy") ⟨Cases of un vbox for print cmd chr 1673 ⟩
else print esc("unvbox");

1163. The un hbox and un vbox commands unwrap one of the 256 current boxes.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + un vbox , hmode + un hbox ,mmode + un hbox : unpackage ;

§1164 X ETEX PART 47: BUILDING BOXES AND LISTS 499

1164. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure unpackage ;

label done , exit ;
var p: pointer ; { the box }
r: pointer ; { to remove marginal kern nodes }
c: box code . . copy code ; { should we copy? }

begin if cur chr > copy code then ⟨Handle saved items and goto done 1674 ⟩;
c← cur chr ; scan register num ; fetch box (p);
if p = null then return;
if (abs (mode) = mmode) ∨ ((abs (mode) = vmode) ∧ (type (p) ̸= vlist node)) ∨

((abs (mode) = hmode) ∧ (type (p) ̸= hlist node)) then
begin print err ("Incompatible␣list␣can´t␣be␣unboxed");
help3 ("Sorry,␣Pandora.␣(You␣sneaky␣devil.)")
("I␣refuse␣to␣unbox␣an␣\hbox␣in␣vertical␣mode␣or␣vice␣versa.")
("And␣I␣can´t␣open␣any␣boxes␣in␣math␣mode.");
error ; return;
end;

if c = copy code then link (tail)← copy node list (list ptr (p))
else begin link (tail)← list ptr (p); change box (null); free node (p, box node size);
end;

done : while link (tail) ̸= null do
begin r ← link (tail);
if ¬is char node (r) ∧ (type (r) = margin kern node) then
begin link (tail)← link (r); free node (r,margin kern node size);
end;

tail ← link (tail);
end;

exit : end;

1165. ⟨Forbidden cases detected in main control 1102 ⟩ +≡
vmode + ital corr ,

1166. Italic corrections are converted to kern nodes when the ital corr command follows a character. In
math mode the same effect is achieved by appending a kern of zero here, since italic corrections are supplied
later.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
hmode + ital corr : append italic correction ;
mmode + ital corr : tail append (new kern (0));

500 PART 47: BUILDING BOXES AND LISTS X ETEX §1167

1167. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append italic correction ;

label exit ;
var p: pointer ; { char node at the tail of the current list }
f : internal font number ; { the font in the char node }

begin if tail ̸= head then
begin if is char node (tail) then p← tail
else if type (tail) = ligature node then p← lig char (tail)
else if (type (tail) = whatsit node) then

begin if is native word subtype (tail) then
begin tail append (new kern (get native italic correction (tail))); subtype (tail)← explicit ;
end

else if (subtype (tail) = glyph node) then
begin tail append (new kern (get native glyph italic correction (tail)));
subtype (tail)← explicit ;
end;

return;
end

else return;
f ← font (p); tail append (new kern (char italic(f)(char info(f)(character (p)))));
subtype (tail)← explicit ;
end;

exit : end;

1168. Discretionary nodes are easy in the common case ‘\−’, but in the general case we must process three
braces full of items.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("−", discretionary , 1); primitive ("discretionary", discretionary , 0);

1169. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
discretionary : if chr code = 1 then print esc("−") else print esc("discretionary");

1170. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
hmode + discretionary ,mmode + discretionary : append discretionary ;

1171. The space factor does not change when we append a discretionary node, but it starts out as 1000
in the subsidiary lists.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append discretionary ;

var c: integer ; { hyphen character }
begin tail append (new disc);
if cur chr = 1 then
begin c← hyphen char [cur font];
if c ≥ 0 then
if c ≤ biggest char then pre break (tail)← new character (cur font , c);

end
else begin incr (save ptr); saved (−1)← 0; new save level (disc group); scan left brace ; push nest ;
mode ← −hmode ; space factor ← 1000;
end;

end;

§1172 X ETEX PART 47: BUILDING BOXES AND LISTS 501

1172. The three discretionary lists are constructed somewhat as if they were hboxes. A subroutine called
build discretionary handles the transitions. (This is sort of fun.)

⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
disc group : build discretionary ;

1173. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure build discretionary ;

label done , exit ;
var p, q: pointer ; { for link manipulation }
n: integer ; { length of discretionary list }

begin unsave ;
⟨Prune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,

rule node , and ligature node items; set n to the length of the list, and set q to the list’s tail 1175 ⟩;
p← link (head); pop nest ;
case saved (−1) of
0: pre break (tail)← p;
1: post break (tail)← p;
2: ⟨Attach list p to the current list, and record its length; then finish up and return 1174 ⟩;
end; { there are no other cases }
incr (saved (−1)); new save level (disc group); scan left brace ; push nest ; mode ← −hmode ;
space factor ← 1000;

exit : end;

1174. ⟨Attach list p to the current list, and record its length; then finish up and return 1174 ⟩ ≡
begin if (n > 0) ∧ (abs (mode) = mmode) then
begin print err ("Illegal␣math␣"); print esc("discretionary");
help2 ("Sorry:␣The␣third␣part␣of␣a␣discretionary␣break␣must␣be")
("empty,␣in␣math␣formulas.␣I␣had␣to␣delete␣your␣third␣part."); flush node list (p); n← 0;
error ;
end

else link (tail)← p;
if n ≤ max quarterword then replace count (tail)← n
else begin print err ("Discretionary␣list␣is␣too␣long");
help2 ("Wow−−−I␣never␣thought␣anybody␣would␣tweak␣me␣here.")
("You␣can´t␣seriously␣need␣such␣a␣huge␣discretionary␣list?"); error ;
end;

if n > 0 then tail ← q;
decr (save ptr); return;
end

This code is used in section 1173.

502 PART 47: BUILDING BOXES AND LISTS X ETEX §1175

1175. During this loop, p = link (q) and there are n items preceding p.

⟨Prune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,
rule node , and ligature node items; set n to the length of the list, and set q to the list’s tail 1175 ⟩ ≡

q ← head ; p← link (q); n← 0;
while p ̸= null do
begin if ¬is char node (p) then
if type (p) > rule node then
if type (p) ̸= kern node then
if type (p) ̸= ligature node then

if (type (p) ̸= whatsit node) ∨ (¬is native word subtype (p) ∧ (subtype (p) ̸= glyph node)) then
begin print err ("Improper␣discretionary␣list");
help1 ("Discretionary␣lists␣must␣contain␣only␣boxes␣and␣kerns.");
error ; begin diagnostic ;
print nl ("The␣following␣discretionary␣sublist␣has␣been␣deleted:"); show box (p);
end diagnostic(true); flush node list (p); link (q)← null ; goto done ;
end;

q ← p; p← link (q); incr (n);
end;

done :

This code is used in section 1173.

1176. We need only one more thing to complete the horizontal mode routines, namely the \accent

primitive.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
hmode + accent : make accent ;

§1177 X ETEX PART 47: BUILDING BOXES AND LISTS 503

1177. The positioning of accents is straightforward but tedious. Given an accent of width a, designed for
characters of height x and slant s; and given a character of width w, height h, and slant t: We will shift the
accent down by x − h, and we will insert kern nodes that have the effect of centering the accent over the
character and shifting the accent to the right by δ = 1

2 (w − a) + h · t − x · s. If either character is absent
from the font, we will simply use the other, without shifting.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure make accent ;
var s, t: real ; { amount of slant }
p, q, r: pointer ; { character, box, and kern nodes }
f : internal font number ; { relevant font }
a, h, x, w, delta , lsb , rsb : scaled ; { heights and widths, as explained above }
i: four quarters ; { character information }

begin scan char num ; f ← cur font ; p← new character (f, cur val);
if p ̸= null then
begin x← x height (f); s← slant (f)/float constant (65536);
if is native font (f) then

begin a← width (p);
if a = 0 then get native char sidebearings (f, cur val , addressof (lsb), addressof (rsb))
end

else a← char width (f)(char info(f)(character (p)));
do assignments ;
⟨Create a character node q for the next character, but set q ← null if problems arise 1178 ⟩;
if q ̸= null then ⟨Append the accent with appropriate kerns, then set p← q 1179 ⟩;
link (tail)← p; tail ← p; space factor ← 1000;
end;

end;

1178. ⟨Create a character node q for the next character, but set q ← null if problems arise 1178 ⟩ ≡
q ← null ; f ← cur font ;
if (cur cmd = letter) ∨ (cur cmd = other char) ∨ (cur cmd = char given) then
begin q ← new character (f, cur chr); cur val ← cur chr
end

else if cur cmd = char num then
begin scan char num ; q ← new character (f, cur val);
end

else back input

This code is used in section 1177.

504 PART 47: BUILDING BOXES AND LISTS X ETEX §1179

1179. The kern nodes appended here must be distinguished from other kerns, lest they be wiped away by
the hyphenation algorithm or by a previous line break.
The two kerns are computed with (machine-dependent) real arithmetic, but their sum is machine-

independent; the net effect is machine-independent, because the user cannot remove these nodes nor access
them via \lastkern.

⟨Append the accent with appropriate kerns, then set p← q 1179 ⟩ ≡
begin t← slant (f)/float constant (65536);
if is native font (f) then
begin w ← width (q); get native char height depth (f, cur val , addressof (h), addressof (delta))

{ using delta as scratch space for the unneeded depth value }
end

else begin i← char info(f)(character (q)); w ← char width (f)(i); h← char height (f)(height depth (i))
end;

if h ̸= x then { the accent must be shifted up or down }
begin p← hpack (p,natural); shift amount (p)← x− h;
end;

if is native font (f) ∧ (a = 0) then { special case for non-spacing marks }
delta ← round ((w − lsb + rsb)/float constant (2) + h ∗ t− x ∗ s)

else delta ← round ((w − a)/float constant (2) + h ∗ t− x ∗ s);
r ← new kern (delta); subtype (r)← acc kern ; link (tail)← r; link (r)← p;
tail ← new kern (−a− delta); subtype (tail)← acc kern ; link (p)← tail ; p← q;
end

This code is used in section 1177.

1180. When ‘\cr’ or ‘\span’ or a tab mark comes through the scanner into main control , it might be that
the user has foolishly inserted one of them into something that has nothing to do with alignment. But it
is far more likely that a left brace or right brace has been omitted, since get next takes actions appropriate
to alignment only when ‘\cr’ or ‘\span’ or tab marks occur with align state = 0. The following program
attempts to make an appropriate recovery.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (car ret), any mode (tab mark): align error ;
any mode (no align): no align error ;
any mode (omit): omit error ;

1181. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure align error ;

begin if abs (align state) > 2 then
⟨Express consternation over the fact that no alignment is in progress 1182 ⟩

else begin back input ;
if align state < 0 then
begin print err ("Missing␣{␣inserted"); incr (align state); cur tok ← left brace token + "{";
end

else begin print err ("Missing␣}␣inserted"); decr (align state); cur tok ← right brace token + "}";
end;

help3 ("I´ve␣put␣in␣what␣seems␣to␣be␣necessary␣to␣fix")
("the␣current␣column␣of␣the␣current␣alignment.")
("Try␣to␣go␣on,␣since␣this␣might␣almost␣work."); ins error ;
end;

end;

§1182 X ETEX PART 47: BUILDING BOXES AND LISTS 505

1182. ⟨Express consternation over the fact that no alignment is in progress 1182 ⟩ ≡
begin print err ("Misplaced␣"); print cmd chr (cur cmd , cur chr);
if cur tok = tab token + "&" then
begin help6 ("I␣can´t␣figure␣out␣why␣you␣would␣want␣to␣use␣a␣tab␣mark")
("here.␣If␣you␣just␣want␣an␣ampersand,␣the␣remedy␣is")
("simple:␣Just␣type␣`I\&´␣now.␣But␣if␣some␣right␣brace")
("up␣above␣has␣ended␣a␣previous␣alignment␣prematurely,")
("you´re␣probably␣due␣for␣more␣error␣messages,␣and␣you")
("might␣try␣typing␣`S´␣now␣just␣to␣see␣what␣is␣salvageable.");
end

else begin help5 ("I␣can´t␣figure␣out␣why␣you␣would␣want␣to␣use␣a␣tab␣mark")
("or␣\cr␣or␣\span␣just␣now.␣If␣something␣like␣a␣right␣brace")
("up␣above␣has␣ended␣a␣previous␣alignment␣prematurely,")
("you´re␣probably␣due␣for␣more␣error␣messages,␣and␣you")
("might␣try␣typing␣`S´␣now␣just␣to␣see␣what␣is␣salvageable.");
end;

error ;
end

This code is used in section 1181.

1183. The help messages here contain a little white lie, since \noalign and \omit are allowed also after
‘\noalign{...}’.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure no align error ;
begin print err ("Misplaced␣"); print esc("noalign");
help2 ("I␣expect␣to␣see␣\noalign␣only␣after␣the␣\cr␣of")
("an␣alignment.␣Proceed,␣and␣I´ll␣ignore␣this␣case."); error ;
end;

procedure omit error ;
begin print err ("Misplaced␣"); print esc("omit");
help2 ("I␣expect␣to␣see␣\omit␣only␣after␣tab␣marks␣or␣the␣\cr␣of")
("an␣alignment.␣Proceed,␣and␣I´ll␣ignore␣this␣case."); error ;
end;

1184. We’ve now covered most of the abuses of \halign and \valign. Let’s take a look at what happens
when they are used correctly.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
vmode + halign : init align ;
hmode + valign : ⟨Cases of main control for hmode + valign 1513 ⟩
init align ;

mmode + halign : if privileged then
if cur group = math shift group then init align
else off save ;

vmode + endv , hmode + endv : do endv ;

506 PART 47: BUILDING BOXES AND LISTS X ETEX §1185

1185. An align group code is supposed to remain on the save stack during an entire alignment, until
fin align removes it.
A devious user might force an endv command to occur just about anywhere; we must defeat such hacks.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure do endv ;

begin base ptr ← input ptr ; input stack [base ptr]← cur input ;
while (input stack [base ptr].index field ̸= v template) ∧ (input stack [base ptr].loc field =

null) ∧ (input stack [base ptr].state field = token list) do decr (base ptr);
if (input stack [base ptr].index field ̸= v template) ∨ (input stack [base ptr].loc field ̸=

null) ∨ (input stack [base ptr].state field ̸= token list) then
fatal error ("(interwoven␣alignment␣preambles␣are␣not␣allowed)");

if cur group = align group then
begin end graf ;
if fin col then fin row ;
end

else off save ;
end;

1186. ⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
align group : begin back input ; cur tok ← cs token flag + frozen cr ; print err ("Missing␣");

print esc("cr"); print ("␣inserted");
help1 ("I´m␣guessing␣that␣you␣meant␣to␣end␣an␣alignment␣here."); ins error ;
end;

1187. ⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
no align group : begin end graf ; unsave ; align peek ;
end;

1188. Finally, \endcsname is not supposed to get through to main control .

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
any mode (end cs name): cs error ;

1189. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure cs error ;

begin print err ("Extra␣"); print esc("endcsname");
help1 ("I´m␣ignoring␣this,␣since␣I␣wasn´t␣doing␣a␣\csname."); error ;
end;

§1190 X ETEX PART 48: BUILDING MATH LISTS 507

1190. Building math lists. The routines that TEX uses to create mlists are similar to those we have
just seen for the generation of hlists and vlists. But it is necessary to make “noads” as well as nodes, so the
reader should review the discussion of math mode data structures before trying to make sense out of the
following program.
Here is a little routine that needs to be done whenever a subformula is about to be processed. The

parameter is a code like math group .

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure push math (c : group code);

begin push nest ; mode ← −mmode ; incompleat noad ← null ; new save level (c);
end;

1191. We get into math mode from horizontal mode when a ‘$’ (i.e., a math shift character) is scanned.
We must check to see whether this ‘$’ is immediately followed by another, in case display math mode is
called for.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
hmode +math shift : init math ;

1192. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
⟨Declare subprocedures for init math 1544 ⟩
procedure init math ;
label reswitch , found ,not found , done ;
var w: scaled ; { new or partial pre display size }
j: pointer ; { prototype box for display }
x: integer ; { new pre display direction }
l: scaled ; { new display width }
s: scaled ; { new display indent }
p: pointer ; { current node when calculating pre display size }
q: pointer ; { glue specification when calculating pre display size }
f : internal font number ; { font in current char node }
n: integer ; { scope of paragraph shape specification }
v: scaled ; {w plus possible glue amount }
d: scaled ; { increment to v }

begin get token ; { get x token would fail on \ifmmode ! }
if (cur cmd = math shift) ∧ (mode > 0) then ⟨Go into display math mode 1199 ⟩
else begin back input ; ⟨Go into ordinary math mode 1193 ⟩;
end;

end;

1193. ⟨Go into ordinary math mode 1193 ⟩ ≡
begin push math (math shift group); eq word define (int base + cur fam code ,−1);
if every math ̸= null then begin token list (every math , every math text);
end

This code is used in sections 1192 and 1196.

1194. We get into ordinary math mode from display math mode when ‘\eqno’ or ‘\leqno’ appears. In
such cases cur chr will be 0 or 1, respectively; the value of cur chr is placed onto save stack for safe keeping.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + eq no : if privileged then

if cur group = math shift group then start eq no
else off save ;

508 PART 48: BUILDING MATH LISTS X ETEX §1195

1195. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("eqno", eq no , 0); primitive ("leqno", eq no , 1);

1196. When TEX is in display math mode, cur group = math shift group , so it is not necessary for the
start eq no procedure to test for this condition.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure start eq no ;
begin saved (0)← cur chr ; incr (save ptr); ⟨Go into ordinary math mode 1193 ⟩;
end;

1197. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
eq no : if chr code = 1 then print esc("leqno") else print esc("eqno");

1198. ⟨Forbidden cases detected in main control 1102 ⟩ +≡
non math (eq no),

1199. When we enter display math mode, we need to call line break to process the partial paragraph
that has just been interrupted by the display. Then we can set the proper values of display width and
display indent and pre display size .

⟨Go into display math mode 1199 ⟩ ≡
begin j ← null ; w ← −max dimen ;
if head = tail then { ‘\noindent$$’ or ‘$$ $$’ }
⟨Prepare for display after an empty paragraph 1543 ⟩

else begin line break (true);
⟨Calculate the natural width, w, by which the characters of the final line extend to the right of the

reference point, plus two ems; or set w ← max dimen if the non-blank information on that line is
affected by stretching or shrinking 1200 ⟩;

end; { now we are in vertical mode, working on the list that will contain the display }
⟨Calculate the length, l, and the shift amount, s, of the display lines 1203 ⟩;
push math (math shift group); mode ← mmode ; eq word define (int base + cur fam code ,−1);
eq word define (dimen base + pre display size code , w); LR box ← j;
if eTeX ex then eq word define (int base + pre display direction code , x);
eq word define (dimen base + display width code , l); eq word define (dimen base + display indent code , s);
if every display ̸= null then begin token list (every display , every display text);
if nest ptr = 1 then build page ;
end

This code is used in section 1192.

§1200 X ETEX PART 48: BUILDING MATH LISTS 509

1200. ⟨Calculate the natural width, w, by which the characters of the final line extend to the right of the
reference point, plus two ems; or set w ← max dimen if the non-blank information on that line is
affected by stretching or shrinking 1200 ⟩ ≡

⟨Prepare for display after a non-empty paragraph 1545 ⟩;
while p ̸= null do
begin ⟨Let d be the natural width of node p; if the node is “visible,” goto found ; if the node is glue

that stretches or shrinks, set v ← max dimen 1201 ⟩;
if v < max dimen then v ← v + d;
goto not found ;

found : if v < max dimen then
begin v ← v + d; w ← v;
end

else begin w ← max dimen ; goto done ;
end;

not found : p← link (p);
end;

done : ⟨Finish the natural width computation 1546 ⟩
This code is used in section 1199.

1201. ⟨Let d be the natural width of node p; if the node is “visible,” goto found ; if the node is glue that
stretches or shrinks, set v ← max dimen 1201 ⟩ ≡

reswitch : if is char node (p) then
begin f ← font (p); d← char width (f)(char info(f)(character (p))); goto found ;
end;

case type (p) of
hlist node , vlist node , rule node : begin d← width (p); goto found ;
end;

ligature node : ⟨Make node p look like a char node and goto reswitch 692 ⟩;
kern node : d← width (p);
margin kern node : d← width (p);
⟨Cases of ‘Let d be the natural width’ that need special treatment 1547 ⟩
glue node : ⟨Let d be the natural width of this glue; if stretching or shrinking, set v ← max dimen ; goto

found in the case of leaders 1202 ⟩;
whatsit node : ⟨Let d be the width of the whatsit p, and goto found if “visible” 1421 ⟩;
othercases d← 0
endcases

This code is used in section 1200.

510 PART 48: BUILDING MATH LISTS X ETEX §1202

1202. We need to be careful that w, v, and d do not depend on any glue set values, since such values are
subject to system-dependent rounding. System-dependent numbers are not allowed to infiltrate parameters
like pre display size , since TEX82 is supposed to make the same decisions on all machines.

⟨Let d be the natural width of this glue; if stretching or shrinking, set v ← max dimen ; goto found in the
case of leaders 1202 ⟩ ≡

begin q ← glue ptr (p); d← width (q);
if glue sign (just box) = stretching then
begin if (glue order (just box) = stretch order (q)) ∧ (stretch (q) ̸= 0) then v ← max dimen ;
end

else if glue sign (just box) = shrinking then
begin if (glue order (just box) = shrink order (q)) ∧ (shrink (q) ̸= 0) then v ← max dimen ;
end;

if subtype (p) ≥ a leaders then goto found ;
end

This code is used in section 1201.

1203. A displayed equation is considered to be three lines long, so we calculate the length and offset of
line number prev graf + 2.

⟨Calculate the length, l, and the shift amount, s, of the display lines 1203 ⟩ ≡
if par shape ptr = null then
if (hang indent ̸= 0) ∧ (((hang after ≥ 0) ∧ (prev graf + 2 > hang after)) ∨

(prev graf + 1 < −hang after)) then
begin l← hsize − abs (hang indent);
if hang indent > 0 then s← hang indent else s← 0;
end

else begin l← hsize ; s← 0;
end

else begin n← info(par shape ptr);
if prev graf + 2 ≥ n then p← par shape ptr + 2 ∗ n
else p← par shape ptr + 2 ∗ (prev graf + 2);
s← mem [p− 1].sc ; l← mem [p].sc ;
end

This code is used in section 1199.

1204. Subformulas of math formulas cause a new level of math mode to be entered, on the semantic nest
as well as the save stack. These subformulas arise in several ways: (1) A left brace by itself indicates the
beginning of a subformula that will be put into a box, thereby freezing its glue and preventing line breaks.
(2) A subscript or superscript is treated as a subformula if it is not a single character; the same applies to the
nucleus of things like \underline. (3) The \left primitive initiates a subformula that will be terminated by
a matching \right. The group codes placed on save stack in these three cases are math group , math group ,
and math left group , respectively.
Here is the code that handles case (1); the other cases are not quite as trivial, so we shall consider them

later.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + left brace : begin tail append (new noad); back input ; scan math (nucleus (tail));

end;

§1205 X ETEX PART 48: BUILDING MATH LISTS 511

1205. Recall that the nucleus , subscr , and supscr fields in a noad are broken down into subfields called
math type and either info or (fam , character). The job of scan math is to figure out what to place in one
of these principal fields; it looks at the subformula that comes next in the input, and places an encoding of
that subformula into a given word of mem .

define fam in range ≡ ((cur fam ≥ 0) ∧ (cur fam < number math families))

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure scan math (p : pointer);
label restart , reswitch , exit ;
var c: integer ; {math character code }
begin restart : ⟨Get the next non-blank non-relax non-call token 438 ⟩;

reswitch : case cur cmd of
letter , other char , char given : begin c← ho(math code (cur chr));
if is active math char (c) then

begin ⟨Treat cur chr as an active character 1206 ⟩;
goto restart ;
end;

end;
char num : begin scan char num ; cur chr ← cur val ; cur cmd ← char given ; goto reswitch ;
end;

math char num : if cur chr = 2 then
begin { \Umathchar }
scan math class int ; c← set class field (cur val); scan math fam int ;
c← c+ set family field (cur val); scan usv num ; c← c+ cur val ;
end

else if cur chr = 1 then
begin { \Umathcharnum }
scan xetex math char int ; c← cur val ;
end

else begin scan fifteen bit int ;
c ← set class field (cur val div ˝1000) + set family field ((cur val mod ˝1000) div ˝100) +

(cur val mod ˝100);
end;

math given : begin c ← set class field (cur chr div ˝1000) + set family field ((cur chr mod ˝1000) div
˝100) + (cur chr mod ˝100);

end;
XeTeX math given : c← cur chr ;
delim num : begin if cur chr = 1 then

begin { \Udelimiter <class> <fam> <usv> }
scan math class int ; c← set class field (cur val); scan math fam int ;
c← c+ set family field (cur val); scan usv num ; c← c+ cur val ;
end

else begin { \delimiter <27−bit delcode> }
scan delimiter int ; c← cur val div 1́0000 ; { get the ‘small’ delimiter field }
c← set class field (c div ˝1000) + set family field ((cmod ˝1000) div ˝100) + (cmod ˝100);
{ and convert it to a X ETEX mathchar code }

end;
end;

othercases ⟨ Scan a subformula enclosed in braces and return 1207 ⟩
endcases;
math type (p)← math char ; character (p)← qi (cmod ˝10000);
if (is var family (c)) ∧ fam in range then plane and fam field (p)← cur fam
else plane and fam field (p)← (math fam field (c));

512 PART 48: BUILDING MATH LISTS X ETEX §1205

plane and fam field (p)← plane and fam field (p) + (math char field (c) div ˝10000) ∗ ˝100;
exit : end;

1206. An active character that is an outer call is allowed here.

⟨Treat cur chr as an active character 1206 ⟩ ≡
begin cur cs ← cur chr + active base ; cur cmd ← eq type (cur cs); cur chr ← equiv (cur cs); x token ;
back input ;
end

This code is used in sections 1205 and 1209.

1207. The pointer p is placed on save stack while a complex subformula is being scanned.

⟨ Scan a subformula enclosed in braces and return 1207 ⟩ ≡
begin back input ; scan left brace ;
saved (0)← p; incr (save ptr); push math (math group); return;
end

This code is used in section 1205.

§1208 X ETEX PART 48: BUILDING MATH LISTS 513

1208. The simplest math formula is, of course, ‘$ $’, when no noads are generated. The next simplest
cases involve a single character, e.g., ‘x’. Even though such cases may not seem to be very interesting,
the reader can perhaps understand how happy the author was when ‘x’ was first properly typeset by TEX.
The code in this section was used.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + letter ,mmode + other char ,mmode + char given : set math char (ho(math code (cur chr)));
mmode + char num : begin scan char num ; cur chr ← cur val ; set math char (ho(math code (cur chr)));

end;
mmode +math char num : if cur chr = 2 then

begin { \Umathchar }
scan math class int ; t← set class field (cur val); scan math fam int ; t← t+ set family field (cur val);
scan usv num ; t← t+ cur val ; set math char (t);
end

else if cur chr = 1 then
begin { \Umathcharnum }
scan xetex math char int ; set math char (cur val);
end

else begin scan fifteen bit int ;
set math char (set class field (cur val div ˝1000) + set family field ((cur val mod ˝1000) div ˝100) +

(cur val mod ˝100));
end;

mmode+math given : begin set math char (set class field (cur chr div˝1000)+set family field ((cur chrmod
˝1000) div ˝100) + (cur chr mod ˝100));

end;
mmode + XeTeX math given : set math char (cur chr);
mmode + delim num : begin if cur chr = 1 then

begin { \Udelimiter }
scan math class int ; t← set class field (cur val); scan math fam int ; t← t+ set family field (cur val);
scan usv num ; t← t+ cur val ; set math char (t);
end

else begin scan delimiter int ; cur val ← cur val div 1́0000 ; { discard the large delimiter code }
set math char (set class field (cur val div ˝1000) + set family field ((cur val mod ˝1000) div ˝100) +

(cur val mod ˝100));
end;

end;

514 PART 48: BUILDING MATH LISTS X ETEX §1209

1209. The set math char procedure creates a new noad appropriate to a given math code, and appends
it to the current mlist. However, if the math code is sufficiently large, the cur chr is treated as an active
character and nothing is appended.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure set math char (c : integer);

var p: pointer ; { the new noad }
ch : UnicodeScalar ;

begin if is active math char (c) then ⟨Treat cur chr as an active character 1206 ⟩
else begin p← new noad ; math type (nucleus (p))← math char ; ch ← math char field (c);
character (nucleus (p))← qi (ch mod ˝10000); plane and fam field (nucleus (p))← math fam field (c);
if is var family (c) then

begin if fam in range then plane and fam field (nucleus (p))← cur fam ;
type (p)← ord noad ;
end

else type (p)← ord noad +math class field (c);
plane and fam field (nucleus (p))← plane and fam field (nucleus (p)) + (ch div ˝10000) ∗ ˝100;
link (tail)← p; tail ← p;
end;

end;

1210. Primitive math operators like \mathop and \underline are given the command code math comp ,
supplemented by the noad type that they generate.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("mathord",math comp , ord noad); primitive ("mathop",math comp , op noad);
primitive ("mathbin",math comp , bin noad); primitive ("mathrel",math comp , rel noad);
primitive ("mathopen",math comp , open noad); primitive ("mathclose",math comp , close noad);
primitive ("mathpunct",math comp , punct noad); primitive ("mathinner",math comp , inner noad);
primitive ("underline",math comp , under noad); primitive ("overline",math comp , over noad);
primitive ("displaylimits", limit switch ,normal); primitive ("limits", limit switch , limits);
primitive ("nolimits", limit switch ,no limits);

1211. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
math comp : case chr code of

ord noad : print esc("mathord");
op noad : print esc("mathop");
bin noad : print esc("mathbin");
rel noad : print esc("mathrel");
open noad : print esc("mathopen");
close noad : print esc("mathclose");
punct noad : print esc("mathpunct");
inner noad : print esc("mathinner");
under noad : print esc("underline");
othercases print esc("overline")
endcases;

limit switch : if chr code = limits then print esc("limits")
else if chr code = no limits then print esc("nolimits")
else print esc("displaylimits");

1212. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode +math comp : begin tail append (new noad); type (tail)← cur chr ; scan math (nucleus (tail));

end;
mmode + limit switch : math limit switch ;

§1213 X ETEX PART 48: BUILDING MATH LISTS 515

1213. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure math limit switch ;

label exit ;
begin if head ̸= tail then
if type (tail) = op noad then
begin subtype (tail)← cur chr ; return;
end;

print err ("Limit␣controls␣must␣follow␣a␣math␣operator");
help1 ("I´m␣ignoring␣this␣misplaced␣\limits␣or␣\nolimits␣command."); error ;

exit : end;

516 PART 48: BUILDING MATH LISTS X ETEX §1214

1214. Delimiter fields of noads are filled in by the scan delimiter routine. The first parameter of this
procedure is the mem address where the delimiter is to be placed; the second tells if this delimiter follows
\radical or not.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure scan delimiter (p : pointer ; r : boolean);
begin if r then
begin if cur chr = 1 then

begin { \Uradical }
cur val1 ← ˝40000000; { extended delimiter code flag }
scan math fam int ; cur val1 ← cur val1 + cur val ∗ ˝200000; scan usv num ;
cur val ← cur val1 + cur val ;
end

else { radical }
scan delimiter int ;
end

else begin ⟨Get the next non-blank non-relax non-call token 438 ⟩;
case cur cmd of
letter , other char : begin cur val ← del code (cur chr);
end;

delim num : if cur chr = 1 then
begin { \Udelimiter }
cur val1 ← ˝40000000; { extended delimiter code flag }
scan math class int ; { discarded }
scan math fam int ; cur val1 ← cur val1 + cur val ∗ ˝200000; scan usv num ;
cur val ← cur val1 + cur val ;
end

else scan delimiter int ; { normal delimiter }
othercases begin cur val ← −1;
end;

endcases;
end;

if cur val < 0 then
begin ⟨Report that an invalid delimiter code is being changed to null; set cur val ← 0 1215 ⟩;
end;

if cur val ≥ ˝40000000 then
begin { extended delimiter code, only one size }
small plane and fam field (p)← ((cur val mod ˝200000) div ˝10000) ∗ ˝100 { plane }
+(cur val div ˝200000)mod ˝100; { family }
small char field (p)← qi (cur val mod ˝10000); large plane and fam field (p)← 0;
large char field (p)← 0;
end

else begin { standard delimiter code, 4-bit families and 8-bit char codes }
small plane and fam field (p)← (cur val div 4́000000)mod 16;
small char field (p)← qi ((cur val div 1́0000)mod 256);
large plane and fam field (p)← (cur val div 256)mod 16; large char field (p)← qi (cur val mod 256);
end;

end;

§1215 X ETEX PART 48: BUILDING MATH LISTS 517

1215. ⟨Report that an invalid delimiter code is being changed to null; set cur val ← 0 1215 ⟩ ≡
begin print err ("Missing␣delimiter␣(.␣inserted)");
help6 ("I␣was␣expecting␣to␣see␣something␣like␣`(´␣or␣`\{´␣or")
("`\}´␣here.␣If␣you␣typed,␣e.g.,␣`{´␣instead␣of␣`\{´,␣you")
("should␣probably␣delete␣the␣`{´␣by␣typing␣`1´␣now,␣so␣that")
("braces␣don´t␣get␣unbalanced.␣Otherwise␣just␣proceed.")
("Acceptable␣delimiters␣are␣characters␣whose␣\delcode␣is")
("nonnegative,␣or␣you␣can␣use␣`\delimiter␣<delimiter␣code>´."); back error ; cur val ← 0;
end

This code is used in section 1214.

1216. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + radical : math radical ;

1217. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure math radical ;

begin tail append (get node (radical noad size)); type (tail)← radical noad ; subtype (tail)← normal ;
mem [nucleus (tail)].hh ← empty field ; mem [subscr (tail)].hh ← empty field ;
mem [supscr (tail)].hh ← empty field ; scan delimiter (left delimiter (tail), true); scan math (nucleus (tail));
end;

1218. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + accent ,mmode +math accent : math ac ;

1219. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure math ac ;

var c: integer ;
begin if cur cmd = accent then ⟨Complain that the user should have said \mathaccent 1220 ⟩;
tail append (get node (accent noad size)); type (tail)← accent noad ; subtype (tail)← normal ;
mem [nucleus (tail)].hh ← empty field ; mem [subscr (tail)].hh ← empty field ;
mem [supscr (tail)].hh ← empty field ; math type (accent chr (tail))← math char ;
if cur chr = 1 then
begin if scan keyword ("fixed") then subtype (tail)← fixed acc
else if scan keyword ("bottom") then

begin if scan keyword ("fixed") then subtype (tail)← bottom acc + fixed acc
else subtype (tail)← bottom acc ;
end;

scan math class int ; c← set class field (cur val); scan math fam int ;
c← c+ set family field (cur val); scan usv num ; cur val ← cur val + c;
end

else begin scan fifteen bit int ;
cur val ← set class field (cur val div ˝1000) + set family field ((cur val mod ˝1000) div ˝100) +

(cur val mod ˝100);
end;

character (accent chr (tail))← qi (cur val mod ˝10000);
if (is var family (cur val)) ∧ fam in range then plane and fam field (accent chr (tail))← cur fam
else plane and fam field (accent chr (tail))← math fam field (cur val);
plane and fam field (accent chr (tail)) ← plane and fam field (accent chr (tail)) +

(math char field (cur val) div ˝10000) ∗ ˝100; scan math (nucleus (tail));
end;

518 PART 48: BUILDING MATH LISTS X ETEX §1220

1220. ⟨Complain that the user should have said \mathaccent 1220 ⟩ ≡
begin print err ("Please␣use␣"); print esc("mathaccent"); print ("␣for␣accents␣in␣math␣mode");
help2 ("I´m␣changing␣\accent␣to␣\mathaccent␣here;␣wish␣me␣luck.")
("(Accents␣are␣not␣the␣same␣in␣formulas␣as␣they␣are␣in␣text.)"); error ;
end

This code is used in section 1219.

1221. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + vcenter : begin scan spec(vcenter group , false); normal paragraph ; push nest ; mode ← −vmode ;

prev depth ← ignore depth ;
if every vbox ̸= null then begin token list (every vbox , every vbox text);
end;

1222. ⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
vcenter group : begin end graf ; unsave ; save ptr ← save ptr − 2;

p← vpack (link (head), saved (1), saved (0)); pop nest ; tail append (new noad); type (tail)← vcenter noad ;
math type (nucleus (tail))← sub box ; info(nucleus (tail))← p;
end;

1223. The routine that inserts a style node holds no surprises.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("displaystyle",math style , display style); primitive ("textstyle",math style , text style);
primitive ("scriptstyle",math style , script style);
primitive ("scriptscriptstyle",math style , script script style);

1224. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
math style : print style (chr code);

1225. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode +math style : tail append (new style (cur chr));
mmode + non script : begin tail append (new glue (zero glue)); subtype (tail)← cond math glue ;

end;
mmode +math choice : append choices ;

1226. The routine that scans the four mlists of a \mathchoice is very much like the routine that builds
discretionary nodes.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure append choices ;
begin tail append (new choice); incr (save ptr); saved (−1)← 0; push math (math choice group);
scan left brace ;
end;

1227. ⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
math choice group : build choices ;

§1228 X ETEX PART 48: BUILDING MATH LISTS 519

1228. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
⟨Declare the function called fin mlist 1238 ⟩
procedure build choices ;
label exit ;
var p: pointer ; { the current mlist }
begin unsave ; p← fin mlist (null);
case saved (−1) of
0: display mlist (tail)← p;
1: text mlist (tail)← p;
2: script mlist (tail)← p;
3: begin script script mlist (tail)← p; decr (save ptr); return;
end;

end; { there are no other cases }
incr (saved (−1)); push math (math choice group); scan left brace ;

exit : end;

1229. Subscripts and superscripts are attached to the previous nucleus by the action procedure called
sub sup . We use the facts that sub mark = sup mark + 1 and subscr (p) = supscr (p) + 1.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + sub mark ,mmode + sup mark : sub sup ;

1230. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure sub sup ;

var t: small number ; { type of previous sub/superscript }
p: pointer ; { field to be filled by scan math }

begin t← empty ; p← null ;
if tail ̸= head then
if scripts allowed (tail) then

begin p← supscr (tail) + cur cmd − sup mark ; { supscr or subscr }
t← math type (p);
end;

if (p = null) ∨ (t ̸= empty) then ⟨ Insert a dummy noad to be sub/superscripted 1231 ⟩;
scan math (p);
end;

1231. ⟨ Insert a dummy noad to be sub/superscripted 1231 ⟩ ≡
begin tail append (new noad); p← supscr (tail) + cur cmd − sup mark ; { supscr or subscr }
if t ̸= empty then
begin if cur cmd = sup mark then
begin print err ("Double␣superscript");
help1 ("I␣treat␣`x^1^2´␣essentially␣like␣`x^1{}^2´.");
end

else begin print err ("Double␣subscript");
help1 ("I␣treat␣`x_1_2´␣essentially␣like␣`x_1{}_2´.");
end;

error ;
end;

end

This code is used in section 1230.

520 PART 48: BUILDING MATH LISTS X ETEX §1232

1232. An operation like ‘\over’ causes the current mlist to go into a state of suspended animation:
incompleat noad points to a fraction noad that contains the mlist-so-far as its numerator, while the de-
nominator is yet to come. Finally when the mlist is finished, the denominator will go into the incompleat
fraction noad, and that noad will become the whole formula, unless it is surrounded by ‘\left’ and ‘\right’
delimiters.

define above code = 0 { ‘\above’ }
define over code = 1 { ‘\over’ }
define atop code = 2 { ‘\atop’ }
define delimited code = 3 { ‘\abovewithdelims’, etc. }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("above", above , above code);
primitive ("over", above , over code);
primitive ("atop", above , atop code);
primitive ("abovewithdelims", above , delimited code + above code);
primitive ("overwithdelims", above , delimited code + over code);
primitive ("atopwithdelims", above , delimited code + atop code);

1233. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
above : case chr code of
over code : print esc("over");
atop code : print esc("atop");
delimited code + above code : print esc("abovewithdelims");
delimited code + over code : print esc("overwithdelims");
delimited code + atop code : print esc("atopwithdelims");
othercases print esc("above")
endcases;

1234. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + above : math fraction ;

1235. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure math fraction ;

var c: small number ; { the type of generalized fraction we are scanning }
begin c← cur chr ;
if incompleat noad ̸= null then
⟨ Ignore the fraction operation and complain about this ambiguous case 1237 ⟩

else begin incompleat noad ← get node (fraction noad size); type (incompleat noad)← fraction noad ;
subtype (incompleat noad)← normal ; math type (numerator (incompleat noad))← sub mlist ;
info(numerator (incompleat noad))← link (head);
mem [denominator (incompleat noad)].hh ← empty field ;
mem [left delimiter (incompleat noad)].qqqq ← null delimiter ;
mem [right delimiter (incompleat noad)].qqqq ← null delimiter ;
link (head)← null ; tail ← head ; ⟨Use code c to distinguish between generalized fractions 1236 ⟩;
end;

end;

§1236 X ETEX PART 48: BUILDING MATH LISTS 521

1236. ⟨Use code c to distinguish between generalized fractions 1236 ⟩ ≡
if c ≥ delimited code then
begin scan delimiter (left delimiter (incompleat noad), false);
scan delimiter (right delimiter (incompleat noad), false);
end;

case cmod delimited code of
above code : begin scan normal dimen ; thickness (incompleat noad)← cur val ;
end;

over code : thickness (incompleat noad)← default code ;
atop code : thickness (incompleat noad)← 0;
end { there are no other cases }

This code is used in section 1235.

1237. ⟨ Ignore the fraction operation and complain about this ambiguous case 1237 ⟩ ≡
begin if c ≥ delimited code then
begin scan delimiter (garbage , false); scan delimiter (garbage , false);
end;

if cmod delimited code = above code then scan normal dimen ;
print err ("Ambiguous;␣you␣need␣another␣{␣and␣}");
help3 ("I´m␣ignoring␣this␣fraction␣specification,␣since␣I␣don´t")
("know␣whether␣a␣construction␣like␣`x␣\over␣y␣\over␣z´")
("means␣`{x␣\over␣y}␣\over␣z´␣or␣`x␣\over␣{y␣\over␣z}´."); error ;
end

This code is used in section 1235.

1238. At the end of a math formula or subformula, the fin mlist routine is called upon to return a pointer
to the newly completed mlist, and to pop the nest back to the enclosing semantic level. The parameter to
fin mlist , if not null, points to a right noad that ends the current mlist; this right noad has not yet been
appended.

⟨Declare the function called fin mlist 1238 ⟩ ≡
function fin mlist (p : pointer): pointer ;
var q: pointer ; { the mlist to return }
begin if incompleat noad ̸= null then ⟨Compleat the incompleat noad 1239 ⟩
else begin link (tail)← p; q ← link (head);
end;

pop nest ; fin mlist ← q;
end;

This code is used in section 1228.

1239. ⟨Compleat the incompleat noad 1239 ⟩ ≡
begin math type (denominator (incompleat noad))← sub mlist ;
info(denominator (incompleat noad))← link (head);
if p = null then q ← incompleat noad
else begin q ← info(numerator (incompleat noad));
if (type (q) ̸= left noad) ∨ (delim ptr = null) then confusion ("right");
info(numerator (incompleat noad))← link (delim ptr); link (delim ptr)← incompleat noad ;
link (incompleat noad)← p;
end;

end

This code is used in section 1238.

522 PART 48: BUILDING MATH LISTS X ETEX §1240

1240. Now at last we’re ready to see what happens when a right brace occurs in a math formula. Two
special cases are simplified here: Braces are effectively removed when they surround a single Ord without
sub/superscripts, or when they surround an accent that is the nucleus of an Ord atom.

⟨Cases of handle right brace where a right brace triggers a delayed action 1139 ⟩ +≡
math group : begin unsave ; decr (save ptr);

math type (saved (0))← sub mlist ; p← fin mlist (null); info(saved (0))← p;
if p ̸= null then
if link (p) = null then

if type (p) = ord noad then
begin if math type (subscr (p)) = empty then
if math type (supscr (p)) = empty then
begin mem [saved (0)].hh ← mem [nucleus (p)].hh ; free node (p,noad size);
end;

end
else if type (p) = accent noad then

if saved (0) = nucleus (tail) then
if type (tail) = ord noad then ⟨Replace the tail of the list by p 1241 ⟩;

end;

1241. ⟨Replace the tail of the list by p 1241 ⟩ ≡
begin q ← head ;
while link (q) ̸= tail do q ← link (q);
link (q)← p; free node (tail ,noad size); tail ← p;
end

This code is used in section 1240.

1242. We have dealt with all constructions of math mode except ‘\left’ and ‘\right’, so the picture is
completed by the following sections of the program.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("left", left right , left noad); primitive ("right", left right , right noad);
text (frozen right)← "right"; eqtb [frozen right]← eqtb [cur val];

1243. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
left right : if chr code = left noad then print esc("left")
⟨Cases of left right for print cmd chr 1508 ⟩

else print esc("right");

1244. ⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode + left right : math left right ;

§1245 X ETEX PART 48: BUILDING MATH LISTS 523

1245. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure math left right ;

var t: small number ; { left noad or right noad }
p: pointer ; { new noad }
q: pointer ; { resulting mlist }

begin t← cur chr ;
if (t ̸= left noad) ∧ (cur group ̸= math left group) then ⟨Try to recover from mismatched \right 1246 ⟩
else begin p← new noad ; type (p)← t; scan delimiter (delimiter (p), false);
if t = middle noad then

begin type (p)← right noad ; subtype (p)← middle noad ;
end;

if t = left noad then q ← p
else begin q ← fin mlist (p); unsave ; { end of math left group }

end;
if t ̸= right noad then
begin push math (math left group); link (head)← q; tail ← p; delim ptr ← p;
end

else begin tail append (new noad); type (tail)← inner noad ; math type (nucleus (tail))← sub mlist ;
info(nucleus (tail))← q;
end;

end;
end;

1246. ⟨Try to recover from mismatched \right 1246 ⟩ ≡
begin if cur group = math shift group then
begin scan delimiter (garbage , false); print err ("Extra␣");
if t = middle noad then

begin print esc("middle"); help1 ("I´m␣ignoring␣a␣\middle␣that␣had␣no␣matching␣\left.");
end

else begin print esc("right"); help1 ("I´m␣ignoring␣a␣\right␣that␣had␣no␣matching␣\left.");
end;

error ;
end

else off save ;
end

This code is used in section 1245.

1247. Here is the only way out of math mode.

⟨Cases of main control that build boxes and lists 1110 ⟩ +≡
mmode +math shift : if cur group = math shift group then after math

else off save ;

524 PART 48: BUILDING MATH LISTS X ETEX §1248

1248. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
⟨Declare subprocedures for after math 1555 ⟩
procedure after math ;
var l: boolean ; { ‘\leqno’ instead of ‘\eqno’ }
danger : boolean ; { not enough symbol fonts are present }
m: integer ; {mmode or −mmode }
p: pointer ; { the formula }
a: pointer ; { box containing equation number }
⟨Local variables for finishing a displayed formula 1252 ⟩

begin danger ← false ; ⟨Retrieve the prototype box 1553 ⟩;
⟨Check that the necessary fonts for math symbols are present; if not, flush the current math lists and set

danger ← true 1249 ⟩;
m← mode ; l← false ; p← fin mlist (null); { this pops the nest }
if mode = −m then { end of equation number }
begin ⟨Check that another $ follows 1251 ⟩;
cur mlist ← p; cur style ← text style ; mlist penalties ← false ; mlist to hlist ;
a← hpack (link (temp head),natural); set box lr (a)(dlist); unsave ; decr (save ptr);

{ now cur group = math shift group }
if saved (0) = 1 then l← true ;
danger ← false ; ⟨Retrieve the prototype box 1553 ⟩;
⟨Check that the necessary fonts for math symbols are present; if not, flush the current math lists and

set danger ← true 1249 ⟩;
m← mode ; p← fin mlist (null);
end

else a← null ;
if m < 0 then ⟨Finish math in text 1250 ⟩
else begin if a = null then ⟨Check that another $ follows 1251 ⟩;
⟨Finish displayed math 1253 ⟩;
end;

end;

§1249 X ETEX PART 48: BUILDING MATH LISTS 525

1249. ⟨Check that the necessary fonts for math symbols are present; if not, flush the current math lists
and set danger ← true 1249 ⟩ ≡

if ((font params [fam fnt (2 + text size)] < total mathsy params) ∧ (¬is new mathfont (fam fnt (2 +
text size)))) ∨ ((font params [fam fnt (2 + script size)] < total mathsy params) ∧
(¬is new mathfont (fam fnt (2 + script size)))) ∨ ((font params [fam fnt (2 + script script size)] <
total mathsy params) ∧ (¬is new mathfont (fam fnt (2 + script script size)))) then

begin print err ("Math␣formula␣deleted:␣Insufficient␣symbol␣fonts");
help3 ("Sorry,␣but␣I␣can´t␣typeset␣math␣unless␣\textfont␣2")
("and␣\scriptfont␣2␣and␣\scriptscriptfont␣2␣have␣all")
("the␣\fontdimen␣values␣needed␣in␣math␣symbol␣fonts."); error ; flush math ; danger ← true ;
end

else if ((font params [fam fnt (3 + text size)] < total mathex params) ∧ (¬is new mathfont (fam fnt (3 +
text size)))) ∨ ((font params [fam fnt (3 + script size)] < total mathex params) ∧
(¬is new mathfont (fam fnt (3 + script size)))) ∨ ((font params [fam fnt (3 + script script size)] <
total mathex params) ∧ (¬is new mathfont (fam fnt (3 + script script size)))) then

begin print err ("Math␣formula␣deleted:␣Insufficient␣extension␣fonts");
help3 ("Sorry,␣but␣I␣can´t␣typeset␣math␣unless␣\textfont␣3")
("and␣\scriptfont␣3␣and␣\scriptscriptfont␣3␣have␣all")
("the␣\fontdimen␣values␣needed␣in␣math␣extension␣fonts."); error ; flush math ;
danger ← true ;
end

This code is used in sections 1248 and 1248.

1250. The unsave is done after everything else here; hence an appearance of ‘\mathsurround’ inside of
‘$...$’ affects the spacing at these particular $’s. This is consistent with the conventions of ‘$$...$$’, since
‘\abovedisplayskip’ inside a display affects the space above that display.

⟨Finish math in text 1250 ⟩ ≡
begin tail append (new math (math surround , before)); cur mlist ← p; cur style ← text style ;
mlist penalties ← (mode > 0); mlist to hlist ; link (tail)← link (temp head);
while link (tail) ̸= null do tail ← link (tail);
tail append (new math (math surround , after)); space factor ← 1000; unsave ;
end

This code is used in section 1248.

1251. TEX gets to the following part of the program when the first ‘$’ ending a display has been scanned.

⟨Check that another $ follows 1251 ⟩ ≡
begin get x token ;
if cur cmd ̸= math shift then
begin print err ("Display␣math␣should␣end␣with␣$$");
help2 ("The␣`$´␣that␣I␣just␣saw␣supposedly␣matches␣a␣previous␣`$$´.")
("So␣I␣shall␣assume␣that␣you␣typed␣`$$´␣both␣times."); back error ;
end;

end

This code is used in sections 1248, 1248, and 1260.

526 PART 48: BUILDING MATH LISTS X ETEX §1252

1252. We have saved the worst for last: The fussiest part of math mode processing occurs when a displayed
formula is being centered and placed with an optional equation number.

⟨Local variables for finishing a displayed formula 1252 ⟩ ≡
b: pointer ; { box containing the equation }
w: scaled ; {width of the equation }
z: scaled ; {width of the line }
e: scaled ; {width of equation number }
q: scaled ; {width of equation number plus space to separate from equation }
d: scaled ; { displacement of equation in the line }
s: scaled ; {move the line right this much }
g1 , g2 : small number ; { glue parameter codes for before and after }
r: pointer ; { kern node used to position the display }
t: pointer ; { tail of adjustment list }
pre t : pointer ; { tail of pre-adjustment list }
See also section 1552.

This code is used in section 1248.

1253. At this time p points to the mlist for the formula; a is either null or it points to a box containing
the equation number; and we are in vertical mode (or internal vertical mode).

⟨Finish displayed math 1253 ⟩ ≡
cur mlist ← p; cur style ← display style ; mlist penalties ← false ; mlist to hlist ; p← link (temp head);
adjust tail ← adjust head ; pre adjust tail ← pre adjust head ; b← hpack (p,natural); p← list ptr (b);
t← adjust tail ; adjust tail ← null ;
pre t ← pre adjust tail ; pre adjust tail ← null ;
w ← width (b); z ← display width ; s← display indent ;
if pre display direction < 0 then s← −s− z;
if (a = null) ∨ danger then
begin e← 0; q ← 0;
end

else begin e← width (a); q ← e+math quad (text size);
end;

if w+ q > z then ⟨ Squeeze the equation as much as possible; if there is an equation number that should
go on a separate line by itself, set e← 0 1255 ⟩;

⟨Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming
that l = false 1256 ⟩;

⟨Append the glue or equation number preceding the display 1257 ⟩;
⟨Append the display and perhaps also the equation number 1258 ⟩;
⟨Append the glue or equation number following the display 1259 ⟩;
⟨Flush the prototype box 1554 ⟩;
resume after display

This code is used in section 1248.

1254. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure resume after display ;

begin if cur group ̸= math shift group then confusion ("display");
unsave ; prev graf ← prev graf + 3; push nest ; mode ← hmode ; space factor ← 1000; set cur lang ;
clang ← cur lang ;
prev graf ← (norm min (left hyphen min) ∗ 1́00 + norm min (right hyphen min)) ∗ 2́00000 + cur lang ;
⟨ Scan an optional space 477 ⟩;
if nest ptr = 1 then build page ;
end;

§1255 X ETEX PART 48: BUILDING MATH LISTS 527

1255. The user can force the equation number to go on a separate line by causing its width to be zero.

⟨ Squeeze the equation as much as possible; if there is an equation number that should go on a separate line
by itself, set e← 0 1255 ⟩ ≡

begin if (e ̸= 0) ∧ ((w − total shrink [normal] + q ≤ z) ∨
(total shrink [fil] ̸= 0) ∨ (total shrink [fill] ̸= 0) ∨ (total shrink [filll] ̸= 0)) then

begin free node (b, box node size); b← hpack (p, z − q, exactly);
end

else begin e← 0;
if w > z then
begin free node (b, box node size); b← hpack (p, z, exactly);
end;

end;
w ← width (b);
end

This code is used in section 1253.

1256. We try first to center the display without regard to the existence of the equation number. If that
would make it too close (where “too close” means that the space between display and equation number is
less than the width of the equation number), we either center it in the remaining space or move it as far
from the equation number as possible. The latter alternative is taken only if the display begins with glue,
since we assume that the user put glue there to control the spacing precisely.

⟨Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming
that l = false 1256 ⟩ ≡

set box lr (b)(dlist); d← half (z − w);
if (e > 0) ∧ (d < 2 ∗ e) then { too close }
begin d← half (z − w − e);
if p ̸= null then

if ¬is char node (p) then
if type (p) = glue node then d← 0;

end

This code is used in section 1253.

1257. If the equation number is set on a line by itself, either before or after the formula, we append an
infinite penalty so that no page break will separate the display from its number; and we use the same size
and displacement for all three potential lines of the display, even though ‘\parshape’ may specify them
differently.

⟨Append the glue or equation number preceding the display 1257 ⟩ ≡
tail append (new penalty (pre display penalty));
if (d+ s ≤ pre display size) ∨ l then { not enough clearance }
begin g1 ← above display skip code ; g2 ← below display skip code ;
end

else begin g1 ← above display short skip code ; g2 ← below display short skip code ;
end;

if l ∧ (e = 0) then { it follows that type (a) = hlist node }
begin app display (j, a, 0); tail append (new penalty (inf penalty));
end

else tail append (new param glue (g1))

This code is used in section 1253.

528 PART 48: BUILDING MATH LISTS X ETEX §1258

1258. ⟨Append the display and perhaps also the equation number 1258 ⟩ ≡
if e ̸= 0 then
begin r ← new kern (z − w − e− d);
if l then
begin link (a)← r; link (r)← b; b← a; d← 0;
end

else begin link (b)← r; link (r)← a;
end;

b← hpack (b,natural);
end;

app display (j, b, d)

This code is used in section 1253.

1259. ⟨Append the glue or equation number following the display 1259 ⟩ ≡
if (a ̸= null) ∧ (e = 0) ∧ ¬l then
begin tail append (new penalty (inf penalty)); app display (j, a, z − width (a)); g2 ← 0;
end;

if t ̸= adjust head then {migrating material comes after equation number }
begin link (tail)← link (adjust head); tail ← t;
end;

if pre t ̸= pre adjust head then
begin link (tail)← link (pre adjust head); tail ← pre t ;
end;

tail append (new penalty (post display penalty));
if g2 > 0 then tail append (new param glue (g2))

This code is used in section 1253.

1260. When \halign appears in a display, the alignment routines operate essentially as they do in vertical
mode. Then the following program is activated, with p and q pointing to the beginning and end of the
resulting list, and with aux save holding the prev depth value.

⟨Finish an alignment in a display 1260 ⟩ ≡
begin do assignments ;
if cur cmd ̸= math shift then ⟨Pontificate about improper alignment in display 1261 ⟩
else ⟨Check that another $ follows 1251 ⟩;
flush node list (LR box); pop nest ; tail append (new penalty (pre display penalty));
tail append (new param glue (above display skip code)); link (tail)← p;
if p ̸= null then tail ← q;
tail append (new penalty (post display penalty)); tail append (new param glue (below display skip code));
prev depth ← aux save .sc ; resume after display ;
end

This code is used in section 860.

1261. ⟨Pontificate about improper alignment in display 1261 ⟩ ≡
begin print err ("Missing␣$$␣inserted");
help2 ("Displays␣can␣use␣special␣alignments␣(like␣\eqalignno)")
("only␣if␣nothing␣but␣the␣alignment␣itself␣is␣between␣$$´s."); back error ;
end

This code is used in section 1260.

§1262 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 529

1262. Mode-independent processing. The long main control procedure has now been fully specified,
except for certain activities that are independent of the current mode. These activities do not change the
current vlist or hlist or mlist; if they change anything, it is the value of a parameter or the meaning of a
control sequence.
Assignments to values in eqtb can be global or local. Furthermore, a control sequence can be defined to be

‘\long’, ‘\protected’, or ‘\outer’, and it might or might not be expanded. The prefixes ‘\global’, ‘\long’,
‘\protected’, and ‘\outer’ can occur in any order. Therefore we assign binary numeric codes, making it
possible to accumulate the union of all specified prefixes by adding the corresponding codes. (Pascal’s set
operations could also have been used.)

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("long", prefix , 1); primitive ("outer", prefix , 2); primitive ("global", prefix , 4);
primitive ("def", def , 0); primitive ("gdef", def , 1); primitive ("edef", def , 2); primitive ("xdef", def , 3);

1263. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
prefix : if chr code = 1 then print esc("long")

else if chr code = 2 then print esc("outer")
⟨Cases of prefix for print cmd chr 1582 ⟩

else print esc("global");
def : if chr code = 0 then print esc("def")
else if chr code = 1 then print esc("gdef")
else if chr code = 2 then print esc("edef")
else print esc("xdef");

1264. Every prefix, and every command code that might or might not be prefixed, calls the action
procedure prefixed command . This routine accumulates a sequence of prefixes until coming to a non-prefix,
then it carries out the command.

⟨Cases of main control that don’t depend on mode 1264 ⟩ ≡
any mode (toks register), any mode (assign toks), any mode (assign int), any mode (assign dimen),

any mode (assign glue), any mode (assign mu glue), any mode (assign font dimen),
any mode (assign font int), any mode (set aux), any mode (set prev graf), any mode (set page dimen),
any mode (set page int), any mode (set box dimen), any mode (set shape), any mode (def code),
any mode (XeTeX def code), any mode (def family), any mode (set font), any mode (def font),
any mode (register), any mode (advance), any mode (multiply), any mode (divide), any mode (prefix),
any mode (let), any mode (shorthand def), any mode (read to cs), any mode (def), any mode (set box),
any mode (hyph data), any mode (set interaction): prefixed command ;

See also sections 1322, 1325, 1328, 1330, 1339, and 1344.

This code is used in section 1099.

530 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1265

1265. If the user says, e.g., ‘\global\global’, the redundancy is silently accepted.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
⟨Declare subprocedures for prefixed command 1269 ⟩
procedure prefixed command ;
label done , exit ;
var a: small number ; { accumulated prefix codes so far }
f : internal font number ; { identifies a font }
j: halfword ; { index into a \parshape specification }
k: font index ; { index into font info }
p, q: pointer ; { for temporary short-term use }
n: integer ; { ditto }
e: boolean ; { should a definition be expanded? or was \let not done? }

begin a← 0;
while cur cmd = prefix do
begin if ¬odd (a div cur chr) then a← a+ cur chr ;
⟨Get the next non-blank non-relax non-call token 438 ⟩;
if cur cmd ≤ max non prefixed command then ⟨Discard erroneous prefixes and return 1266 ⟩;
if tracing commands > 2 then
if eTeX ex then show cur cmd chr ;

end;
⟨Discard the prefixes \long and \outer if they are irrelevant 1267 ⟩;
⟨Adjust for the setting of \globaldefs 1268 ⟩;
case cur cmd of
⟨Assignments 1271 ⟩
othercases confusion ("prefix")
endcases;

done : ⟨ Insert a token saved by \afterassignment, if any 1323 ⟩;
exit : end;

1266. ⟨Discard erroneous prefixes and return 1266 ⟩ ≡
begin print err ("You␣can´t␣use␣a␣prefix␣with␣`"); print cmd chr (cur cmd , cur chr);
print char ("´"); help1 ("I´ll␣pretend␣you␣didn´t␣say␣\long␣or␣\outer␣or␣\global.");
if eTeX ex then
help line [0]← "I´ll␣pretend␣you␣didn´t␣say␣\long␣or␣\outer␣or␣\global␣or␣\protected.";

back error ; return;
end

This code is used in section 1265.

§1267 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 531

1267. ⟨Discard the prefixes \long and \outer if they are irrelevant 1267 ⟩ ≡
if a ≥ 8 then
begin j ← protected token ; a← a− 8;
end

else j ← 0;
if (cur cmd ̸= def) ∧ ((amod 4 ̸= 0) ∨ (j ̸= 0)) then
begin print err ("You␣can´t␣use␣`"); print esc("long"); print ("´␣or␣`"); print esc("outer");
help1 ("I´ll␣pretend␣you␣didn´t␣say␣\long␣or␣\outer␣here.");
if eTeX ex then

begin help line [0]← "I´ll␣pretend␣you␣didn´t␣say␣\long␣or␣\outer␣or␣\protected␣here.";
print ("´␣or␣`"); print esc("protected");
end;

print ("´␣with␣`"); print cmd chr (cur cmd , cur chr); print char ("´"); error ;
end

This code is used in section 1265.

1268. The previous routine does not have to adjust a so that amod 4 = 0, since the following routines
test for the \global prefix as follows.

define global ≡ (a ≥ 4)
define define (#) ≡

if global then geq define (#) else eq define (#)
define word define (#) ≡

if global then geq word define (#) else eq word define (#)
define word define1 (#) ≡

if global then geq word define1 (#) else eq word define1 (#)

⟨Adjust for the setting of \globaldefs 1268 ⟩ ≡
if global defs ̸= 0 then
if global defs < 0 then
begin if global then a← a− 4;
end

else begin if ¬global then a← a+ 4;
end

This code is used in section 1265.

532 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1269

1269. When a control sequence is to be defined, by \def or \let or something similar, the get r token
routine will substitute a special control sequence for a token that is not redefinable.

⟨Declare subprocedures for prefixed command 1269 ⟩ ≡
procedure get r token ;
label restart ;
begin restart : repeat get token ;
until cur tok ̸= space token ;
if (cur cs = 0) ∨ (cur cs > frozen control sequence) then
begin print err ("Missing␣control␣sequence␣inserted");
help5 ("Please␣don´t␣say␣`\def␣cs{...}´,␣say␣`\def\cs{...}´.")
("I´ve␣inserted␣an␣inaccessible␣control␣sequence␣so␣that␣your")
("definition␣will␣be␣completed␣without␣mixing␣me␣up␣too␣badly.")
("You␣can␣recover␣graciously␣from␣this␣error,␣if␣you´re")
("careful;␣see␣exercise␣27.2␣in␣The␣TeXbook.");
if cur cs = 0 then back input ;
cur tok ← cs token flag + frozen protection ; ins error ; goto restart ;
end;

end;

See also sections 1283, 1290, 1297, 1298, 1299, 1300, 1301, 1311, and 1319.

This code is used in section 1265.

1270. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
text (frozen protection)← "inaccessible";

1271. Here’s an example of the way many of the following routines operate. (Unfortunately, they aren’t
all as simple as this.)

⟨Assignments 1271 ⟩ ≡
set font : define (cur font loc , data , cur chr);

See also sections 1272, 1275, 1278, 1279, 1280, 1282, 1286, 1288, 1289, 1295, 1296, 1302, 1306, 1307, 1310, and 1318.

This code is used in section 1265.

1272. When a def command has been scanned, cur chr is odd if the definition is supposed to be global,
and cur chr ≥ 2 if the definition is supposed to be expanded.

⟨Assignments 1271 ⟩ +≡
def : begin if odd (cur chr) ∧ ¬global ∧ (global defs ≥ 0) then a← a+ 4;

e← (cur chr ≥ 2); get r token ; p← cur cs ; q ← scan toks (true , e);
if j ̸= 0 then
begin q ← get avail ; info(q)← j; link (q)← link (def ref); link (def ref)← q;
end;

define (p, call + (amod 4), def ref);
end;

1273. Both \let and \futurelet share the command code let .

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("let", let ,normal);
primitive ("futurelet", let ,normal + 1);

1274. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
let : if chr code ̸= normal then print esc("futurelet") else print esc("let");

§1275 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 533

1275. ⟨Assignments 1271 ⟩ +≡
let : begin n← cur chr ; get r token ; p← cur cs ;
if n = normal then
begin repeat get token ;
until cur cmd ̸= spacer ;
if cur tok = other token + "=" then
begin get token ;
if cur cmd = spacer then get token ;
end;

end
else begin get token ; q ← cur tok ; get token ; back input ; cur tok ← q; back input ;

{ look ahead, then back up }
end; { note that back input doesn’t affect cur cmd , cur chr }

if cur cmd ≥ call then add token ref (cur chr)
else if (cur cmd = register) ∨ (cur cmd = toks register) then

if (cur chr < mem bot) ∨ (cur chr > lo mem stat max) then add sa ref (cur chr);
define (p, cur cmd , cur chr);
end;

1276. A \chardef creates a control sequence whose cmd is char given ; a \mathchardef creates a control
sequence whose cmd is math given ; and the corresponding chr is the character code or math code. A
\countdef or \dimendef or \skipdef or \muskipdef creates a control sequence whose cmd is assign int or
. . . or assign mu glue , and the corresponding chr is the eqtb location of the internal register in question.

define char def code = 0 { shorthand def for \chardef }
define math char def code = 1 { shorthand def for \mathchardef }
define count def code = 2 { shorthand def for \countdef }
define dimen def code = 3 { shorthand def for \dimendef }
define skip def code = 4 { shorthand def for \skipdef }
define mu skip def code = 5 { shorthand def for \muskipdef }
define toks def code = 6 { shorthand def for \toksdef }
define XeTeX math char num def code = 8
define XeTeX math char def code = 9

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("chardef", shorthand def , char def code);
primitive ("mathchardef", shorthand def ,math char def code);
primitive ("XeTeXmathcharnumdef", shorthand def ,XeTeX math char num def code);
primitive ("Umathcharnumdef", shorthand def ,XeTeX math char num def code);
primitive ("XeTeXmathchardef", shorthand def ,XeTeX math char def code);
primitive ("Umathchardef", shorthand def ,XeTeX math char def code);
primitive ("countdef", shorthand def , count def code);
primitive ("dimendef", shorthand def , dimen def code);
primitive ("skipdef", shorthand def , skip def code);
primitive ("muskipdef", shorthand def ,mu skip def code);
primitive ("toksdef", shorthand def , toks def code);

534 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1277

1277. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
shorthand def : case chr code of
char def code : print esc("chardef");
math char def code : print esc("mathchardef");
XeTeX math char def code : print esc("Umathchardef");
XeTeX math char num def code : print esc("Umathcharnumdef");
count def code : print esc("countdef");
dimen def code : print esc("dimendef");
skip def code : print esc("skipdef");
mu skip def code : print esc("muskipdef");
othercases print esc("toksdef")
endcases;

char given : begin print esc("char"); print hex (chr code);
end;

math given : begin print esc("mathchar"); print hex (chr code);
end;

XeTeX math given : begin print esc("Umathchar"); print hex (math class field (chr code));
print hex (math fam field (chr code)); print hex (math char field (chr code));
end;

§1278 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 535

1278. We temporarily define p to be relax , so that an occurrence of p while scanning the definition will
simply stop the scanning instead of producing an “undefined control sequence” error or expanding the
previous meaning. This allows, for instance, ‘\chardef\foo=123\foo’.

⟨Assignments 1271 ⟩ +≡
shorthand def : begin n← cur chr ; get r token ; p← cur cs ; define (p, relax , 256); scan optional equals ;

case n of
char def code : begin scan usv num ; define (p, char given , cur val);
end;

math char def code : begin scan fifteen bit int ; define (p,math given , cur val);
end;

XeTeX math char num def code : begin scan xetex math char int ; define (p,XeTeX math given , cur val);
end;

XeTeX math char def code : begin scan math class int ; n← set class field (cur val); scan math fam int ;
n← n+ set family field (cur val); scan usv num ; n← n+ cur val ; define (p,XeTeX math given , n);
end;

othercases begin scan register num ;
if cur val > 255 then
begin j ← n− count def code ; { int val . . box val }
if j > mu val then j ← tok val ; { int val . . mu val or tok val }
find sa element (j, cur val , true); add sa ref (cur ptr);
if j = tok val then j ← toks register else j ← register ;
define (p, j, cur ptr);
end

else case n of
count def code : define (p, assign int , count base + cur val);
dimen def code : define (p, assign dimen , scaled base + cur val);
skip def code : define (p, assign glue , skip base + cur val);
mu skip def code : define (p, assign mu glue ,mu skip base + cur val);
toks def code : define (p, assign toks , toks base + cur val);
end; { there are no other cases }

end
endcases;
end;

1279. ⟨Assignments 1271 ⟩ +≡
read to cs : begin j ← cur chr ; scan int ; n← cur val ;
if ¬scan keyword ("to") then
begin print err ("Missing␣`to´␣inserted");
help2 ("You␣should␣have␣said␣`\read<number>␣to␣\cs´.")
("I´m␣going␣to␣look␣for␣the␣\cs␣now."); error ;
end;

get r token ; p← cur cs ; read toks (n, p, j); define (p, call , cur val);
end;

536 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1280

1280. The token-list parameters, \output and \everypar, etc., receive their values in the following way.
(For safety’s sake, we place an enclosing pair of braces around an \output list.)

⟨Assignments 1271 ⟩ +≡
toks register , assign toks : begin q ← cur cs ; e← false ;

{ just in case, will be set true for sparse array elements }
if cur cmd = toks register then
if cur chr = mem bot then
begin scan register num ;
if cur val > 255 then
begin find sa element (tok val , cur val , true); cur chr ← cur ptr ; e← true ;
end

else cur chr ← toks base + cur val ;
end

else e← true
else if cur chr = XeTeX inter char loc then

begin scan char class not ignored ; cur ptr ← cur val ; scan char class not ignored ;
find sa element (inter char val , cur ptr ∗ char class limit + cur val , true); cur chr ← cur ptr ;
e← true ;
end;

p← cur chr ; { p = every par loc or output routine loc or . . . }
scan optional equals ; ⟨Get the next non-blank non-relax non-call token 438 ⟩;
if cur cmd ̸= left brace then ⟨ If the right-hand side is a token parameter or token register, finish the

assignment and goto done 1281 ⟩;
back input ; cur cs ← q; q ← scan toks (false , false);
if link (def ref) = null then { empty list: revert to the default }
begin sa define (p,null)(p, undefined cs ,null); free avail (def ref);
end

else begin if (p = output routine loc) ∧ ¬e then { enclose in curlies }
begin link (q)← get avail ; q ← link (q); info(q)← right brace token + "}"; q ← get avail ;
info(q)← left brace token + "{"; link (q)← link (def ref); link (def ref)← q;
end;

sa define (p, def ref)(p, call , def ref);
end;

end;

§1281 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 537

1281. ⟨ If the right-hand side is a token parameter or token register, finish the assignment and goto
done 1281 ⟩ ≡

if (cur cmd = toks register) ∨ (cur cmd = assign toks) then
begin if cur cmd = toks register then
if cur chr = mem bot then

begin scan register num ;
if cur val < 256 then q ← equiv (toks base + cur val)
else begin find sa element (tok val , cur val , false);
if cur ptr = null then q ← null
else q ← sa ptr (cur ptr);
end;

end
else q ← sa ptr (cur chr)

else if cur chr = XeTeX inter char loc then
begin scan char class not ignored ; cur ptr ← cur val ; scan char class not ignored ;
find sa element (inter char val , cur ptr ∗ char class limit + cur val , false);
if cur ptr = null then q ← null
else q ← sa ptr (cur ptr);
end

else q ← equiv (cur chr);
if q = null then sa define (p,null)(p, undefined cs ,null)
else begin add token ref (q); sa define (p, q)(p, call , q);

end;
goto done ;
end

This code is used in section 1280.

1282. Similar routines are used to assign values to the numeric parameters.

⟨Assignments 1271 ⟩ +≡
assign int : begin p← cur chr ; scan optional equals ; scan int ; word define (p, cur val);
end;

assign dimen : begin p← cur chr ; scan optional equals ; scan normal dimen ; word define (p, cur val);
end;

assign glue , assign mu glue : begin p← cur chr ; n← cur cmd ; scan optional equals ;
if n = assign mu glue then scan glue (mu val) else scan glue (glue val);
trap zero glue ; define (p, glue ref , cur val);
end;

1283. When a glue register or parameter becomes zero, it will always point to zero glue because of the
following procedure. (Exception: The tabskip glue isn’t trapped while preambles are being scanned.)

⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure trap zero glue ;

begin if (width (cur val) = 0) ∧ (stretch (cur val) = 0) ∧ (shrink (cur val) = 0) then
begin add glue ref (zero glue); delete glue ref (cur val); cur val ← zero glue ;
end;

end;

538 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1284

1284. The various character code tables are changed by the def code commands, and the font families are
declared by def family .

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("catcode", def code , cat code base); primitive ("mathcode", def code ,math code base);
primitive ("XeTeXmathcodenum",XeTeX def code ,math code base);
primitive ("Umathcodenum",XeTeX def code ,math code base);
primitive ("XeTeXmathcode",XeTeX def code ,math code base + 1);
primitive ("Umathcode",XeTeX def code ,math code base + 1);
primitive ("lccode", def code , lc code base); primitive ("uccode", def code , uc code base);
primitive ("sfcode", def code , sf code base); primitive ("XeTeXcharclass",XeTeX def code , sf code base);
primitive ("delcode", def code , del code base);
primitive ("XeTeXdelcodenum",XeTeX def code , del code base);
primitive ("Udelcodenum",XeTeX def code , del code base);
primitive ("XeTeXdelcode",XeTeX def code , del code base + 1);
primitive ("Udelcode",XeTeX def code , del code base + 1);
primitive ("textfont", def family ,math font base);
primitive ("scriptfont", def family ,math font base + script size);
primitive ("scriptscriptfont", def family ,math font base + script script size);

1285. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
def code : if chr code = cat code base then print esc("catcode")
else if chr code = math code base then print esc("mathcode")
else if chr code = lc code base then print esc("lccode")
else if chr code = uc code base then print esc("uccode")

else if chr code = sf code base then print esc("sfcode")
else print esc("delcode");

XeTeX def code : if chr code = sf code base then print esc("XeTeXcharclass")
else if chr code = math code base then print esc("Umathcodenum")
else if chr code = math code base + 1 then print esc("Umathcode")
else if chr code = del code base then print esc("Udelcodenum")

else print esc("Udelcode");
def family : print size (chr code −math font base);

§1286 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 539

1286. The different types of code values have different legal ranges; the following program is careful to
check each case properly.

⟨Assignments 1271 ⟩ +≡
XeTeX def code : begin if cur chr = sf code base then

begin p← cur chr ; scan usv num ; p← p+ cur val ; n← sf code (cur val)mod ˝10000;
scan optional equals ; scan char class ; define (p, data , cur val ∗ ˝10000+ n);
end

else if cur chr = math code base then
begin p← cur chr ; scan usv num ; p← p+ cur val ; scan optional equals ;
scan xetex math char int ; define (p, data , hi (cur val));
end

else if cur chr = math code base + 1 then
begin p← cur chr − 1; scan usv num ; p← p+ cur val ; scan optional equals ;
scan math class int ; n← set class field (cur val); scan math fam int ;
n← n+ set family field (cur val); scan usv num ; n← n+ cur val ; define (p, data , hi (n));
end

else if cur chr = del code base then
begin p← cur chr ; scan usv num ; p← p+ cur val ; scan optional equals ; scan int ;

{ scan xetex del code int ; !!FIXME!! }
word define (p, hi (cur val));
end

else begin p← cur chr − 1; scan usv num ; p← p+ cur val ; scan optional equals ;
n← ˝40000000; { extended delimiter code flag }
scan math fam int ; n← n+ cur val ∗ ˝200000; { extended delimiter code family }
scan usv num ; n← n+ cur val ; { extended delimiter code USV }
word define (p, hi (n));
end;

end;
def code : begin ⟨Let n be the largest legal code value, based on cur chr 1287 ⟩;
p← cur chr ; scan usv num ; p← p+ cur val ; scan optional equals ; scan int ;
if ((cur val < 0) ∧ (p < del code base)) ∨ (cur val > n) then
begin print err ("Invalid␣code␣("); print int (cur val);
if p < del code base then print ("),␣should␣be␣in␣the␣range␣0..")
else print ("),␣should␣be␣at␣most␣");
print int (n); help1 ("I´m␣going␣to␣use␣0␣instead␣of␣that␣illegal␣code␣value.");
error ; cur val ← 0;
end;

if p < math code base then
begin if p ≥ sf code base then

begin n← equiv (p) div ˝10000; define (p, data , n ∗ ˝10000+ cur val);
end

else define (p, data , cur val)
end

else if p < del code base then
begin if cur val = ˝8000 then cur val ← active math char
else cur val ← set class field (cur val div ˝1000) + set family field ((cur val mod ˝1000)div ˝100) +

(cur val mod ˝100); { !!FIXME!! check how this is used }
define (p, data , hi (cur val));
end

else word define (p, cur val);
end;

540 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1287

1287. ⟨Let n be the largest legal code value, based on cur chr 1287 ⟩ ≡
if cur chr = cat code base then n← max char code
else if cur chr = math code base then n← 1́00000
else if cur chr = sf code base then n← 7́7777
else if cur chr = del code base then n← 7́7777777

else n← biggest usv

This code is used in section 1286.

1288. ⟨Assignments 1271 ⟩ +≡
def family : begin p← cur chr ; scan math fam int ; p← p+ cur val ; scan optional equals ;
scan font ident ; define (p, data , cur val);
end;

1289. Next we consider changes to TEX’s numeric registers.

⟨Assignments 1271 ⟩ +≡
register , advance ,multiply , divide : do register command (a);

1290. We use the fact that register < advance < multiply < divide .

⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure do register command (a : small number);

label found , exit ;
var l, q, r, s: pointer ; { for list manipulation }
p: int val . . mu val ; { type of register involved }
e: boolean ; { does l refer to a sparse array element? }
w: integer ; { integer or dimen value of l }

begin q ← cur cmd ; e← false ; { just in case, will be set true for sparse array elements }
⟨Compute the register location l and its type p; but return if invalid 1291 ⟩;
if q = register then scan optional equals
else if scan keyword ("by") then do nothing ; { optional ‘by’ }
arith error ← false ;
if q < multiply then ⟨Compute result of register or advance , put it in cur val 1292 ⟩
else ⟨Compute result of multiply or divide , put it in cur val 1294 ⟩;
if arith error then
begin print err ("Arithmetic␣overflow");
help2 ("I␣can´t␣carry␣out␣that␣multiplication␣or␣division,")
("since␣the␣result␣is␣out␣of␣range.");
if p ≥ glue val then delete glue ref (cur val);
error ; return;
end;

if p < glue val then sa word define (l, cur val)
else begin trap zero glue ; sa define (l, cur val)(l, glue ref , cur val);
end;

exit : end;

§1291 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 541

1291. Here we use the fact that the consecutive codes int val . . mu val and assign int . . assign mu glue
correspond to each other nicely.

⟨Compute the register location l and its type p; but return if invalid 1291 ⟩ ≡
begin if q ̸= register then
begin get x token ;
if (cur cmd ≥ assign int) ∧ (cur cmd ≤ assign mu glue) then
begin l← cur chr ; p← cur cmd − assign int ; goto found ;
end;

if cur cmd ̸= register then
begin print err ("You␣can´t␣use␣`"); print cmd chr (cur cmd , cur chr); print ("´␣after␣");
print cmd chr (q, 0); help1 ("I´m␣forgetting␣what␣you␣said␣and␣not␣changing␣anything.");
error ; return;
end;

end;
if (cur chr < mem bot) ∨ (cur chr > lo mem stat max) then
begin l← cur chr ; p← sa type (l); e← true ;
end

else begin p← cur chr −mem bot ; scan register num ;
if cur val > 255 then
begin find sa element (p, cur val , true); l← cur ptr ; e← true ;
end

else case p of
int val : l← cur val + count base ;
dimen val : l← cur val + scaled base ;
glue val : l← cur val + skip base ;
mu val : l← cur val +mu skip base ;
end; { there are no other cases }

end;
end;

found : if p < glue val then if e then w ← sa int (l) else w ← eqtb [l].int
else if e then s← sa ptr (l) else s← equiv (l)

This code is used in section 1290.

1292. ⟨Compute result of register or advance , put it in cur val 1292 ⟩ ≡
if p < glue val then
begin if p = int val then scan int else scan normal dimen ;
if q = advance then cur val ← cur val + w;
end

else begin scan glue (p);
if q = advance then ⟨Compute the sum of two glue specs 1293 ⟩;
end

This code is used in section 1290.

542 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1293

1293. ⟨Compute the sum of two glue specs 1293 ⟩ ≡
begin q ← new spec(cur val); r ← s; delete glue ref (cur val); width (q)← width (q) + width (r);
if stretch (q) = 0 then stretch order (q)← normal ;
if stretch order (q) = stretch order (r) then stretch (q)← stretch (q) + stretch (r)
else if (stretch order (q) < stretch order (r)) ∧ (stretch (r) ̸= 0) then

begin stretch (q)← stretch (r); stretch order (q)← stretch order (r);
end;

if shrink (q) = 0 then shrink order (q)← normal ;
if shrink order (q) = shrink order (r) then shrink (q)← shrink (q) + shrink (r)
else if (shrink order (q) < shrink order (r)) ∧ (shrink (r) ̸= 0) then

begin shrink (q)← shrink (r); shrink order (q)← shrink order (r);
end;

cur val ← q;
end

This code is used in section 1292.

1294. ⟨Compute result of multiply or divide , put it in cur val 1294 ⟩ ≡
begin scan int ;
if p < glue val then
if q = multiply then
if p = int val then cur val ← mult integers (w, cur val)
else cur val ← nx plus y (w, cur val , 0)

else cur val ← x over n (w, cur val)
else begin r ← new spec(s);
if q = multiply then
begin width (r)← nx plus y (width (s), cur val , 0); stretch (r)← nx plus y (stretch (s), cur val , 0);
shrink (r)← nx plus y (shrink (s), cur val , 0);
end

else begin width (r)← x over n (width (s), cur val); stretch (r)← x over n (stretch (s), cur val);
shrink (r)← x over n (shrink (s), cur val);
end;

cur val ← r;
end;

end

This code is used in section 1290.

1295. The processing of boxes is somewhat different, because we may need to scan and create an entire
box before we actually change the value of the old one.

⟨Assignments 1271 ⟩ +≡
set box : begin scan register num ;
if global then n← global box flag + cur val else n← box flag + cur val ;
scan optional equals ;
if set box allowed then scan box (n)
else begin print err ("Improper␣"); print esc("setbox");
help2 ("Sorry,␣\setbox␣is␣not␣allowed␣after␣\halign␣in␣a␣display,")
("or␣between␣\accent␣and␣an␣accented␣character."); error ;
end;

end;

§1296 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 543

1296. The space factor or prev depth settings are changed when a set aux command is sensed. Similarly,
prev graf is changed in the presence of set prev graf , and dead cycles or insert penalties in the presence of
set page int . These definitions are always global.
When some dimension of a box register is changed, the change isn’t exactly global; but TEX does not look

at the \global switch.

⟨Assignments 1271 ⟩ +≡
set aux : alter aux ;
set prev graf : alter prev graf ;
set page dimen : alter page so far ;
set page int : alter integer ;
set box dimen : alter box dimen ;

1297. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure alter aux ;

var c: halfword ; { hmode or vmode }
begin if cur chr ̸= abs (mode) then report illegal case
else begin c← cur chr ; scan optional equals ;
if c = vmode then
begin scan normal dimen ; prev depth ← cur val ;
end

else begin scan int ;
if (cur val ≤ 0) ∨ (cur val > 32767) then

begin print err ("Bad␣space␣factor");
help1 ("I␣allow␣only␣values␣in␣the␣range␣1..32767␣here."); int error (cur val);
end

else space factor ← cur val ;
end;

end;
end;

1298. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure alter prev graf ;

var p: 0 . . nest size ; { index into nest }
begin nest [nest ptr]← cur list ; p← nest ptr ;
while abs (nest [p].mode field) ̸= vmode do decr (p);
scan optional equals ; scan int ;
if cur val < 0 then
begin print err ("Bad␣"); print esc("prevgraf");
help1 ("I␣allow␣only␣nonnegative␣values␣here."); int error (cur val);
end

else begin nest [p].pg field ← cur val ; cur list ← nest [nest ptr];
end;

end;

1299. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure alter page so far ;

var c: 0 . . 7; { index into page so far }
begin c← cur chr ; scan optional equals ; scan normal dimen ; page so far [c]← cur val ;
end;

544 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1300

1300. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure alter integer ;

var c: small number ; { 0 for \deadcycles, 1 for \insertpenalties, etc. }
begin c← cur chr ; scan optional equals ; scan int ;
if c = 0 then dead cycles ← cur val
⟨Cases for alter integer 1506 ⟩

else insert penalties ← cur val ;
end;

1301. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure alter box dimen ;

var c: small number ; {width offset or height offset or depth offset }
b: pointer ; { box register }

begin c← cur chr ; scan register num ; fetch box (b); scan optional equals ; scan normal dimen ;
if b ̸= null then mem [b+ c].sc ← cur val ;
end;

1302. Paragraph shapes are set up in the obvious way.

⟨Assignments 1271 ⟩ +≡
set shape : begin q ← cur chr ; scan optional equals ; scan int ; n← cur val ;
if n ≤ 0 then p← null
else if q > par shape loc then

begin n← (cur val div 2) + 1; p← get node (2 ∗ n+ 1); info(p)← n; n← cur val ;
mem [p+ 1].int ← n; { number of penalties }
for j ← p+ 2 to p+ n+ 1 do
begin scan int ; mem [j].int ← cur val ; { penalty values }
end;

if ¬odd (n) then mem [p+ n+ 2].int ← 0; { unused }
end

else begin p← get node (2 ∗ n+ 1); info(p)← n;
for j ← 1 to n do
begin scan normal dimen ; mem [p+ 2 ∗ j − 1].sc ← cur val ; { indentation }
scan normal dimen ; mem [p+ 2 ∗ j].sc ← cur val ; {width }
end;

end;
define (q, shape ref , p);
end;

1303. Here’s something that isn’t quite so obvious. It guarantees that info(par shape ptr) can hold any
positive n for which get node (2 ∗ n+ 1) doesn’t overflow the memory capacity.

⟨Check the “constant” values for consistency 14 ⟩ +≡
if 2 ∗max halfword < mem top −mem min then bad ← 41;

1304. New hyphenation data is loaded by the hyph data command.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("hyphenation", hyph data , 0); primitive ("patterns", hyph data , 1);

1305. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
hyph data : if chr code = 1 then print esc("patterns")

else print esc("hyphenation");

§1306 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 545

1306. ⟨Assignments 1271 ⟩ +≡
hyph data : if cur chr = 1 then

begin init new patterns ; goto done ; tini
print err ("Patterns␣can␣be␣loaded␣only␣by␣INITEX"); help0 ; error ;
repeat get token ;
until cur cmd = right brace ; { flush the patterns }
return;
end

else begin new hyph exceptions ; goto done ;
end;

1307. All of TEX’s parameters are kept in eqtb except the font information, the interaction mode, and the
hyphenation tables; these are strictly global.

⟨Assignments 1271 ⟩ +≡
assign font dimen : begin find font dimen (true); k ← cur val ; scan optional equals ; scan normal dimen ;
font info [k].sc ← cur val ;
end;

assign font int : begin n← cur chr ; scan font ident ; f ← cur val ;
if n < lp code base then
begin scan optional equals ; scan int ;
if n = 0 then hyphen char [f]← cur val else skew char [f]← cur val ;
end

else begin if is native font (f) then scan glyph number (f) { for native fonts, the value is a glyph id }
else scan char num ; { for tfm fonts it’s the same like pdftex }
p← cur val ; scan optional equals ; scan int ;
case n of
lp code base : set cp code (f, p, left side , cur val);
rp code base : set cp code (f, p, right side , cur val);
endcases;
end;

end;

1308. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("hyphenchar", assign font int , 0); primitive ("skewchar", assign font int , 1);
primitive ("lpcode", assign font int , lp code base); primitive ("rpcode", assign font int , rp code base);

1309. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
assign font int : case chr code of
0: print esc("hyphenchar");
1: print esc("skewchar");
lp code base : print esc("lpcode");
rp code base : print esc("rpcode");
endcases;

1310. Here is where the information for a new font gets loaded.

⟨Assignments 1271 ⟩ +≡
def font : new font (a);

546 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1311

1311. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure new font (a : small number);

label common ending ;
var u: pointer ; { user’s font identifier }
s: scaled ; { stated “at” size, or negative of scaled magnification }
f : internal font number ; { runs through existing fonts }
t: str number ; { name for the frozen font identifier }
old setting : 0 . . max selector ; { holds selector setting }
flushable string : str number ; { string not yet referenced }

begin if job name = 0 then open log file ; { avoid confusing texput with the font name }
get r token ; u← cur cs ;
if u ≥ hash base then t← text (u)
else if u ≥ single base then

if u = null cs then t← "FONT" else t← u− single base
else begin old setting ← selector ; selector ← new string ; print ("FONT"); print (u− active base);
selector ← old setting ; str room (1); t← make string ;
end;

define (u, set font ,null font); scan optional equals ; scan file name ;
⟨ Scan the font size specification 1312 ⟩;
⟨ If this font has already been loaded, set f to the internal font number and goto common ending 1314 ⟩;
f ← read font info(u, cur name , cur area , s);

common ending : define (u, set font , f); eqtb [font id base + f]← eqtb [u]; font id text (f)← t;
end;

1312. ⟨ Scan the font size specification 1312 ⟩ ≡
name in progress ← true ; { this keeps cur name from being changed }
if scan keyword ("at") then ⟨Put the (positive) ‘at’ size into s 1313 ⟩
else if scan keyword ("scaled") then

begin scan int ; s← −cur val ;
if (cur val ≤ 0) ∨ (cur val > 32768) then

begin print err ("Illegal␣magnification␣has␣been␣changed␣to␣1000");
help1 ("The␣magnification␣ratio␣must␣be␣between␣1␣and␣32768."); int error (cur val);
s← −1000;
end;

end
else s← −1000;

name in progress ← false

This code is used in section 1311.

1313. ⟨Put the (positive) ‘at’ size into s 1313 ⟩ ≡
begin scan normal dimen ; s← cur val ;
if (s ≤ 0) ∨ (s ≥ 1́000000000) then
begin print err ("Improper␣`at´␣size␣("); print scaled (s); print ("pt),␣replaced␣by␣10pt");
help2 ("I␣can␣only␣handle␣fonts␣at␣positive␣sizes␣that␣are")
("less␣than␣2048pt,␣so␣I´ve␣changed␣what␣you␣said␣to␣10pt."); error ; s← 10 ∗ unity ;
end;

end

This code is used in section 1312.

§1314 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 547

1314. When the user gives a new identifier to a font that was previously loaded, the new name becomes
the font identifier of record. Font names ‘xyz’ and ‘XYZ’ are considered to be different.

⟨ If this font has already been loaded, set f to the internal font number and goto common ending 1314 ⟩ ≡
flushable string ← str ptr − 1;
for f ← font base + 1 to font ptr do
begin if str eq str (font name [f],

cur name) ∧ (((cur area = "") ∧ is native font (f)) ∨ str eq str (font area [f], cur area)) then
begin if cur name = flushable string then
begin flush string ; cur name ← font name [f];
end;

if s > 0 then
begin if s = font size [f] then goto common ending ;
end

else if font size [f] = xn over d (font dsize [f],−s, 1000) then goto common ending ;
end; { could be a native font whose ”name” ended up partly in area or extension }

append str (cur area); append str (cur name); append str (cur ext);
if str eq str (font name [f],make string) then

begin flush string ;
if is native font (f) then
begin if s > 0 then
begin if s = font size [f] then goto common ending ;
end

else if font size [f] = xn over d (font dsize [f],−s, 1000) then goto common ending ;
end

end
else flush string ;
end

This code is used in section 1311.

1315. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
set font : begin print ("select␣font␣"); font name str ← font name [chr code];

if is native font (chr code) then
begin quote char ← """";
for n← 0 to length (font name str)− 1 do
if str pool [str start macro(font name str) + n] = """" then quote char ← "´";

print char (quote char); slow print (font name str); print char (quote char);
end

else slow print (font name str);
if font size [chr code] ̸= font dsize [chr code] then
begin print ("␣at␣"); print scaled (font size [chr code]); print ("pt");
end;

end;

1316. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("batchmode", set interaction , batch mode);
primitive ("nonstopmode", set interaction ,nonstop mode);
primitive ("scrollmode", set interaction , scroll mode);
primitive ("errorstopmode", set interaction , error stop mode);

548 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1317

1317. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
set interaction : case chr code of

batch mode : print esc("batchmode");
nonstop mode : print esc("nonstopmode");
scroll mode : print esc("scrollmode");
othercases print esc("errorstopmode")
endcases;

1318. ⟨Assignments 1271 ⟩ +≡
set interaction : new interaction ;

1319. ⟨Declare subprocedures for prefixed command 1269 ⟩ +≡
procedure new interaction ;

begin print ln ; interaction ← cur chr ; ⟨ Initialize the print selector based on interaction 79 ⟩;
if log opened then selector ← selector + 2;
end;

1320. The \afterassignment command puts a token into the global variable after token . This global
variable is examined just after every assignment has been performed.

⟨Global variables 13 ⟩ +≡
after token : halfword ; { zero, or a saved token }

1321. ⟨ Set initial values of key variables 23 ⟩ +≡
after token ← 0;

1322. ⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (after assignment): begin get token ; after token ← cur tok ;

end;

1323. ⟨ Insert a token saved by \afterassignment, if any 1323 ⟩ ≡
if after token ̸= 0 then
begin cur tok ← after token ; back input ; after token ← 0;
end

This code is used in section 1265.

1324. Here is a procedure that might be called ‘Get the next non-blank non-relax non-call non-assignment
token’.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure do assignments ;
label exit ;
begin loop
begin ⟨Get the next non-blank non-relax non-call token 438 ⟩;
if cur cmd ≤ max non prefixed command then return;
set box allowed ← false ; prefixed command ; set box allowed ← true ;
end;

exit : end;

1325. ⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (after group): begin get token ; save for after (cur tok);

end;

§1326 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 549

1326. Files for \read are opened and closed by the in stream command.

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("openin", in stream , 1); primitive ("closein", in stream , 0);

1327. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
in stream : if chr code = 0 then print esc("closein")

else print esc("openin");

1328. ⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (in stream): open or close in ;

1329. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure open or close in ;

var c: 0 . . 1; { 1 for \openin, 0 for \closein }
n: 0 . . 15; { stream number }

begin c← cur chr ; scan four bit int ; n← cur val ;
if read open [n] ̸= closed then
begin u close (read file [n]); read open [n]← closed ;
end;

if c ̸= 0 then
begin scan optional equals ; scan file name ;
if cur ext = "" then cur ext ← ".tex";
pack cur name ;
if a open in (read file [n]) then read open [n]← just open ;
end;

end;

1330. The user can issue messages to the terminal, regardless of the current mode.

⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (message): issue message ;

1331. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("message",message , 0); primitive ("errmessage",message , 1);

1332. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
message : if chr code = 0 then print esc("message")
else print esc("errmessage");

1333. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure issue message ;

var old setting : 0 . . max selector ; { holds selector setting }
c: 0 . . 1; { identifies \message and \errmessage }
s: str number ; { the message }

begin c← cur chr ; link (garbage)← scan toks (false , true); old setting ← selector ;
selector ← new string ; token show (def ref); selector ← old setting ; flush list (def ref); str room (1);
s← make string ;
if c = 0 then ⟨Print string s on the terminal 1334 ⟩
else ⟨Print string s as an error message 1337 ⟩;
flush string ;
end;

550 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1334

1334. ⟨Print string s on the terminal 1334 ⟩ ≡
begin if term offset + length (s) > max print line − 2 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char ("␣");
slow print (s); update terminal ;
end

This code is used in section 1333.

1335. If \errmessage occurs often in scroll mode , without user-defined \errhelp, we don’t want to give
a long help message each time. So we give a verbose explanation only once.

⟨Global variables 13 ⟩ +≡
long help seen : boolean ; { has the long \errmessage help been used? }

1336. ⟨ Set initial values of key variables 23 ⟩ +≡
long help seen ← false ;

1337. ⟨Print string s as an error message 1337 ⟩ ≡
begin print err (""); slow print (s);
if err help ̸= null then use err help ← true
else if long help seen then help1 ("(That␣was␣another␣\errmessage.)")
else begin if interaction < error stop mode then long help seen ← true ;
help4 ("This␣error␣message␣was␣generated␣by␣an␣\errmessage")
("command,␣so␣I␣can´t␣give␣any␣explicit␣help.")
("Pretend␣that␣you´re␣Hercule␣Poirot:␣Examine␣all␣clues,")
("and␣deduce␣the␣truth␣by␣order␣and␣method.");
end;

error ; use err help ← false ;
end

This code is used in section 1333.

1338. The error routine calls on give err help if help is requested from the err help parameter.

procedure give err help ;
begin token show (err help);
end;

1339. The \uppercase and \lowercase commands are implemented by building a token list and then
changing the cases of the letters in it.

⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (case shift): shift case ;

1340. ⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("lowercase", case shift , lc code base); primitive ("uppercase", case shift , uc code base);

1341. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
case shift : if chr code = lc code base then print esc("lowercase")

else print esc("uppercase");

§1342 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 551

1342. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure shift case ;

var b: pointer ; { lc code base or uc code base }
p: pointer ; { runs through the token list }
t: halfword ; { token }
c: integer ; { character code }

begin b← cur chr ; p← scan toks (false , false); p← link (def ref);
while p ̸= null do
begin ⟨Change the case of the token in p, if a change is appropriate 1343 ⟩;
p← link (p);
end;

back list (link (def ref)); free avail (def ref); { omit reference count }
end;

1343. When the case of a chr code changes, we don’t change the cmd . We also change active characters,
using the fact that cs token flag + active base is a multiple of 256.

⟨Change the case of the token in p, if a change is appropriate 1343 ⟩ ≡
t← info(p);
if t < cs token flag + single base then
begin c← tmod max char val ;
if equiv (b+ c) ̸= 0 then info(p)← t− c+ equiv (b+ c);
end

This code is used in section 1342.

1344. We come finally to the last pieces missing from main control , namely the ‘\show’ commands that
are useful when debugging.

⟨Cases of main control that don’t depend on mode 1264 ⟩ +≡
any mode (xray): show whatever ;

1345. define show code = 0 { \show }
define show box code = 1 { \showbox }
define show the code = 2 { \showthe }
define show lists code = 3 { \showlists }

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("show", xray , show code); primitive ("showbox", xray , show box code);
primitive ("showthe", xray , show the code); primitive ("showlists", xray , show lists code);

1346. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
xray : case chr code of
show box code : print esc("showbox");
show the code : print esc("showthe");
show lists code : print esc("showlists");
⟨Cases of xray for print cmd chr 1486 ⟩

othercases print esc("show")
endcases;

552 PART 49: MODE-INDEPENDENT PROCESSING X ETEX §1347

1347. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure show whatever ;

label common ending ;
var p: pointer ; { tail of a token list to show }
t: small number ; { type of conditional being shown }
m: normal . . or code ; { upper bound on fi or else codes }
l: integer ; { line where that conditional began }
n: integer ; { level of \if...\fi nesting }

begin case cur chr of
show lists code : begin begin diagnostic ; show activities ;
end;

show box code : ⟨ Show the current contents of a box 1350 ⟩;
show code : ⟨ Show the current meaning of a token, then goto common ending 1348 ⟩;
⟨Cases for show whatever 1487 ⟩

othercases ⟨ Show the current value of some parameter or register, then goto common ending 1351 ⟩
endcases;
⟨Complete a potentially long \show command 1352 ⟩;

common ending : if interaction < error stop mode then
begin help0 ; decr (error count);
end

else if tracing online > 0 then
begin
help3 ("This␣isn´t␣an␣error␣message;␣I´m␣just␣\showing␣something.")
("Type␣`I\show...´␣to␣show␣more␣(e.g.,␣\show\cs,")
("\showthe\count10,␣\showbox255,␣\showlists).");
end

else begin
help5 ("This␣isn´t␣an␣error␣message;␣I´m␣just␣\showing␣something.")
("Type␣`I\show...´␣to␣show␣more␣(e.g.,␣\show\cs,")
("\showthe\count10,␣\showbox255,␣\showlists).")
("And␣type␣`I\tracingonline=1\show...´␣to␣show␣boxes␣and")
("lists␣on␣your␣terminal␣as␣well␣as␣in␣the␣transcript␣file.");
end;

error ;
end;

1348. ⟨ Show the current meaning of a token, then goto common ending 1348 ⟩ ≡
begin get token ;
if interaction = error stop mode then wake up terminal ;
print nl (">␣");
if cur cs ̸= 0 then
begin sprint cs (cur cs); print char ("=");
end;

print meaning ; goto common ending ;
end

This code is used in section 1347.

§1349 X ETEX PART 49: MODE-INDEPENDENT PROCESSING 553

1349. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
undefined cs : print ("undefined");
call , long call , outer call , long outer call : begin n← cmd − call ;

if info(link (chr code)) = protected token then n← n+ 4;
if odd (n div 4) then print esc("protected");
if odd (n) then print esc("long");
if odd (n div 2) then print esc("outer");
if n > 0 then print char ("␣");
print ("macro");
end;

end template : print esc("outer␣endtemplate");

1350. ⟨ Show the current contents of a box 1350 ⟩ ≡
begin scan register num ; fetch box (p); begin diagnostic ; print nl (">␣\box"); print int (cur val);
print char ("=");
if p = null then print ("void") else show box (p);
end

This code is used in section 1347.

1351. ⟨ Show the current value of some parameter or register, then goto common ending 1351 ⟩ ≡
begin p← the toks ;
if interaction = error stop mode then wake up terminal ;
print nl (">␣"); token show (temp head); flush list (link (temp head)); goto common ending ;
end

This code is used in section 1347.

1352. ⟨Complete a potentially long \show command 1352 ⟩ ≡
end diagnostic(true); print err ("OK");
if selector = term and log then
if tracing online ≤ 0 then
begin selector ← term only ; print ("␣(see␣the␣transcript␣file)"); selector ← term and log ;
end

This code is used in section 1347.

554 PART 50: DUMPING AND UNDUMPING THE TABLES X ETEX §1353

1353. Dumping and undumping the tables. After INITEX has seen a collection of fonts and macros,
it can write all the necessary information on an auxiliary file so that production versions of TEX are able
to initialize their memory at high speed. The present section of the program takes care of such output and
input. We shall consider simultaneously the processes of storing and restoring, so that the inverse relation
between them is clear.
The global variable format ident is a string that is printed right after the banner line when TEX is ready

to start. For INITEX this string says simply ‘ (INITEX)’; for other versions of TEX it says, for example,
‘ (preloaded format=plain 1982.11.19)’, showing the year, month, and day that the format file was
created. We have format ident = 0 before TEX’s tables are loaded.

⟨Global variables 13 ⟩ +≡
format ident : str number ;

1354. ⟨ Set initial values of key variables 23 ⟩ +≡
format ident ← 0;

1355. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
format ident ← "␣(INITEX)";

1356. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
init procedure store fmt file ;
label found1 , found2 , done1 , done2 ;
var j, k, l: integer ; { all-purpose indices }
p, q: pointer ; { all-purpose pointers }
x: integer ; { something to dump }
w: four quarters ; { four ASCII codes }

begin ⟨ If dumping is not allowed, abort 1358 ⟩;
⟨Create the format ident , open the format file, and inform the user that dumping has begun 1382 ⟩;
⟨Dump constants for consistency check 1361 ⟩;
⟨Dump the string pool 1363 ⟩;
⟨Dump the dynamic memory 1365 ⟩;
⟨Dump the table of equivalents 1367 ⟩;
⟨Dump the font information 1374 ⟩;
⟨Dump the hyphenation tables 1378 ⟩;
⟨Dump a couple more things and the closing check word 1380 ⟩;
⟨Close the format file 1383 ⟩;
end;
tini

§1357 X ETEX PART 50: DUMPING AND UNDUMPING THE TABLES 555

1357. Corresponding to the procedure that dumps a format file, we have a function that reads one in.
The function returns false if the dumped format is incompatible with the present TEX table sizes, etc.

define bad fmt = 6666 { go here if the format file is unacceptable }
define too small (#) ≡

begin wake up terminal ; wterm ln (´−−−!␣Must␣increase␣the␣´, #); goto bad fmt ;
end

⟨Declare the function called open fmt file 559 ⟩
function load fmt file : boolean ;
label bad fmt , exit ;
var j, k: integer ; { all-purpose indices }
p, q: pointer ; { all-purpose pointers }
x: integer ; { something undumped }
w: four quarters ; { four ASCII codes }

begin ⟨Undump constants for consistency check 1362 ⟩;
⟨Undump the string pool 1364 ⟩;
⟨Undump the dynamic memory 1366 ⟩;
⟨Undump the table of equivalents 1368 ⟩;
⟨Undump the font information 1375 ⟩;
⟨Undump the hyphenation tables 1379 ⟩;
⟨Undump a couple more things and the closing check word 1381 ⟩;
load fmt file ← true ; return; { it worked! }

bad fmt : wake up terminal ; wterm ln (´(Fatal␣format␣file␣error;␣I´´m␣stymied)´);
load fmt file ← false ;

exit : end;

1358. The user is not allowed to dump a format file unless save ptr = 0. This condition implies that
cur level = level one , hence the xeq level array is constant and it need not be dumped.

⟨ If dumping is not allowed, abort 1358 ⟩ ≡
if save ptr ̸= 0 then
begin print err ("You␣can´t␣dump␣inside␣a␣group"); help1 ("`{...\dump}´␣is␣a␣no−no.");
succumb ;
end

This code is used in section 1356.

1359. Format files consist of memory word items, and we use the following macros to dump words of
different types:

define dump wd (#) ≡
begin fmt file↑ ← #; put (fmt file); end

define dump int (#) ≡
begin fmt file↑.int ← #; put (fmt file); end

define dump hh (#) ≡
begin fmt file↑.hh ← #; put (fmt file); end

define dump qqqq (#) ≡
begin fmt file↑.qqqq ← #; put (fmt file); end

⟨Global variables 13 ⟩ +≡
fmt file : word file ; { for input or output of format information }

556 PART 50: DUMPING AND UNDUMPING THE TABLES X ETEX §1360

1360. The inverse macros are slightly more complicated, since we need to check the range of the values
we are reading in. We say ‘undump (a)(b)(x)’ to read an integer value x that is supposed to be in the range
a ≤ x ≤ b. System error messages should be suppressed when undumping.

define undump wd (#) ≡
begin get (fmt file); #← fmt file↑; end

define undump int (#) ≡
begin get (fmt file); #← fmt file↑.int ; end

define undump hh (#) ≡
begin get (fmt file); #← fmt file↑.hh ; end

define undump qqqq (#) ≡
begin get (fmt file); #← fmt file↑.qqqq ; end

define undump end end (#) ≡ #← x; end
define undump end (#) ≡ (x > #) then goto bad fmt else undump end end
define undump (#) ≡

begin undump int (x);
if (x < #) ∨ undump end

define undump size end end (#) ≡ too small (#) else undump end end
define undump size end (#) ≡

if x > # then undump size end end
define undump size (#) ≡

begin undump int (x);
if x < # then goto bad fmt ;
undump size end

1361. The next few sections of the program should make it clear how we use the dump/undump macros.

⟨Dump constants for consistency check 1361 ⟩ ≡
dump int (@$);
⟨Dump the ε-TEX state 1464 ⟩
dump int (mem bot);
dump int (mem top);
dump int (eqtb size);
dump int (hash prime);
dump int (hyph size)

This code is used in section 1356.

§1362 X ETEX PART 50: DUMPING AND UNDUMPING THE TABLES 557

1362. Sections of a WEB program that are “commented out” still contribute strings to the string pool;
therefore INITEX and TEX will have the same strings. (And it is, of course, a good thing that they do.)

⟨Undump constants for consistency check 1362 ⟩ ≡
x← fmt file↑.int ;
if x ̸= @$ then goto bad fmt ; { check that strings are the same }
⟨Undump the ε-TEX state 1465 ⟩
undump int (x);
if x ̸= mem bot then goto bad fmt ;
undump int (x);
if x ̸= mem top then goto bad fmt ;
undump int (x);
if x ̸= eqtb size then goto bad fmt ;
undump int (x);
if x ̸= hash prime then goto bad fmt ;
undump int (x);
if x ̸= hyph size then goto bad fmt

This code is used in section 1357.

1363. define dump four ASCII ≡ w.b0 ← qi (so(str pool [k])); w.b1 ← qi (so(str pool [k + 1]));
w.b2 ← qi (so(str pool [k + 2])); w.b3 ← qi (so(str pool [k + 3])); dump qqqq (w)

⟨Dump the string pool 1363 ⟩ ≡
dump int (pool ptr); dump int (str ptr);
for k ← 0 to str ptr do dump int (str start [k]);
k ← 0;
while k + 4 < pool ptr do
begin dump four ASCII ; k ← k + 4;
end;

k ← pool ptr − 4; dump four ASCII ; print ln ; print int (str ptr);
print ("␣strings␣of␣total␣length␣"); print int (pool ptr)

This code is used in section 1356.

1364. define undump four ASCII ≡ undump qqqq (w); str pool [k]← si (qo(w.b0));
str pool [k + 1]← si (qo(w.b1)); str pool [k + 2]← si (qo(w.b2)); str pool [k + 3]← si (qo(w.b3))

⟨Undump the string pool 1364 ⟩ ≡
undump size (0)(pool size)(´string␣pool␣size´)(pool ptr);
undump size (0)(max strings)(´max␣strings´)(str ptr);
for k ← 0 to str ptr do undump (0)(pool ptr)(str start [k]);
k ← 0;
while k + 4 < pool ptr do
begin undump four ASCII ; k ← k + 4;
end;

k ← pool ptr − 4; undump four ASCII ; init str ptr ← str ptr ; init pool ptr ← pool ptr

This code is used in section 1357.

558 PART 50: DUMPING AND UNDUMPING THE TABLES X ETEX §1365

1365. By sorting the list of available spaces in the variable-size portion of mem , we are usually able to get
by without having to dump very much of the dynamic memory.
We recompute var used and dyn used , so that INITEX dumps valid information even when it has not been

gathering statistics.

⟨Dump the dynamic memory 1365 ⟩ ≡
sort avail ; var used ← 0; dump int (lo mem max); dump int (rover);
if eTeX ex then
for k ← int val to inter char val do dump int (sa root [k]);

p← mem bot ; q ← rover ; x← 0;
repeat for k ← p to q + 1 do dump wd (mem [k]);
x← x+ q + 2− p; var used ← var used + q − p; p← q + node size (q); q ← rlink (q);

until q = rover ;
var used ← var used + lo mem max − p; dyn used ← mem end + 1− hi mem min ;
for k ← p to lo mem max do dump wd (mem [k]);
x← x+ lo mem max + 1− p; dump int (hi mem min); dump int (avail);
for k ← hi mem min to mem end do dump wd (mem [k]);
x← x+mem end + 1− hi mem min ; p← avail ;
while p ̸= null do
begin decr (dyn used); p← link (p);
end;

dump int (var used); dump int (dyn used); print ln ; print int (x);
print ("␣memory␣locations␣dumped;␣current␣usage␣is␣"); print int (var used); print char ("&");
print int (dyn used)

This code is used in section 1356.

1366. ⟨Undump the dynamic memory 1366 ⟩ ≡
undump (lo mem stat max + 1000)(hi mem stat min − 1)(lo mem max);
undump (lo mem stat max + 1)(lo mem max)(rover);
if eTeX ex then
for k ← int val to inter char val do undump (null)(lo mem max)(sa root [k]);

p← mem bot ; q ← rover ;
repeat for k ← p to q + 1 do undump wd (mem [k]);
p← q + node size (q);
if (p > lo mem max) ∨ ((q ≥ rlink (q)) ∧ (rlink (q) ̸= rover)) then goto bad fmt ;
q ← rlink (q);

until q = rover ;
for k ← p to lo mem max do undump wd (mem [k]);
if mem min < mem bot − 2 then {make more low memory available }
begin p← llink (rover); q ← mem min + 1; link (mem min)← null ; info(mem min)← null ;

{we don’t use the bottom word }
rlink (p)← q; llink (rover)← q;
rlink (q)← rover ; llink (q)← p; link (q)← empty flag ; node size (q)← mem bot − q;
end;

undump (lo mem max + 1)(hi mem stat min)(hi mem min); undump (null)(mem top)(avail);
mem end ← mem top ;
for k ← hi mem min to mem end do undump wd (mem [k]);
undump int (var used); undump int (dyn used)

This code is used in section 1357.

§1367 X ETEX PART 50: DUMPING AND UNDUMPING THE TABLES 559

1367. ⟨Dump the table of equivalents 1367 ⟩ ≡
⟨Dump regions 1 to 4 of eqtb 1369 ⟩;
⟨Dump regions 5 and 6 of eqtb 1370 ⟩;
dump int (par loc); dump int (write loc);
⟨Dump the hash table 1372 ⟩

This code is used in section 1356.

1368. ⟨Undump the table of equivalents 1368 ⟩ ≡
⟨Undump regions 1 to 6 of eqtb 1371 ⟩;
undump (hash base)(frozen control sequence)(par loc); par token ← cs token flag + par loc ;
undump (hash base)(frozen control sequence)(write loc);
⟨Undump the hash table 1373 ⟩

This code is used in section 1357.

1369. The table of equivalents usually contains repeated information, so we dump it in compressed form:
The sequence of n+2 values (n, x1, . . . , xn,m) in the format file represents n+m consecutive entries of eqtb ,
with m extra copies of xn, namely (x1, . . . , xn, xn, . . . , xn).

⟨Dump regions 1 to 4 of eqtb 1369 ⟩ ≡
k ← active base ;
repeat j ← k;
while j < int base − 1 do
begin if (equiv (j) = equiv (j + 1)) ∧ (eq type (j) = eq type (j + 1)) ∧ (eq level (j) = eq level (j + 1))

then goto found1 ;
incr (j);
end;

l← int base ; goto done1 ; { j = int base − 1 }
found1 : incr (j); l← j;
while j < int base − 1 do

begin if (equiv (j) ̸= equiv (j + 1)) ∨ (eq type (j) ̸= eq type (j + 1)) ∨ (eq level (j) ̸= eq level (j + 1))
then goto done1 ;

incr (j);
end;

done1 : dump int (l − k);
while k < l do

begin dump wd (eqtb [k]); incr (k);
end;

k ← j + 1; dump int (k − l);
until k = int base

This code is used in section 1367.

560 PART 50: DUMPING AND UNDUMPING THE TABLES X ETEX §1370

1370. ⟨Dump regions 5 and 6 of eqtb 1370 ⟩ ≡
repeat j ← k;
while j < eqtb size do

begin if eqtb [j].int = eqtb [j + 1].int then goto found2 ;
incr (j);
end;

l← eqtb size + 1; goto done2 ; { j = eqtb size }
found2 : incr (j); l← j;
while j < eqtb size do

begin if eqtb [j].int ̸= eqtb [j + 1].int then goto done2 ;
incr (j);
end;

done2 : dump int (l − k);
while k < l do

begin dump wd (eqtb [k]); incr (k);
end;

k ← j + 1; dump int (k − l);
until k > eqtb size

This code is used in section 1367.

1371. ⟨Undump regions 1 to 6 of eqtb 1371 ⟩ ≡
k ← active base ;
repeat undump int (x);
if (x < 1) ∨ (k + x > eqtb size + 1) then goto bad fmt ;
for j ← k to k + x− 1 do undump wd (eqtb [j]);
k ← k + x; undump int (x);
if (x < 0) ∨ (k + x > eqtb size + 1) then goto bad fmt ;
for j ← k to k + x− 1 do eqtb [j]← eqtb [k − 1];
k ← k + x;

until k > eqtb size

This code is used in section 1368.

1372. A different scheme is used to compress the hash table, since its lower region is usually sparse. When
text (p) ̸= 0 for p ≤ hash used , we output two words, p and hash [p]. The hash table is, of course, densely
packed for p ≥ hash used , so the remaining entries are output in a block.

⟨Dump the hash table 1372 ⟩ ≡
for p← 0 to prim size do dump hh (prim [p]);
dump int (hash used); cs count ← frozen control sequence − 1− hash used ;
for p← hash base to hash used do
if text (p) ̸= 0 then
begin dump int (p); dump hh (hash [p]); incr (cs count);
end;

for p← hash used + 1 to undefined control sequence − 1 do dump hh (hash [p]);
dump int (cs count);
print ln ; print int (cs count); print ("␣multiletter␣control␣sequences")

This code is used in section 1367.

§1373 X ETEX PART 50: DUMPING AND UNDUMPING THE TABLES 561

1373. ⟨Undump the hash table 1373 ⟩ ≡
for p← 0 to prim size do undump hh (prim [p]);
undump (hash base)(frozen control sequence)(hash used); p← hash base − 1;
repeat undump (p+ 1)(hash used)(p); undump hh (hash [p]);
until p = hash used ;
for p← hash used + 1 to undefined control sequence − 1 do undump hh (hash [p]);
undump int (cs count)

This code is used in section 1368.

1374. ⟨Dump the font information 1374 ⟩ ≡
dump int (fmem ptr);
for k ← 0 to fmem ptr − 1 do dump wd (font info [k]);
dump int (font ptr);
for k ← null font to font ptr do ⟨Dump the array info for internal font number k 1376 ⟩;
print ln ; print int (fmem ptr − 7); print ("␣words␣of␣font␣info␣for␣");
print int (font ptr − font base); print ("␣preloaded␣font");
if font ptr ̸= font base + 1 then print char ("s")

This code is used in section 1356.

1375. ⟨Undump the font information 1375 ⟩ ≡
undump size (7)(font mem size)(´font␣mem␣size´)(fmem ptr);
for k ← 0 to fmem ptr − 1 do undump wd (font info [k]);
undump size (font base)(font max)(´font␣max´)(font ptr);
for k ← null font to font ptr do ⟨Undump the array info for internal font number k 1377 ⟩

This code is used in section 1357.

1376. ⟨Dump the array info for internal font number k 1376 ⟩ ≡
begin dump qqqq (font check [k]); dump int (font size [k]); dump int (font dsize [k]);
dump int (font params [k]);
dump int (hyphen char [k]); dump int (skew char [k]);
dump int (font name [k]); dump int (font area [k]);
dump int (font bc [k]); dump int (font ec [k]);
dump int (char base [k]); dump int (width base [k]); dump int (height base [k]);
dump int (depth base [k]); dump int (italic base [k]); dump int (lig kern base [k]);
dump int (kern base [k]); dump int (exten base [k]); dump int (param base [k]);
dump int (font glue [k]);
dump int (bchar label [k]); dump int (font bchar [k]); dump int (font false bchar [k]);
print nl ("\font"); print esc(font id text (k)); print char ("=");
print file name (font name [k], font area [k], "");
if font size [k] ̸= font dsize [k] then
begin print ("␣at␣"); print scaled (font size [k]); print ("pt");
end;

end

This code is used in section 1374.

562 PART 50: DUMPING AND UNDUMPING THE TABLES X ETEX §1377

1377. ⟨Undump the array info for internal font number k 1377 ⟩ ≡
begin undump qqqq (font check [k]);
undump int (font size [k]); undump int (font dsize [k]);
undump (min halfword)(max halfword)(font params [k]);
undump int (hyphen char [k]); undump int (skew char [k]);
undump (0)(str ptr)(font name [k]); undump (0)(str ptr)(font area [k]);
undump (0)(255)(font bc [k]); undump (0)(255)(font ec [k]);
undump int (char base [k]); undump int (width base [k]); undump int (height base [k]);
undump int (depth base [k]); undump int (italic base [k]); undump int (lig kern base [k]);
undump int (kern base [k]); undump int (exten base [k]); undump int (param base [k]);
undump (min halfword)(lo mem max)(font glue [k]);
undump (0)(fmem ptr − 1)(bchar label [k]); undump (min quarterword)(non char)(font bchar [k]);
undump (min quarterword)(non char)(font false bchar [k]);
end

This code is used in section 1375.

1378. ⟨Dump the hyphenation tables 1378 ⟩ ≡
dump int (hyph count);
for k ← 0 to hyph size do
if hyph word [k] ̸= 0 then
begin dump int (k); dump int (hyph word [k]); dump int (hyph list [k]);
end;

print ln ; print int (hyph count); print ("␣hyphenation␣exception");
if hyph count ̸= 1 then print char ("s");
if trie not ready then init trie ;
dump int (trie max); dump int (hyph start);
for k ← 0 to trie max do dump hh (trie [k]);
dump int (max hyph char); dump int (trie op ptr);
for k ← 1 to trie op ptr do
begin dump int (hyf distance [k]); dump int (hyf num [k]); dump int (hyf next [k]);
end;

print nl ("Hyphenation␣trie␣of␣length␣"); print int (trie max); print ("␣has␣");
print int (trie op ptr); print ("␣op");
if trie op ptr ̸= 1 then print char ("s");
print ("␣out␣of␣"); print int (trie op size);
for k ← biggest lang downto 0 do
if trie used [k] > min quarterword then
begin print nl ("␣␣"); print int (qo(trie used [k])); print ("␣for␣language␣"); print int (k);
dump int (k); dump int (qo(trie used [k]));
end

This code is used in section 1356.

§1379 X ETEX PART 50: DUMPING AND UNDUMPING THE TABLES 563

1379. Only “nonempty” parts of op start need to be restored.

⟨Undump the hyphenation tables 1379 ⟩ ≡
undump (0)(hyph size)(hyph count);
for k ← 1 to hyph count do
begin undump (0)(hyph size)(j); undump (0)(str ptr)(hyph word [j]);
undump (min halfword)(max halfword)(hyph list [j]);
end;

undump size (0)(trie size)(´trie␣size´)(j); init trie max ← j; tiniundump (0)(j)(hyph start);
for k ← 0 to j do undump hh (trie [k]);
undump int (max hyph char);
undump size (0)(trie op size)(´trie␣op␣size´)(j); init trie op ptr ← j; tini
for k ← 1 to j do
begin undump (0)(63)(hyf distance [k]); { a small number }
undump (0)(63)(hyf num [k]); undump (min quarterword)(max quarterword)(hyf next [k]);
end;

init for k ← 0 to biggest lang do trie used [k]← min quarterword ;
tini
k ← biggest lang + 1;
while j > 0 do
begin undump (0)(k − 1)(k); undump (1)(j)(x); init trie used [k]← qi (x); tini
j ← j − x; op start [k]← qo(j);
end;

init trie not ready ← false tini

This code is used in section 1357.

1380. We have already printed a lot of statistics, so we set tracing stats ← 0 to prevent them from
appearing again.

⟨Dump a couple more things and the closing check word 1380 ⟩ ≡
dump int (interaction); dump int (format ident); dump int (69069); tracing stats ← 0

This code is used in section 1356.

1381. ⟨Undump a couple more things and the closing check word 1381 ⟩ ≡
undump (batch mode)(error stop mode)(interaction); undump (0)(str ptr)(format ident); undump int (x);
if (x ̸= 69069) ∨ eof (fmt file) then goto bad fmt

This code is used in section 1357.

1382. ⟨Create the format ident , open the format file, and inform the user that dumping has
begun 1382 ⟩ ≡

selector ← new string ; print ("␣(preloaded␣format="); print (job name); print char ("␣");
print int (year); print char ("."); print int (month); print char ("."); print int (day); print char (")");
if interaction = batch mode then selector ← log only
else selector ← term and log ;
str room (1); format ident ← make string ; pack job name (format extension);
while ¬w open out (fmt file) do prompt file name ("format␣file␣name", format extension);
print nl ("Beginning␣to␣dump␣on␣file␣"); slow print (w make name string (fmt file)); flush string ;
print nl (""); slow print (format ident)

This code is used in section 1356.

1383. ⟨Close the format file 1383 ⟩ ≡
w close (fmt file)

This code is used in section 1356.

564 PART 51: THE MAIN PROGRAM X ETEX §1384

1384. The main program. This is it: the part of TEX that executes all those procedures we have
written.
Well—almost. Let’s leave space for a few more routines that we may have forgotten.

⟨Last-minute procedures 1387 ⟩

1385. We have noted that there are two versions of TEX82. One, called INITEX, has to be run first; it
initializes everything from scratch, without reading a format file, and it has the capability of dumping a
format file. The other one is called ‘VIRTEX’; it is a “virgin” program that needs to input a format file in
order to get started. VIRTEX typically has more memory capacity than INITEX, because it does not need the
space consumed by the auxiliary hyphenation tables and the numerous calls on primitive , etc.

The VIRTEX program cannot read a format file instantaneously, of course; the best implementations
therefore allow for production versions of TEX that not only avoid the loading routine for Pascal object
code, they also have a format file pre-loaded. This is impossible to do if we stick to standard Pascal; but
there is a simple way to fool many systems into avoiding the initialization, as follows: (1) We declare a global
integer variable called ready already . The probability is negligible that this variable holds any particular
value like 314159 when VIRTEX is first loaded. (2) After we have read in a format file and initialized
everything, we set ready already ← 314159. (3) Soon VIRTEX will print ‘*’, waiting for more input; and at
this point we interrupt the program and save its core image in some form that the operating system can
reload speedily. (4) When that core image is activated, the program starts again at the beginning; but now
ready already = 314159 and all the other global variables have their initial values too. The former chastity
has vanished!
In other words, if we allow ourselves to test the condition ready already = 314159, before ready already

has been assigned a value, we can avoid the lengthy initialization. Dirty tricks rarely pay off so handsomely.
On systems that allow such preloading, the standard program called TeX should be the one that has plain

format preloaded, since that agrees with The TEXbook. Other versions, e.g., AmSTeX, should also be provided
for commonly used formats.

⟨Global variables 13 ⟩ +≡
ready already : integer ; { a sacrifice of purity for economy }

§1386 X ETEX PART 51: THE MAIN PROGRAM 565

1386. Now this is really it: TEX starts and ends here.
The initial test involving ready already should be deleted if the Pascal runtime system is smart enough to

detect such a “mistake.”

begin { start here }
history ← fatal error stop ; { in case we quit during initialization }
t open out ; { open the terminal for output }
if ready already = 314159 then goto start of TEX ;
⟨Check the “constant” values for consistency 14 ⟩
if bad > 0 then
begin wterm ln (´Ouch−−−my␣internal␣constants␣have␣been␣clobbered!´, ´−−−case␣´, bad : 1);
goto final end ;
end;

initialize ; { set global variables to their starting values }
init if ¬get strings started then goto final end ;
init prim ; { call primitive for each primitive }
init str ptr ← str ptr ; init pool ptr ← pool ptr ; fix date and time ;
tini
ready already ← 314159;

start of TEX : ⟨ Initialize the output routines 55 ⟩;
⟨Get the first line of input and prepare to start 1391 ⟩;
history ← spotless ; { ready to go! }
main control ; { come to life }
final cleanup ; { prepare for death }

end of TEX : close files and terminate ;
final end : ready already ← 0;
end.

1387. Here we do whatever is needed to complete TEX’s job gracefully on the local operating system. The
code here might come into play after a fatal error; it must therefore consist entirely of “safe” operations
that cannot produce error messages. For example, it would be a mistake to call str room or make string at
this time, because a call on overflow might lead to an infinite loop. (Actually there’s one way to get error
messages, via prepare mag ; but that can’t cause infinite recursion.)
If final cleanup is bypassed, this program doesn’t bother to close the input files that may still be open.

⟨Last-minute procedures 1387 ⟩ ≡
procedure close files and terminate ;
var k: integer ; { all-purpose index }
begin ⟨Finish the extensions 1441 ⟩;
new line char ← −1;
stat if tracing stats > 0 then ⟨Output statistics about this job 1388 ⟩; tats
wake up terminal ; ⟨Finish the DVI file 680 ⟩;
if log opened then
begin wlog cr ; a close (log file); selector ← selector − 2;
if selector = term only then
begin print nl ("Transcript␣written␣on␣"); slow print (log name); print char (".");
end;

end;
end;

See also sections 1389, 1390, and 1392.

This code is used in section 1384.

566 PART 51: THE MAIN PROGRAM X ETEX §1388

1388. The present section goes directly to the log file instead of using print commands, because there’s
no need for these strings to take up str pool memory when a non-stat version of TEX is being used.

⟨Output statistics about this job 1388 ⟩ ≡
if log opened then
begin wlog ln (´␣´); wlog ln (´Here␣is␣how␣much␣of␣TeX´´s␣memory´, ´␣you␣used:´);
wlog (´␣´, str ptr − init str ptr : 1, ´␣string´);
if str ptr ̸= init str ptr + 1 then wlog (´s´);
wlog ln (´␣out␣of␣´,max strings − init str ptr : 1);
wlog ln (´␣´, pool ptr − init pool ptr : 1, ´␣string␣characters␣out␣of␣´, pool size − init pool ptr : 1);
wlog ln (´␣´, lo mem max −mem min +mem end − hi mem min + 2 : 1,

´␣words␣of␣memory␣out␣of␣´,mem end + 1−mem min : 1);
wlog ln (´␣´, cs count : 1, ´␣multiletter␣control␣sequences␣out␣of␣´, hash size : 1);
wlog (´␣´, fmem ptr : 1, ´␣words␣of␣font␣info␣for␣´, font ptr − font base : 1, ´␣font´);
if font ptr ̸= font base + 1 then wlog (´s´);
wlog ln (´,␣out␣of␣´, font mem size : 1, ´␣for␣´, font max − font base : 1);
wlog (´␣´, hyph count : 1, ´␣hyphenation␣exception´);
if hyph count ̸= 1 then wlog (´s´);
wlog ln (´␣out␣of␣´, hyph size : 1);
wlog ln (´␣´,max in stack : 1, ´i,´,max nest stack : 1, ´n,´,max param stack : 1, ´p,´,

max buf stack + 1 : 1, ´b,´,max save stack + 6 : 1, ´s␣stack␣positions␣out␣of␣´,
stack size : 1, ´i,´,nest size : 1, ´n,´, param size : 1, ´p,´, buf size : 1, ´b,´, save size : 1, ´s´);

end

This code is used in section 1387.

§1389 X ETEX PART 51: THE MAIN PROGRAM 567

1389. We get to the final cleanup routine when \end or \dump has been scanned and its all over.

⟨Last-minute procedures 1387 ⟩ +≡
procedure final cleanup ;
label exit ;
var c: small number ; { 0 for \end, 1 for \dump }
begin c← cur chr ;
if c ̸= 1 then new line char ← −1;
if job name = 0 then open log file ;
while input ptr > 0 do
if state = token list then end token list else end file reading ;

while open parens > 0 do
begin print ("␣)"); decr (open parens);
end;

if cur level > level one then
begin print nl ("("); print esc("end␣occurred␣"); print ("inside␣a␣group␣at␣level␣");
print int (cur level − level one); print char (")");
if eTeX ex then show save groups ;
end;

while cond ptr ̸= null do
begin print nl ("("); print esc("end␣occurred␣"); print ("when␣"); print cmd chr (if test , cur if);
if if line ̸= 0 then

begin print ("␣on␣line␣"); print int (if line);
end;

print ("␣was␣incomplete)"); if line ← if line field (cond ptr); cur if ← subtype (cond ptr);
temp ptr ← cond ptr ; cond ptr ← link (cond ptr); free node (temp ptr , if node size);
end;

if history ̸= spotless then
if ((history = warning issued) ∨ (interaction < error stop mode)) then

if selector = term and log then
begin selector ← term only ;
print nl ("(see␣the␣transcript␣file␣for␣additional␣information)");
selector ← term and log ;
end;

if c = 1 then
begin init for c← top mark code to split bot mark code do

if cur mark [c] ̸= null then delete token ref (cur mark [c]);
if sa mark ̸= null then

if do marks (destroy marks , 0, sa mark) then sa mark ← null ;
for c← last box code to vsplit code do flush node list (disc ptr [c]);
if last glue ̸= max halfword then delete glue ref (last glue);
store fmt file ; return; tini
print nl ("(\dump␣is␣performed␣only␣by␣INITEX)"); return;
end;

exit : end;

1390. ⟨Last-minute procedures 1387 ⟩ +≡
init procedure init prim ; { initialize all the primitives }
begin no new control sequence ← false ; first ← 0;
⟨Put each of TEX’s primitives into the hash table 252 ⟩;
no new control sequence ← true ;
end;
tini

568 PART 51: THE MAIN PROGRAM X ETEX §1391

1391. When we begin the following code, TEX’s tables may still contain garbage; the strings might not
even be present. Thus we must proceed cautiously to get bootstrapped in.
But when we finish this part of the program, TEX is ready to call on the main control routine to do its

work.

⟨Get the first line of input and prepare to start 1391 ⟩ ≡
begin ⟨ Initialize the input routines 361 ⟩;
⟨Enable ε-TEX, if requested 1451 ⟩
if (format ident = 0) ∨ (buffer [loc] = "&") then
begin if format ident ̸= 0 then initialize ; { erase preloaded format }
if ¬open fmt file then goto final end ;
if ¬load fmt file then
begin w close (fmt file); goto final end ;
end;

w close (fmt file);
while (loc < limit) ∧ (buffer [loc] = "␣") do incr (loc);
end;

if eTeX ex then wterm ln (´entering␣extended␣mode´);
if end line char inactive then decr (limit)
else buffer [limit]← end line char ;
fix date and time ;
random seed ← (microseconds ∗ 1000) + (epochseconds mod 1000000);
init randoms (random seed);
⟨Compute the magic offset 813 ⟩;
⟨ Initialize the print selector based on interaction 79 ⟩;
if (loc < limit) ∧ (cat code (buffer [loc]) ̸= escape) then start input ; { \input assumed }
end

This code is used in section 1386.

§1392 X ETEX PART 52: DEBUGGING 569

1392. Debugging. Once TEX is working, you should be able to diagnose most errors with the \show

commands and other diagnostic features. But for the initial stages of debugging, and for the revelation of
really deep mysteries, you can compile TEX with a few more aids, including the Pascal runtime checks and
its debugger. An additional routine called debug help will also come into play when you type ‘D’ after an
error message; debug help also occurs just before a fatal error causes TEX to succumb.
The interface to debug help is primitive, but it is good enough when used with a Pascal debugger that

allows you to set breakpoints and to read variables and change their values. After getting the prompt
‘debug #’, you type either a negative number (this exits debug help), or zero (this goes to a location where
you can set a breakpoint, thereby entering into dialog with the Pascal debugger), or a positive number m
followed by an argument n. The meaning of m and n will be clear from the program below. (If m = 13,
there is an additional argument, l.)

define breakpoint = 888 { place where a breakpoint is desirable }
⟨Last-minute procedures 1387 ⟩ +≡
debug procedure debug help ; { routine to display various things }
label breakpoint , exit ;
var k, l,m, n: integer ;
begin clear terminal ;
loop
begin wake up terminal ; print nl ("debug␣#␣(−1␣to␣exit):"); update terminal ; read (term in ,m);
if m < 0 then return
else if m = 0 then

begin goto breakpoint ;
{ go to every declared label at least once }

breakpoint : m← 0; @{´BREAKPOINT´@}
end

else begin read (term in , n);
case m of
⟨Numbered cases for debug help 1393 ⟩
othercases print ("?")
endcases;
end;

end;
exit : end;
gubed

570 PART 52: DEBUGGING X ETEX §1393

1393. ⟨Numbered cases for debug help 1393 ⟩ ≡
1: print word (mem [n]); { display mem [n] in all forms }
2: print int (info(n));
3: print int (link (n));
4: print word (eqtb [n]);
5: print word (font info [n]);
6: print word (save stack [n]);
7: show box (n); { show a box, abbreviated by show box depth and show box breadth }
8: begin breadth max ← 10000; depth threshold ← pool size − pool ptr − 10; show node list (n);

{ show a box in its entirety }
end;

9: show token list (n,null , 1000);
10: slow print (n);
11: check mem (n > 0); { check wellformedness; print new busy locations if n > 0 }
12: search mem (n); { look for pointers to n }
13: begin read (term in , l); print cmd chr (n, l);
end;

14: for k ← 0 to n do print (buffer [k]);
15: begin font in short display ← null font ; short display (n);

end;
16: panicking ← ¬panicking ;
This code is used in section 1392.

§1394 X ETEX PART 53: EXTENSIONS 571

1394. Extensions. The program above includes a bunch of “hooks” that allow further capabilities to
be added without upsetting TEX’s basic structure. Most of these hooks are concerned with “whatsit” nodes,
which are intended to be used for special purposes; whenever a new extension to TEX involves a new kind
of whatsit node, a corresponding change needs to be made to the routines below that deal with such nodes,
but it will usually be unnecessary to make many changes to the other parts of this program.
In order to demonstrate how extensions can be made, we shall treat ‘\write’, ‘\openout’, ‘\closeout’,

‘\immediate’, ‘\special’, and ‘\setlanguage’ as if they were extensions. These commands are actually
primitives of TEX, and they should appear in all implementations of the system; but let’s try to imagine
that they aren’t. Then the program below illustrates how a person could add them.
Sometimes, of course, an extension will require changes to TEX itself; no system of hooks could be complete

enough for all conceivable extensions. The features associated with ‘\write’ are almost all confined to the
following paragraphs, but there are small parts of the print ln and print char procedures that were introduced
specifically to \write characters. Furthermore one of the token lists recognized by the scanner is a write text ;
and there are a few other miscellaneous places where we have already provided for some aspect of \write.
The goal of a TEX extender should be to minimize alterations to the standard parts of the program, and to
avoid them completely if possible. He or she should also be quite sure that there’s no easy way to accomplish
the desired goals with the standard features that TEX already has. “Think thrice before extending,” because
that may save a lot of work, and it will also keep incompatible extensions of TEX from proliferating.

1395. First let’s consider the format of whatsit nodes that are used to represent the data associated with
\write and its relatives. Recall that a whatsit has type = whatsit node , and the subtype is supposed
to distinguish different kinds of whatsits. Each node occupies two or more words; the exact number is
immaterial, as long as it is readily determined from the subtype or other data.

We shall introduce five subtype values here, corresponding to the control sequences \openout, \write,
\closeout, \special, and \setlanguage. The second word of I/O whatsits has a write stream field that
identifies the write-stream number (0 to 15, or 16 for out-of-range and positive, or 17 for out-of-range and
negative). In the case of \write and \special, there is also a field that points to the reference count of a
token list that should be sent. In the case of \openout, we need three words and three auxiliary subfields to
hold the string numbers for name, area, and extension.

define write node size = 2 { number of words in a write/whatsit node }
define open node size = 3 { number of words in an open/whatsit node }
define open node = 0 { subtype in whatsits that represent files to \openout }
define write node = 1 { subtype in whatsits that represent things to \write }
define close node = 2 { subtype in whatsits that represent streams to \closeout }
define special node = 3 { subtype in whatsits that represent \special things }
define latespecial node = 4 { subtype in whatsits that represent \special things }
define language node = 5 { subtype in whatsits that change the current language }
define what lang (#) ≡ link (#+ 1) { language number, in the range 0 . . 255 }
define what lhm (#) ≡ type (#+ 1) {minimum left fragment, in the range 1 . . 63 }
define what rhm (#) ≡ subtype (#+ 1) {minimum right fragment, in the range 1 . . 63 }
define write tokens (#) ≡ link (#+ 1) { reference count of token list to write }
define write stream (#) ≡ info(#+ 1) { stream number (0 to 17) }
define open name (#) ≡ link (#+ 1) { string number of file name to open }
define open area (#) ≡ info(#+ 2) { string number of file area for open name }
define open ext (#) ≡ link (#+ 2) { string number of file extension for open name }

572 PART 53: EXTENSIONS X ETEX §1396

1396. The sixteen possible \write streams are represented by the write file array. The jth file is open if
and only if write open [j] = true . The last two streams are special; write open [16] represents a stream number
greater than 15, while write open [17] represents a negative stream number, and both of these variables are
always false .

⟨Global variables 13 ⟩ +≡
write file : array [0 . . 15] of alpha file ;
write open : array [0 . . 17] of boolean ;

1397. ⟨ Set initial values of key variables 23 ⟩ +≡
for k ← 0 to 17 do write open [k]← false ;

1398. Extensions might introduce new command codes; but it’s best to use extension with a modifier,
whenever possible, so that main control stays the same.

define immediate code = 5 { command modifier for \immediate }
define set language code = 6 { command modifier for \setlanguage }
define pdftex first extension code = 7
define pdf save pos node ≡ pdftex first extension code + 16
define reset timer code ≡ pdftex first extension code + 26
define set random seed code ≡ pdftex first extension code + 28
define pic file code = 41 { command modifier for \XeTeXpicfile, skipping codes pdfTeX might use }
define pdf file code = 42 { command modifier for \XeTeXpdffile }
define glyph code = 43 { command modifier for \XeTeXglyph }
define XeTeX input encoding extension code = 44
define XeTeX default encoding extension code = 45
define XeTeX linebreak locale extension code = 46

⟨Put each of TEX’s primitives into the hash table 252 ⟩ +≡
primitive ("openout", extension , open node);
primitive ("write", extension ,write node); write loc ← cur val ;
primitive ("closeout", extension , close node);
primitive ("special", extension , special node);
primitive ("immediate", extension , immediate code);
primitive ("setlanguage", extension , set language code);
primitive ("resettimer", extension , reset timer code);
primitive ("setrandomseed", extension , set random seed code);

1399. The \XeTeXpicfile and \XeTeXpdffile primitives are only defined in extended mode.

⟨Generate all ε-TEX primitives 1399 ⟩ ≡
primitive ("XeTeXpicfile", extension , pic file code);
primitive ("XeTeXpdffile", extension , pdf file code);
primitive ("XeTeXglyph", extension , glyph code);
primitive ("XeTeXlinebreaklocale", extension ,XeTeX linebreak locale extension code);
primitive ("XeTeXinterchartoks", assign toks ,XeTeX inter char loc);

primitive ("pdfsavepos", extension , pdf save pos node);

See also sections 1452, 1467, 1473, 1476, 1479, 1482, 1485, 1494, 1496, 1499, 1502, 1507, 1511, 1558, 1570, 1573, 1581, 1589,
1612, 1616, 1620, 1672, and 1675.

This code is used in section 1451.

1400. The variable write loc just introduced is used to provide an appropriate error message in case of
“runaway” write texts.

⟨Global variables 13 ⟩ +≡
write loc : pointer ; { eqtb address of \write }

§1401 X ETEX PART 53: EXTENSIONS 573

1401. ⟨Cases of print cmd chr for symbolic printing of primitives 253 ⟩ +≡
extension : case chr code of

open node : print esc("openout");
write node : print esc("write");
close node : print esc("closeout");
special node : print esc("special");
immediate code : print esc("immediate");
set language code : print esc("setlanguage");
pdf save pos node : print esc("pdfsavepos");
reset timer code : print esc("resettimer");
set random seed code : print esc("setrandomseed");
pic file code : print esc("XeTeXpicfile");
pdf file code : print esc("XeTeXpdffile");
glyph code : print esc("XeTeXglyph");
XeTeX linebreak locale extension code : print esc("XeTeXlinebreaklocale");
XeTeX input encoding extension code : print esc("XeTeXinputencoding");
XeTeX default encoding extension code : print esc("XeTeXdefaultencoding");
othercases print ("[unknown␣extension!]")
endcases;

1402. When an extension command occurs in main control , in any mode, the do extension routine is
called.

⟨Cases of main control that are for extensions to TEX 1402 ⟩ ≡
any mode (extension): do extension ;

This code is used in section 1099.

1403. ⟨Declare action procedures for use by main control 1097 ⟩ +≡
⟨Declare procedures needed in do extension 1404 ⟩
procedure do extension ;
var i, j, k: integer ; { all-purpose integers }
p, q, r: pointer ; { all-purpose pointers }

begin case cur chr of
open node : ⟨ Implement \openout 1406 ⟩;
write node : ⟨ Implement \write 1407 ⟩;
close node : ⟨ Implement \closeout 1408 ⟩;
special node : ⟨ Implement \special 1409 ⟩;
immediate code : ⟨ Implement \immediate 1438 ⟩;
set language code : ⟨ Implement \setlanguage 1440 ⟩;
pdf save pos node : ⟨ Implement \pdfsavepos 1450 ⟩;
reset timer code : ⟨ Implement \resettimer 1414 ⟩;
set random seed code : ⟨ Implement \setrandomseed 1413 ⟩;
pic file code : ⟨ Implement \XeTeXpicfile 1442 ⟩;
pdf file code : ⟨ Implement \XeTeXpdffile 1443 ⟩;
glyph code : ⟨ Implement \XeTeXglyph 1444 ⟩;
XeTeX input encoding extension code : ⟨ Implement \XeTeXinputencoding 1446 ⟩;
XeTeX default encoding extension code : ⟨ Implement \XeTeXdefaultencoding 1447 ⟩;
XeTeX linebreak locale extension code : ⟨ Implement \XeTeXlinebreaklocale 1448 ⟩;
othercases confusion ("ext1")
endcases;
end;

574 PART 53: EXTENSIONS X ETEX §1404

1404. Here is a subroutine that creates a whatsit node having a given subtype and a given number of
words. It initializes only the first word of the whatsit, and appends it to the current list.

⟨Declare procedures needed in do extension 1404 ⟩ ≡
procedure new whatsit (s : small number ; w : small number);
var p: pointer ; { the new node }
begin p← get node (w); type (p)← whatsit node ; subtype (p)← s; link (tail)← p; tail ← p;
end;

See also sections 1405, 1445, and 1456.

This code is used in section 1403.

1405. The next subroutine uses cur chr to decide what sort of whatsit is involved, and also inserts a
write stream number.

⟨Declare procedures needed in do extension 1404 ⟩ +≡
procedure new write whatsit (w : small number);
begin new whatsit (cur chr , w);
if w ̸= write node size then scan four bit int
else begin scan int ;
if cur val < 0 then cur val ← 17
else if cur val > 15 then cur val ← 16;
end;

write stream (tail)← cur val ;
end;

1406. ⟨ Implement \openout 1406 ⟩ ≡
begin new write whatsit (open node size); scan optional equals ; scan file name ;
open name (tail)← cur name ; open area (tail)← cur area ; open ext (tail)← cur ext ;
end

This code is used in section 1403.

1407. When ‘\write 12{...}’ appears, we scan the token list ‘{...}’ without expanding its macros; the
macros will be expanded later when this token list is rescanned.

⟨ Implement \write 1407 ⟩ ≡
begin k ← cur cs ; new write whatsit (write node size);
cur cs ← k; p← scan toks (false , false); write tokens (tail)← def ref ;
end

This code is used in section 1403.

1408. ⟨ Implement \closeout 1408 ⟩ ≡
begin new write whatsit (write node size); write tokens (tail)← null ;
end

This code is used in section 1403.

§1409 X ETEX PART 53: EXTENSIONS 575

1409. When ‘\special{...}’ appears, we expand the macros in the token list as in \xdef and \mark.
When marked with shipout, we keep tokens unexpanded for now.

⟨ Implement \special 1409 ⟩ ≡
begin if scan keyword ("shipout") then
begin new whatsit (latespecial node ,write node size); write stream (tail)← null ;
p← scan toks (false , false); write tokens (tail)← def ref ;
end

else begin new whatsit (special node ,write node size); write stream (tail)← null ;
p← scan toks (false , true); write tokens (tail)← def ref ;
end;

end

This code is used in section 1403.

1410. define call func(#) ≡
begin if # ̸= 0 then do nothing
end

define flushable (#) ≡ (# = str ptr − 1)
define max integer ≡ ˝7FFFFFFF { 231 − 1 }

procedure flush str (s : str number); { flush a string if possible }
begin if flushable (s) then flush string ;
end;

function tokens to string (p : pointer): str number ; { return a string from tokens list }
begin if selector = new string then
pdf error ("tokens", "tokens_to_string()␣called␣while␣selector␣=␣new_string");

old setting ← selector ; selector ← new string ; show token list (link (p),null , pool size − pool ptr);
selector ← old setting ; tokens to string ← make string ;
end;

procedure scan pdf ext toks ;
begin call func(scan toks (false , true)); { like \special }
end;

procedure compare strings ; { to implement \strcmp }
label done ;
var s1 , s2 : str number ; i1 , i2 , j1 , j2 : pool pointer ; save cur cs : pointer ;
begin save cur cs ← cur cs ; call func(scan toks (false , true)); s1 ← tokens to string (def ref);
delete token ref (def ref); cur cs ← save cur cs ; call func(scan toks (false , true));
s2 ← tokens to string (def ref); delete token ref (def ref); i1 ← str start macro(s1);
j1 ← str start macro(s1 + 1); i2 ← str start macro(s2); j2 ← str start macro(s2 + 1);
while (i1 < j1) ∧ (i2 < j2) do
begin if str pool [i1] < str pool [i2] then

begin cur val ← −1; goto done ;
end;

if str pool [i1] > str pool [i2] then
begin cur val ← 1; goto done ;
end;

incr (i1); incr (i2);
end;

if (i1 = j1) ∧ (i2 = j2) then cur val ← 0
else if i1 < j1 then cur val ← 1
else cur val ← −1;

done : flush str (s2); flush str (s1); cur val level ← int val ;
end;

576 PART 53: EXTENSIONS X ETEX §1411

1411. ⟨Declare procedures that need to be declared forward for pdfTEX 1411 ⟩ ≡
function get microinterval : integer ;
var s,m: integer ; { seconds and microseconds }
begin seconds and micros (s,m);
if (s− epochseconds) > 32767 then get microinterval ← max integer
else if (microseconds > m) then

get microinterval ← ((s−1−epochseconds)∗65536)+(((m+1000000−microseconds)/100)∗65536)/10000
else get microinterval ← ((s− epochseconds) ∗ 65536) + (((m−microseconds)/100) ∗ 65536)/10000;

end;

This code is used in section 198.

1412. ⟨ Set initial values of key variables 23 ⟩ +≡
seconds and micros (epochseconds ,microseconds); init start time ;

1413. Negative random seed values are silently converted to positive ones

⟨ Implement \setrandomseed 1413 ⟩ ≡
begin scan int ;
if cur val < 0 then negate (cur val);
random seed ← cur val ; init randoms (random seed);
end

This code is used in section 1403.

1414. ⟨ Implement \resettimer 1414 ⟩ ≡
begin seconds and micros (epochseconds ,microseconds);
end

This code is used in section 1403.

§1415 X ETEX PART 53: EXTENSIONS 577

1415. Each new type of node that appears in our data structure must be capable of being displayed,
copied, destroyed, and so on. The routines that we need for write-oriented whatsits are somewhat like those
for mark nodes; other extensions might, of course, involve more subtlety here.

⟨Basic printing procedures 57 ⟩ +≡
procedure print write whatsit (s : str number ; p : pointer);
begin print esc(s);
if write stream (p) < 16 then print int (write stream (p))
else if write stream (p) = 16 then print char ("*")
else print char ("−");

end;
procedure print native word (p : pointer);
var i, c, cc : integer ;
begin for i← 0 to native length (p)− 1 do
begin c← get native char (p, i);
if (c ≥ ˝D800) ∧ (c ≤ ˝DBFF) then

begin if i < native length (p)− 1 then
begin cc ← get native char (p, i+ 1);
if (cc ≥ ˝DC00) ∧ (cc ≤ ˝DFFF) then
begin c← ˝10000+ (c− ˝D800) ∗ ˝400+ (cc − ˝DC00); print char (c); incr (i);
end

else print (".");
end

else print (".");
end

else print char (c);
end

end;

578 PART 53: EXTENSIONS X ETEX §1416

1416. ⟨Display the whatsit node p 1416 ⟩ ≡
case subtype (p) of
open node : begin print write whatsit ("openout", p); print char ("=");
print file name (open name (p), open area (p), open ext (p));
end;

write node : begin print write whatsit ("write", p); print mark (write tokens (p));
end;

close node : print write whatsit ("closeout", p);
special node : begin print esc("special"); print mark (write tokens (p));
end;

latespecial node : begin print esc("special"); print ("␣shipout"); print mark (write tokens (p));
end;

language node : begin print esc("setlanguage"); print int (what lang (p)); print ("␣(hyphenmin␣");
print int (what lhm (p)); print char (","); print int (what rhm (p)); print char (")");
end;

pdf save pos node : print esc("pdfsavepos");
native word node ,native word node AT : begin print esc(font id text (native font (p))); print char ("␣");
print native word (p);
end;

glyph node : begin print esc(font id text (native font (p))); print ("␣glyph#"); print int (native glyph (p));
end;

pic node , pdf node : begin if subtype (p) = pic node then print esc("XeTeXpicfile")
else print esc("XeTeXpdffile");
print ("␣""");
for i← 0 to pic path length (p)− 1 do print visible char (pic path byte (p, i));
print ("""");
end;

othercases print ("whatsit?")
endcases

This code is used in section 209.

§1417 X ETEX PART 53: EXTENSIONS 579

1417. Picture nodes are tricky in that they are variable size.

define total pic node size (#) ≡ (pic node size + (pic path length (#) + sizeof (memory word) − 1) div
sizeof (memory word))

⟨Make a partial copy of the whatsit node p and make r point to it; set words to the number of initial words
not yet copied 1417 ⟩ ≡

case subtype (p) of
open node : begin r ← get node (open node size); words ← open node size ;
end;

write node , special node , latespecial node : begin r ← get node (write node size);
add token ref (write tokens (p)); words ← write node size ;
end;

close node , language node : begin r ← get node (small node size); words ← small node size ;
end;

native word node ,native word node AT : begin words ← native size (p); r ← get node (words);
while words > 0 do

begin decr (words); mem [r + words]← mem [p+ words];
end;

native glyph info ptr (r)← null ptr ; native glyph count (r)← 0; copy native glyph info(p, r);
end;

glyph node : begin r ← get node (glyph node size); words ← glyph node size ;
end;

pic node , pdf node : begin words ← total pic node size (p); r ← get node (words);
end;

pdf save pos node : r ← get node (small node size);
othercases confusion ("ext2")
endcases

This code is used in sections 232 and 1544.

1418. ⟨Wipe out the whatsit node p and goto done 1418 ⟩ ≡
begin case subtype (p) of
open node : free node (p, open node size);
write node , special node , latespecial node : begin delete token ref (write tokens (p));
free node (p,write node size); goto done ;
end;

close node , language node : free node (p, small node size);
native word node ,native word node AT : begin free native glyph info(p); free node (p,native size (p));
end;

glyph node : free node (p, glyph node size);
pic node , pdf node : free node (p, total pic node size (p));
pdf save pos node : free node (p, small node size);
othercases confusion ("ext3")
endcases;
goto done ;
end

This code is used in section 228.

580 PART 53: EXTENSIONS X ETEX §1419

1419. ⟨ Incorporate a whatsit node into a vbox 1419 ⟩ ≡
begin if (subtype (p) = pic node) ∨ (subtype (p) = pdf node) then
begin x← x+ d+ height (p); d← depth (p);
if width (p) > w then w ← width (p);
end;

end

This code is used in section 711.

§1420 X ETEX PART 53: EXTENSIONS 581

1420. ⟨ Incorporate a whatsit node into an hbox 1420 ⟩ ≡
begin case subtype (p) of
native word node ,native word node AT : begin

{ merge with any following word fragments in same font, discarding discretionary breaks }
if (q ̸= r + list offset) ∧ (type (q) = disc node) then k ← replace count (q)
else k ← 0;
while (link (q) ̸= p) do
begin decr (k); q ← link (q); { bring q up in preparation for deletion of nodes starting at p }
if type (q) = disc node then k ← replace count (q);
end;

pp ← link (p);
restart : if (k ≤ 0) ∧ (pp ̸= null) ∧ (¬is char node (pp)) then

begin if (type (pp) = whatsit node)∧(is native word subtype (pp))∧(native font (pp) = native font (p))
then

begin pp ← link (pp); goto restart ;
end

else if (type (pp) = disc node) then
begin ppp ← link (pp);
if is native word node (ppp) ∧ (native font (ppp) = native font (p)) then
begin pp ← link (ppp); goto restart ;
end

end
end; { now pp points to the non-native word node that ended the chain, or null }
{ we can just check type(p)=whatsit node below, as we know that the chain contains only
discretionaries and native word nodes, no other whatsits or char node s }

if (pp ̸= link (p)) then
begin { found a chain of at least two pieces starting at p }
total chars ← 0; p← link (q); { the first fragment }
while (p ̸= pp) do
begin if (type (p) = whatsit node) then total chars ← total chars + native length (p);

{ accumulate char count }
ppp ← p; { remember last node seen }
p← link (p); { point to next fragment or discretionary or terminator }
end;

p← link (q); { the first fragment again }
pp ← new native word node (native font (p), total chars); { make new node for merged word }
subtype (pp)← subtype (p); link (q)← pp ; { link to preceding material }
link (pp)← link (ppp); { attach remainder of hlist to it }
link (ppp)← null ; { and detach from the old fragments }
{ copy the chars into new node }

total chars ← 0; ppp ← p;
repeat if (type (ppp) = whatsit node) then

for k ← 0 to native length (ppp)− 1 do
begin set native char (pp , total chars , get native char (ppp , k)); incr (total chars);
end;

ppp ← link (ppp);
until (ppp = null);
flush node list (p); { delete the fragments }
p← link (q); { update p to point to the new node }
set native metrics (p,XeTeX use glyph metrics); { and measure it (i.e., re-do the OT layout) }
end; { now incorporate the native word node measurements into the box we’re packing }

if height (p) > h then h← height (p);

582 PART 53: EXTENSIONS X ETEX §1420

if depth (p) > d then d← depth (p);
x← x+ width (p);
end;

glyph node , pic node , pdf node : begin if height (p) > h then h← height (p);
if depth (p) > d then d← depth (p);
x← x+ width (p);
end;

othercases do nothing
endcases;
end

This code is used in section 691.

1421. ⟨Let d be the width of the whatsit p, and goto found if “visible” 1421 ⟩ ≡
if (is native word subtype (p)) ∨ (subtype (p) = glyph node) ∨ (subtype (p) = pic node) ∨ (subtype (p) =

pdf node) then
begin d← width (p); goto found ;
end

else d← 0

This code is used in section 1201.

1422. define adv past linebreak (#) ≡ if subtype (#) = language node then
begin cur lang ← what lang (#); l hyf ← what lhm (#); r hyf ← what rhm (#); set hyph index ;
end

else if (is native word subtype (#)) ∨ (subtype (#) = glyph node) ∨ (subtype (#) =
pic node) ∨ (subtype (#) = pdf node) then

begin act width ← act width + width (#);
end

⟨Advance past a whatsit node in the line break loop 1422 ⟩ ≡ adv past linebreak (cur p)

This code is used in section 914.

1423. define adv past prehyph (#) ≡ if subtype (#) = language node then
begin cur lang ← what lang (#); l hyf ← what lhm (#); r hyf ← what rhm (#); set hyph index ;
end

⟨Advance past a whatsit node in the pre-hyphenation loop 1423 ⟩ ≡ adv past prehyph (s)

This code is used in section 949.

1424. ⟨Prepare to move whatsit p to the current page, then goto contribute 1424 ⟩ ≡
begin if (subtype (p) = pic node) ∨ (subtype (p) = pdf node) then
begin page total ← page total + page depth + height (p); page depth ← depth (p);
end;

goto contribute ;
end

This code is used in section 1054.

1425. ⟨Process whatsit p in vert break loop, goto not found 1425 ⟩ ≡
begin if (subtype (p) = pic node) ∨ (subtype (p) = pdf node) then
begin cur height ← cur height + prev dp + height (p); prev dp ← depth (p);
end;

goto not found ;
end

This code is used in section 1027.

§1426 X ETEX PART 53: EXTENSIONS 583

1426. ⟨Output the whatsit node p in a vlist 1426 ⟩ ≡
begin case subtype (p) of
glyph node : begin cur v ← cur v + height (p); cur h ← left edge ; synch h ; synch v ;

{ Sync DVI state to TeX state }
f ← native font (p);
if f ̸= dvi f then ⟨Change font dvi f to f 659 ⟩;
dvi out (set glyphs); dvi four (0); { width }
dvi two(1); { glyph count }
dvi four (0); { x-offset as fixed point }
dvi four (0); { y-offset as fixed point }
dvi two(native glyph (p)); cur v ← cur v + depth (p); cur h ← left edge ;
end;

pic node , pdf node : begin save h ← dvi h ; save v ← dvi v ; cur v ← cur v + height (p); pic out (p);
dvi h ← save h ; dvi v ← save v ; cur v ← save v + depth (p); cur h ← left edge ;
end;

pdf save pos node : ⟨ Save current position to pdf last x pos , pdf last y pos 1427 ⟩;
othercases out what (p)
endcases
end

This code is used in section 669.

1427. ⟨ Save current position to pdf last x pos , pdf last y pos 1427 ⟩ ≡
begin pdf last x pos ← cur h + 4736286; pdf last y pos ← cur page height − cur v − 4736286;
end

This code is used in sections 1426 and 1430.

1428. ⟨Calculate page dimensions and margins 1428 ⟩ ≡
cur h offset ← h offset + (unity ∗ 7227)/100; cur v offset ← v offset + (unity ∗ 7227)/100;
if pdf page width ̸= 0 then cur page width ← pdf page width
else cur page width ← width (p) + 2 ∗ cur h offset ;
if pdf page height ̸= 0 then cur page height ← pdf page height
else cur page height ← height (p) + depth (p) + 2 ∗ cur v offset

This code is used in section 653.

1429. ⟨Global variables 13 ⟩ +≡
cur page width : scaled ; {width of page being shipped }
cur page height : scaled ; { height of page being shipped }
cur h offset : scaled ; { horizontal offset of page being shipped }
cur v offset : scaled ; { vertical offset of page being shipped }

584 PART 53: EXTENSIONS X ETEX §1430

1430. ⟨Output the whatsit node p in an hlist 1430 ⟩ ≡
begin case subtype (p) of
native word node ,native word node AT , glyph node : begin synch h ; synch v ;

{ Sync DVI state to TeX state }
f ← native font (p);
if f ̸= dvi f then ⟨Change font dvi f to f 659 ⟩;
if subtype (p) = glyph node then

begin dvi out (set glyphs); dvi four (width (p)); dvi two(1); { glyph count }
dvi four (0); { x-offset as fixed point }
dvi four (0); { y-offset as fixed point }
dvi two(native glyph (p)); cur h ← cur h + width (p);
end

else begin if subtype (p) = native word node AT then
begin if (native length (p) > 0) ∨ (native glyph info ptr (p) ̸= null ptr) then
begin dvi out (set text and glyphs); len ← native length (p); dvi two(len);
for k ← 0 to len − 1 do
begin dvi two(get native char (p, k));
end;

len ← make xdv glyph array data (p);
for k ← 0 to len − 1 do dvi out (xdv buffer byte (k));
end

end
else begin if native glyph info ptr (p) ̸= null ptr then

begin dvi out (set glyphs); len ← make xdv glyph array data (p);
for k ← 0 to len − 1 do dvi out (xdv buffer byte (k));
end

end;
cur h ← cur h + width (p);
end;

dvi h ← cur h ;
end;

pic node , pdf node : begin save h ← dvi h ; save v ← dvi v ; cur v ← base line ; edge ← cur h +width (p);
pic out (p); dvi h ← save h ; dvi v ← save v ; cur h ← edge ; cur v ← base line ;
end;

pdf save pos node : ⟨ Save current position to pdf last x pos , pdf last y pos 1427 ⟩;
othercases out what (p)
endcases
end

This code is used in section 660.

§1431 X ETEX PART 53: EXTENSIONS 585

1431. After all this preliminary shuffling, we come finally to the routines that actually send out the
requested data. Let’s do \special first (it’s easier).

⟨Declare procedures needed in hlist out , vlist out 1431 ⟩ ≡
procedure special out (p : pointer);
var old setting : 0 . . max selector ; { holds print selector }
k: pool pointer ; { index into str pool }
h: halfword ; q, r: pointer ; { temporary variables for list manipulation }
old mode : integer ; { saved mode }

begin synch h ; synch v ;
doing special ← true ; old setting ← selector ;
if subtype (p) = latespecial node then
begin ⟨Expand macros in the token list and make link (def ref) point to the result 1434 ⟩;
h← def ref ;
end

else h← write tokens (p);
selector ← new string ; show token list (link (h),null , pool size − pool ptr); selector ← old setting ;
str room (1);
if cur length < 256 then
begin dvi out (xxx1); dvi out (cur length);
end

else begin dvi out (xxx4); dvi four (cur length);
end;

for k ← str start macro(str ptr) to pool ptr − 1 do dvi out (so(str pool [k]));
pool ptr ← str start macro(str ptr); { erase the string }
if subtype (p) = latespecial node then flush list (def ref);
doing special ← false ;
end;

See also sections 1433, 1436, 1529, and 1533.

This code is used in section 655.

1432. To write a token list, we must run it through TEX’s scanner, expanding macros and \the and
\number, etc. This might cause runaways, if a delimited macro parameter isn’t matched, and runaways
would be extremely confusing since we are calling on TEX’s scanner in the middle of a \shipout command.
Therefore we will put a dummy control sequence as a “stopper,” right after the token list. This control
sequence is artificially defined to be \outer.

⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
text (end write)← "endwrite"; eq level (end write)← level one ; eq type (end write)← outer call ;
equiv (end write)← null ;

586 PART 53: EXTENSIONS X ETEX §1433

1433. ⟨Declare procedures needed in hlist out , vlist out 1431 ⟩ +≡
procedure write out (p : pointer);

var old setting : 0 . . max selector ; { holds print selector }
old mode : integer ; { saved mode }
j: small number ; {write stream number }
k: integer ; q, r: pointer ; { temporary variables for list manipulation }

begin ⟨Expand macros in the token list and make link (def ref) point to the result 1434 ⟩;
old setting ← selector ; j ← write stream (p);
if write open [j] then selector ← j
else begin {write to the terminal if file isn’t open }
if (j = 17) ∧ (selector = term and log) then selector ← log only ;
print nl ("");
end;

token show (def ref); print ln ; flush list (def ref); selector ← old setting ;
end;

1434. The final line of this routine is slightly subtle; at least, the author didn’t think about it until getting
burnt! There is a used-up token list on the stack, namely the one that contained end write token . (We insert
this artificial ‘\endwrite’ to prevent runaways, as explained above.) If it were not removed, and if there
were numerous writes on a single page, the stack would overflow.

define end write token ≡ cs token flag + end write

⟨Expand macros in the token list and make link (def ref) point to the result 1434 ⟩ ≡
q ← get avail ; info(q)← right brace token + "}";
r ← get avail ; link (q)← r; info(r)← end write token ; ins list (q);
begin token list (write tokens (p),write text);
q ← get avail ; info(q)← left brace token + "{"; ins list (q);
{ now we’re ready to scan ‘{⟨ token list ⟩} \endwrite’ }

old mode ← mode ; mode ← 0; { disable \prevdepth, \spacefactor, \lastskip, \prevgraf }
cur cs ← write loc ; q ← scan toks (false , true); { expand macros, etc. }
get token ; if cur tok ̸= end write token then ⟨Recover from an unbalanced write command 1435 ⟩;
mode ← old mode ; end token list { conserve stack space }

This code is used in sections 1431 and 1433.

1435. ⟨Recover from an unbalanced write command 1435 ⟩ ≡
begin print err ("Unbalanced␣write␣command");
help2 ("On␣this␣page␣there´s␣a␣\write␣with␣fewer␣real␣{´s␣than␣}´s.")
("I␣can´t␣handle␣that␣very␣well;␣good␣luck."); error ;
repeat get token ;
until cur tok = end write token ;
end

This code is used in section 1434.

§1436 X ETEX PART 53: EXTENSIONS 587

1436. The out what procedure takes care of outputting whatsit nodes for vlist out and hlist out .

⟨Declare procedures needed in hlist out , vlist out 1431 ⟩ +≡
procedure pic out (p : pointer);
var old setting : 0 . . max selector ; { holds print selector }
i: integer ; k: pool pointer ; { index into str pool }

begin synch h ; synch v ; old setting ← selector ; selector ← new string ; print ("pdf:image␣");
print ("matrix␣"); print scaled (pic transform1 (p)); print ("␣"); print scaled (pic transform2 (p));
print ("␣"); print scaled (pic transform3 (p)); print ("␣"); print scaled (pic transform4 (p)); print ("␣");
print scaled (pic transform5 (p)); print ("␣"); print scaled (pic transform6 (p)); print ("␣");
print ("page␣"); print int (pic page (p)); print ("␣");
case pic pdf box (p) of
pdfbox crop : print ("pagebox␣cropbox␣");
pdfbox media : print ("pagebox␣mediabox␣");
pdfbox bleed : print ("pagebox␣bleedbox␣");
pdfbox art : print ("pagebox␣artbox␣");
pdfbox trim : print ("pagebox␣trimbox␣");
others : do nothing ;
endcases; print ("(");
for i← 0 to pic path length (p)− 1 do print visible char (pic path byte (p, i));
print (")"); selector ← old setting ;
if cur length < 256 then
begin dvi out (xxx1); dvi out (cur length);
end

else begin dvi out (xxx4); dvi four (cur length);
end;

for k ← str start macro(str ptr) to pool ptr − 1 do dvi out (so(str pool [k]));
pool ptr ← str start macro(str ptr); { erase the string }
end;

procedure out what (p : pointer);
var j: small number ; {write stream number }
begin case subtype (p) of
open node ,write node , close node : ⟨Do some work that has been queued up for \write 1437 ⟩;
special node , latespecial node : special out (p);
language node : do nothing ;
othercases confusion ("ext4")
endcases;
end;

588 PART 53: EXTENSIONS X ETEX §1437

1437. We don’t implement \write inside of leaders. (The reason is that the number of times a leader
box appears might be different in different implementations, due to machine-dependent rounding in the glue
calculations.)

⟨Do some work that has been queued up for \write 1437 ⟩ ≡
if ¬doing leaders then
begin j ← write stream (p);
if subtype (p) = write node then write out (p)
else begin if write open [j] then a close (write file [j]);

if subtype (p) = close node then write open [j]← false
else if j < 16 then

begin cur name ← open name (p); cur area ← open area (p); cur ext ← open ext (p);
if cur ext = "" then cur ext ← ".tex";
pack cur name ;
while ¬a open out (write file [j]) do prompt file name ("output␣file␣name", ".tex");
write open [j]← true ;
end;

end;
end

This code is used in section 1436.

1438. The presence of ‘\immediate’ causes the do extension procedure to descend to one level of recursion.
Nothing happens unless \immediate is followed by ‘\openout’, ‘\write’, or ‘\closeout’.

⟨ Implement \immediate 1438 ⟩ ≡
begin get x token ;
if (cur cmd = extension) ∧ (cur chr ≤ close node) then
begin p← tail ; do extension ; { append a whatsit node }
out what (tail); { do the action immediately }
flush node list (tail); tail ← p; link (p)← null ;
end

else back input ;
end

This code is used in section 1403.

1439. The \language extension is somewhat different. We need a subroutine that comes into play when
a character of a non-clang language is being appended to the current paragraph.

⟨Declare action procedures for use by main control 1097 ⟩ +≡
procedure fix language ;
var l: ASCII code ; { the new current language }
begin if language ≤ 0 then l← 0
else if language > 255 then l← 0
else l← language ;

if l ̸= clang then
begin new whatsit (language node , small node size); what lang (tail)← l; clang ← l;
what lhm (tail)← norm min (left hyphen min); what rhm (tail)← norm min (right hyphen min);
end;

end;

§1440 X ETEX PART 53: EXTENSIONS 589

1440. ⟨ Implement \setlanguage 1440 ⟩ ≡
if abs (mode) ̸= hmode then report illegal case
else begin new whatsit (language node , small node size); scan int ;
if cur val ≤ 0 then clang ← 0
else if cur val > 255 then clang ← 0

else clang ← cur val ;
what lang (tail)← clang ; what lhm (tail)← norm min (left hyphen min);
what rhm (tail)← norm min (right hyphen min);
end

This code is used in section 1403.

1441. ⟨Finish the extensions 1441 ⟩ ≡
terminate font manager ;
for k ← 0 to 15 do
if write open [k] then a close (write file [k])

This code is used in section 1387.

1442. ⟨ Implement \XeTeXpicfile 1442 ⟩ ≡
if abs (mode) = mmode then report illegal case
else load picture (false)

This code is used in section 1403.

1443. ⟨ Implement \XeTeXpdffile 1443 ⟩ ≡
if abs (mode) = mmode then report illegal case
else load picture (true)

This code is used in section 1403.

1444. ⟨ Implement \XeTeXglyph 1444 ⟩ ≡
begin if abs (mode) = vmode then
begin back input ; new graf (true);
end

else if abs (mode) = mmode then report illegal case
else begin if is native font (cur font) then

begin new whatsit (glyph node , glyph node size); scan int ;
if (cur val < 0) ∨ (cur val > 65535) then
begin print err ("Bad␣glyph␣number");
help2 ("A␣glyph␣number␣must␣be␣between␣0␣and␣65535.")
("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

native font (tail)← cur font ; native glyph (tail)← cur val ;
set native glyph metrics (tail ,XeTeX use glyph metrics);
end

else not native font error (extension , glyph code , cur font);
end

end

This code is used in section 1403.

590 PART 53: EXTENSIONS X ETEX §1445

1445. Load a picture file and handle following keywords.

define calc min and max ≡
begin xmin ← 1000000.0; xmax ← −xmin ; ymin ← xmin ; ymax ← xmax ;
for i← 0 to 3 do
begin if xCoord (corners [i]) < xmin then xmin ← xCoord (corners [i]);
if xCoord (corners [i]) > xmax then xmax ← xCoord (corners [i]);
if yCoord (corners [i]) < ymin then ymin ← yCoord (corners [i]);
if yCoord (corners [i]) > ymax then ymax ← yCoord (corners [i]);
end;

end
define update corners ≡

for i← 0 to 3 do transform point (addressof (corners [i]), addressof (t2))
define do size requests ≡

begin { calculate current width and height }
calc min and max ;
if x size req = 0.0 then

begin make scale (addressof (t2), y size req/(ymax − ymin), y size req/(ymax − ymin));
end

else if y size req = 0.0 then
begin make scale (addressof (t2), x size req/(xmax − xmin), x size req/(xmax − xmin));
end

else begin make scale (addressof (t2), x size req/(xmax − xmin), y size req/(ymax − ymin));
end;

update corners ; x size req ← 0.0; y size req ← 0.0;
transform concat (addressof (t), addressof (t2));
end

⟨Declare procedures needed in do extension 1404 ⟩ +≡
procedure load picture (is pdf : boolean);
var pic path : ↑char ; bounds : real rect ; t, t2 : transform ; corners : array [0 . . 3] of real point ;
x size req , y size req : real ; check keywords : boolean ; xmin , xmax , ymin , ymax : real ; i: small number ;
page : integer ; pdf box type : integer ; result : integer ;

begin { scan the filename and pack into name of file }
scan file name ; pack cur name ; pdf box type ← 0; page ← 0;
if is pdf then
begin if scan keyword ("page") then
begin scan int ; page ← cur val ;
end;

pdf box type ← pdfbox none ;
if scan keyword ("crop") then pdf box type ← pdfbox crop
else if scan keyword ("media") then pdf box type ← pdfbox media

else if scan keyword ("bleed") then pdf box type ← pdfbox bleed
else if scan keyword ("trim") then pdf box type ← pdfbox trim
else if scan keyword ("art") then pdf box type ← pdfbox art ;

end; { access the picture file and check its size }
if pdf box type = pdfbox none then
result ← find pic file (addressof (pic path), addressof (bounds), pdfbox crop , page)

else result ← find pic file (addressof (pic path), addressof (bounds), pdf box type , page);
setPoint (corners [0], xField (bounds), yField (bounds));
setPoint (corners [1], xField (corners [0]), yField (bounds) + htField (bounds));
setPoint (corners [2], xField (bounds) + wdField (bounds), yField (corners [1]));
setPoint (corners [3], xField (corners [2]), yField (corners [0])); x size req ← 0.0; y size req ← 0.0;

{ look for any scaling requests for this picture }

§1445 X ETEX PART 53: EXTENSIONS 591

make identity (addressof (t)); check keywords ← true ;
while check keywords do
begin if scan keyword ("scaled") then
begin scan int ;
if (x size req = 0.0) ∧ (y size req = 0.0) then
begin make scale (addressof (t2),float (cur val)/1000.0,float (cur val)/1000.0); update corners ;
transform concat (addressof (t), addressof (t2));
end

end
else if scan keyword ("xscaled") then

begin scan int ;
if (x size req = 0.0) ∧ (y size req = 0.0) then
begin make scale (addressof (t2),float (cur val)/1000.0, 1.0); update corners ;
transform concat (addressof (t), addressof (t2));
end

end
else if scan keyword ("yscaled") then

begin scan int ;
if (x size req = 0.0) ∧ (y size req = 0.0) then
begin make scale (addressof (t2), 1.0,float (cur val)/1000.0); update corners ;
transform concat (addressof (t), addressof (t2));
end

end
else if scan keyword ("width") then

begin scan normal dimen ;
if cur val ≤ 0 then
begin print err ("Improper␣image␣"); print ("size␣("); print scaled (cur val);
print ("pt)␣will␣be␣ignored");
help2 ("I␣can´t␣scale␣images␣to␣zero␣or␣negative␣sizes,")
("so␣I´m␣ignoring␣this."); error ;
end

else x size req ← Fix2D (cur val);
end

else if scan keyword ("height") then
begin scan normal dimen ;
if cur val ≤ 0 then
begin print err ("Improper␣image␣"); print ("size␣("); print scaled (cur val);
print ("pt)␣will␣be␣ignored");
help2 ("I␣can´t␣scale␣images␣to␣zero␣or␣negative␣sizes,")
("so␣I´m␣ignoring␣this."); error ;
end

else y size req ← Fix2D (cur val);
end

else if scan keyword ("rotated") then
begin scan decimal ;
if (x size req ̸= 0.0) ∨ (y size req ̸= 0.0) then do size requests ;
make rotation (addressof (t2),Fix2D (cur val) ∗ 3.141592653589793/180.0);
update corners ; calc min and max ; setPoint (corners [0], xmin , ymin);
setPoint (corners [1], xmin , ymax); setPoint (corners [2], xmax , ymax);
setPoint (corners [3], xmax , ymin); transform concat (addressof (t), addressof (t2));
end

else check keywords ← false ;

592 PART 53: EXTENSIONS X ETEX §1445

end;
if (x size req ̸= 0.0) ∨ (y size req ̸= 0.0) then do size requests ;
calc min and max ; make translation (addressof (t2),−xmin ∗ 72/72.27,−ymin ∗ 72/72.27);
transform concat (addressof (t), addressof (t2));
if result = 0 then
begin new whatsit (pic node ,

pic node size + (strlen (pic path) + sizeof (memory word)− 1) div sizeof (memory word));
if is pdf then

begin subtype (tail)← pdf node ;
end;

pic path length (tail)← strlen (pic path); pic page (tail)← page ; pic pdf box (tail)← pdf box type ;
width (tail)← D2Fix (xmax − xmin); height (tail)← D2Fix (ymax − ymin); depth (tail)← 0;
pic transform1 (tail)← D2Fix (aField (t)); pic transform2 (tail)← D2Fix (bField (t));
pic transform3 (tail)← D2Fix (cField (t)); pic transform4 (tail)← D2Fix (dField (t));
pic transform5 (tail)← D2Fix (xField (t)); pic transform6 (tail)← D2Fix (yField (t));
memcpy (addressof (mem [tail + pic node size]), pic path , strlen (pic path)); libc free (pic path);
end

else begin print err ("Unable␣to␣load␣picture␣or␣PDF␣file␣´");
print file name (cur name , cur area , cur ext); print ("´");
if result = −43 then
begin { Mac OS file not found error }
help2 ("The␣requested␣image␣couldn´t␣be␣read␣because")
("the␣file␣was␣not␣found.");
end

else begin { otherwise assume GraphicImport failed }
help2 ("The␣requested␣image␣couldn´t␣be␣read␣because")
("it␣was␣not␣a␣recognized␣image␣format.");
end;

error ;
end;

end;

1446. ⟨ Implement \XeTeXinputencoding 1446 ⟩ ≡
begin scan and pack name ; { scan a filename-like arg for the input encoding }
i← get encoding mode and info(addressof (j)); { convert it to mode and encoding values }
if i = XeTeX input mode auto then
begin print err ("Encoding␣mode␣`auto´␣is␣not␣valid␣for␣\XeTeXinputencoding");
help2 ("You␣can´t␣use␣`auto´␣encoding␣here,␣only␣for␣\XeTeXdefaultencoding.")
("I´ll␣ignore␣this␣and␣leave␣the␣current␣encoding␣unchanged.");
error ;
end

else set input file encoding (input file [in open], i, j); { apply them to the current input file }
end

This code is used in section 1403.

1447. ⟨ Implement \XeTeXdefaultencoding 1447 ⟩ ≡
begin scan and pack name ; { scan a filename-like arg for the input encoding }
i← get encoding mode and info(addressof (j)); { convert it to mode and encoding values }
XeTeX default input mode ← i; { store them as defaults for new input files }
XeTeX default input encoding ← j;
end

This code is used in section 1403.

§1448 X ETEX PART 53: EXTENSIONS 593

1448. ⟨ Implement \XeTeXlinebreaklocale 1448 ⟩ ≡
begin scan file name ; { scan a filename-like arg for the locale name }
if length (cur name) = 0 then XeTeX linebreak locale ← 0
else XeTeX linebreak locale ← cur name ; {we ignore the area and extension! }
end

This code is used in section 1403.

1449. ⟨Global variables 13 ⟩ +≡
pdf last x pos : integer ;
pdf last y pos : integer ;

1450. ⟨ Implement \pdfsavepos 1450 ⟩ ≡
begin new whatsit (pdf save pos node , small node size);
end

This code is used in section 1403.

594 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1451

1451. The extended features of ε-TEX. The program has two modes of operation: (1) In TEX
compatibility mode it fully deserves the name TEX and there are neither extended features nor additional
primitive commands. There are, however, a few modifications that would be legitimate in any implementation
of TEX such as, e.g., preventing inadequate results of the glue to DVI unit conversion during ship out . (2) In
extended mode there are additional primitive commands and the extended features of ε-TEX are available.
The distinction between these two modes of operation initially takes place when a ‘virgin’ eINITEX starts

without reading a format file. Later on the values of all ε-TEX state variables are inherited when eVIRTEX

(or eINITEX) reads a format file.
The code below is designed to work for cases where ‘init . . . tini’ is a run-time switch.

⟨Enable ε-TEX, if requested 1451 ⟩ ≡
init if (buffer [loc] = "*") ∧ (format ident = "␣(INITEX)") then
begin no new control sequence ← false ; ⟨Generate all ε-TEX primitives 1399 ⟩
incr (loc); eTeX mode ← 1; { enter extended mode }
⟨ Initialize variables for ε-TEX extended mode 1624 ⟩
end;

tini
if ¬no new control sequence then { just entered extended mode ? }
no new control sequence ← true else

This code is used in section 1391.

§1452 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 595

1452. The ε-TEX features available in extended mode are grouped into two categories: (1) Some of them are
permanently enabled and have no semantic effect as long as none of the additional primitives are executed.
(2) The remaining ε-TEX features are optional and can be individually enabled and disabled. For each
optional feature there is an ε-TEX state variable named \...state; the feature is enabled, resp. disabled by
assigning a positive, resp. non-positive value to that integer.

define eTeX state base = int base + eTeX state code
define eTeX state (#) ≡ eqtb [eTeX state base + #].int { an ε-TEX state variable }
define eTeX version code = eTeX int { code for \eTeXversion }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("lastnodetype", last item , last node type code);
primitive ("eTeXversion", last item , eTeX version code);
primitive ("eTeXrevision", convert , eTeX revision code);
primitive ("XeTeXversion", last item ,XeTeX version code);
primitive ("XeTeXrevision", convert ,XeTeX revision code);
primitive ("XeTeXcountglyphs", last item ,XeTeX count glyphs code);
primitive ("XeTeXcountvariations", last item ,XeTeX count variations code);
primitive ("XeTeXvariation", last item ,XeTeX variation code);
primitive ("XeTeXfindvariationbyname", last item ,XeTeX find variation by name code);
primitive ("XeTeXvariationmin", last item ,XeTeX variation min code);
primitive ("XeTeXvariationmax", last item ,XeTeX variation max code);
primitive ("XeTeXvariationdefault", last item ,XeTeX variation default code);
primitive ("XeTeXcountfeatures", last item ,XeTeX count features code);
primitive ("XeTeXfeaturecode", last item ,XeTeX feature code code);
primitive ("XeTeXfindfeaturebyname", last item ,XeTeX find feature by name code);
primitive ("XeTeXisexclusivefeature", last item ,XeTeX is exclusive feature code);
primitive ("XeTeXcountselectors", last item ,XeTeX count selectors code);
primitive ("XeTeXselectorcode", last item ,XeTeX selector code code);
primitive ("XeTeXfindselectorbyname", last item ,XeTeX find selector by name code);
primitive ("XeTeXisdefaultselector", last item ,XeTeX is default selector code);
primitive ("XeTeXvariationname", convert ,XeTeX variation name code);
primitive ("XeTeXfeaturename", convert ,XeTeX feature name code);
primitive ("XeTeXselectorname", convert ,XeTeX selector name code);
primitive ("XeTeXOTcountscripts", last item ,XeTeX OT count scripts code);
primitive ("XeTeXOTcountlanguages", last item ,XeTeX OT count languages code);
primitive ("XeTeXOTcountfeatures", last item ,XeTeX OT count features code);
primitive ("XeTeXOTscripttag", last item ,XeTeX OT script code);
primitive ("XeTeXOTlanguagetag", last item ,XeTeX OT language code);
primitive ("XeTeXOTfeaturetag", last item ,XeTeX OT feature code);
primitive ("XeTeXcharglyph", last item ,XeTeX map char to glyph code);
primitive ("XeTeXglyphindex", last item ,XeTeX glyph index code);
primitive ("XeTeXglyphbounds", last item ,XeTeX glyph bounds code);
primitive ("XeTeXglyphname", convert ,XeTeX glyph name code);
primitive ("XeTeXfonttype", last item ,XeTeX font type code);
primitive ("XeTeXfirstfontchar", last item ,XeTeX first char code);
primitive ("XeTeXlastfontchar", last item ,XeTeX last char code);
primitive ("XeTeXpdfpagecount", last item ,XeTeX pdf page count code);

596 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1453

1453. ⟨Cases of last item for print cmd chr 1453 ⟩ ≡
last node type code : print esc("lastnodetype");
eTeX version code : print esc("eTeXversion");
XeTeX version code : print esc("XeTeXversion");
XeTeX count glyphs code : print esc("XeTeXcountglyphs");
XeTeX count variations code : print esc("XeTeXcountvariations");
XeTeX variation code : print esc("XeTeXvariation");
XeTeX find variation by name code : print esc("XeTeXfindvariationbyname");
XeTeX variation min code : print esc("XeTeXvariationmin");
XeTeX variation max code : print esc("XeTeXvariationmax");
XeTeX variation default code : print esc("XeTeXvariationdefault");
XeTeX count features code : print esc("XeTeXcountfeatures");
XeTeX feature code code : print esc("XeTeXfeaturecode");
XeTeX find feature by name code : print esc("XeTeXfindfeaturebyname");
XeTeX is exclusive feature code : print esc("XeTeXisexclusivefeature");
XeTeX count selectors code : print esc("XeTeXcountselectors");
XeTeX selector code code : print esc("XeTeXselectorcode");
XeTeX find selector by name code : print esc("XeTeXfindselectorbyname");
XeTeX is default selector code : print esc("XeTeXisdefaultselector");
XeTeX OT count scripts code : print esc("XeTeXOTcountscripts");
XeTeX OT count languages code : print esc("XeTeXOTcountlanguages");
XeTeX OT count features code : print esc("XeTeXOTcountfeatures");
XeTeX OT script code : print esc("XeTeXOTscripttag");
XeTeX OT language code : print esc("XeTeXOTlanguagetag");
XeTeX OT feature code : print esc("XeTeXOTfeaturetag");
XeTeX map char to glyph code : print esc("XeTeXcharglyph");
XeTeX glyph index code : print esc("XeTeXglyphindex");
XeTeX glyph bounds code : print esc("XeTeXglyphbounds");
XeTeX font type code : print esc("XeTeXfonttype");
XeTeX first char code : print esc("XeTeXfirstfontchar");
XeTeX last char code : print esc("XeTeXlastfontchar");
XeTeX pdf page count code : print esc("XeTeXpdfpagecount");

See also sections 1474, 1477, 1480, 1483, 1590, 1613, and 1617.

This code is used in section 451.

§1454 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 597

1454. ⟨Cases for fetching an integer value 1454 ⟩ ≡
eTeX version code : cur val ← eTeX version ;
XeTeX version code : cur val ← XeTeX version ;
XeTeX count glyphs code : begin scan font ident ; n← cur val ;

if is aat font (n) then cur val ← aat font get (m− XeTeX int , font layout engine [n])
else if is otgr font (n) then cur val ← ot font get (m− XeTeX int , font layout engine [n])
else cur val ← 0;

end;
XeTeX count features code : begin scan font ident ; n← cur val ;

if is aat font (n) then cur val ← aat font get (m− XeTeX int , font layout engine [n])
else if is gr font (n) then cur val ← ot font get (m− XeTeX int , font layout engine [n])
else cur val ← 0;

end;
XeTeX variation code ,XeTeX variation min code ,XeTeX variation max code ,

XeTeX variation default code ,XeTeX count variations code : begin scan font ident ; n← cur val ;
cur val ← 0; {Deprecated }
end;

XeTeX feature code code ,XeTeX is exclusive feature code ,XeTeX count selectors code : begin
scan font ident ; n← cur val ;

if is aat font (n) then
begin scan int ; k ← cur val ; cur val ← aat font get 1 (m− XeTeX int , font layout engine [n], k);
end

else if is gr font (n) then
begin scan int ; k ← cur val ; cur val ← ot font get 1 (m− XeTeX int , font layout engine [n], k);
end

else begin not aat gr font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX selector code code ,XeTeX is default selector code : begin scan font ident ; n← cur val ;

if is aat font (n) then
begin scan int ; k ← cur val ; scan int ;
cur val ← aat font get 2 (m− XeTeX int , font layout engine [n], k, cur val);
end

else if is gr font (n) then
begin scan int ; k ← cur val ; scan int ;
cur val ← ot font get 2 (m− XeTeX int , font layout engine [n], k, cur val);
end

else begin not aat gr font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX find variation by name code : begin scan font ident ; n← cur val ;

if is aat font (n) then
begin scan and pack name ; cur val ← aat font get named (m− XeTeX int , font layout engine [n]);
end

else begin not aat font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX find feature by name code : begin scan font ident ; n← cur val ;
if is aat font (n) then
begin scan and pack name ; cur val ← aat font get named (m− XeTeX int , font layout engine [n]);
end

else if is gr font (n) then

598 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1454

begin scan and pack name ; cur val ← gr font get named (m− XeTeX int , font layout engine [n]);
end

else begin not aat gr font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX find selector by name code : begin scan font ident ; n← cur val ;

if is aat font (n) then
begin scan int ; k ← cur val ; scan and pack name ;
cur val ← aat font get named 1 (m− XeTeX int , font layout engine [n], k);
end

else if is gr font (n) then
begin scan int ; k ← cur val ; scan and pack name ;
cur val ← gr font get named 1 (m− XeTeX int , font layout engine [n], k);
end

else begin not aat gr font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX OT count scripts code : begin scan font ident ; n← cur val ;

if is ot font (n) then cur val ← ot font get (m− XeTeX int , font layout engine [n])
else begin cur val ← 0;
end;

end;
XeTeX OT count languages code ,XeTeX OT script code : begin scan font ident ; n← cur val ;

if is ot font (n) then
begin scan int ; cur val ← ot font get 1 (m− XeTeX int , font layout engine [n], cur val);
end

else begin not ot font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX OT count features code ,XeTeX OT language code : begin scan font ident ; n← cur val ;

if is ot font (n) then
begin scan int ; k ← cur val ; scan int ;
cur val ← ot font get 2 (m− XeTeX int , font layout engine [n], k, cur val);
end

else begin not ot font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX OT feature code : begin scan font ident ; n← cur val ;

if is ot font (n) then
begin scan int ; k ← cur val ; scan int ; kk ← cur val ; scan int ;
cur val ← ot font get 3 (m− XeTeX int , font layout engine [n], k, kk , cur val);
end

else begin not ot font error (last item ,m, n); cur val ← −1;
end;

end;
XeTeX map char to glyph code : begin if is native font (cur font) then

begin scan int ; n← cur val ; cur val ← map char to glyph (cur font , n)
end

else begin not native font error (last item ,m, cur font); cur val ← 0
end

end;
XeTeX glyph index code : begin if is native font (cur font) then

§1454 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 599

begin scan and pack name ; cur val ← map glyph to index (cur font)
end

else begin not native font error (last item ,m, cur font); cur val ← 0
end

end;
XeTeX font type code : begin scan font ident ; n← cur val ;
if is aat font (n) then cur val ← 1
else if is ot font (n) then cur val ← 2
else if is gr font (n) then cur val ← 3
else cur val ← 0;

end;
XeTeX first char code ,XeTeX last char code : begin scan font ident ; n← cur val ;

if is native font (n) then cur val ← get font char range (n,m = XeTeX first char code)
else begin if m = XeTeX first char code then cur val ← font bc [n]
else cur val ← font ec [n];
end

end;
pdf last x pos code : cur val ← pdf last x pos ;
pdf last y pos code : cur val ← pdf last y pos ;
XeTeX pdf page count code : begin scan and pack name ; cur val ← count pdf file pages ;

end;

See also sections 1475, 1478, and 1614.

This code is used in section 458.

1455. Slip in an extra procedure here and there....

⟨Error handling procedures 82 ⟩ +≡
procedure scan and pack name ; forward ;

1456. ⟨Declare procedures needed in do extension 1404 ⟩ +≡
procedure scan and pack name ;

begin scan file name ; pack cur name ;
end;

1457. ⟨Declare the procedure called print cmd chr 328 ⟩ +≡
procedure not aat font error (cmd , c : integer ; f : integer);
begin print err ("Cannot␣use␣"); print cmd chr (cmd , c); print ("␣with␣"); print (font name [f]);
print (";␣not␣an␣AAT␣font"); error ;
end;

procedure not aat gr font error (cmd , c : integer ; f : integer);
begin print err ("Cannot␣use␣"); print cmd chr (cmd , c); print ("␣with␣"); print (font name [f]);
print (";␣not␣an␣AAT␣or␣Graphite␣font"); error ;
end;

procedure not ot font error (cmd , c : integer ; f : integer);
begin print err ("Cannot␣use␣"); print cmd chr (cmd , c); print ("␣with␣"); print (font name [f]);
print (";␣not␣an␣OpenType␣Layout␣font"); error ;
end;

procedure not native font error (cmd , c : integer ; f : integer);
begin print err ("Cannot␣use␣"); print cmd chr (cmd , c); print ("␣with␣"); print (font name [f]);
print (";␣not␣a␣native␣platform␣font"); error ;
end;

600 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1458

1458. ⟨Cases for fetching a dimension value 1458 ⟩ ≡
XeTeX glyph bounds code : begin if is native font (cur font) then

begin scan int ; n← cur val ; { which edge: 1=left, 2=top, 3=right, 4=bottom }
if (n < 1) ∨ (n > 4) then
begin print err ("\\XeTeXglyphbounds␣requires␣an␣edge␣index␣from␣1␣to␣4;");
print nl ("I␣don´t␣know␣anything␣about␣edge␣"); print int (n); error ; cur val ← 0;
end

else begin scan int ; { glyph number }
cur val ← get glyph bounds (cur font , n, cur val);
end

end
else begin not native font error (last item ,m, cur font); cur val ← 0
end

end;

See also sections 1481, 1484, and 1615.

This code is used in section 458.

1459. ⟨Cases of convert for print cmd chr 1459 ⟩ ≡
XeTeX revision code : print esc("XeTeXrevision");
XeTeX variation name code : print esc("XeTeXvariationname");
XeTeX feature name code : print esc("XeTeXfeaturename");
XeTeX selector name code : print esc("XeTeXselectorname");
XeTeX glyph name code : print esc("XeTeXglyphname");
XeTeX Uchar code : print esc("Uchar");
XeTeX Ucharcat code : print esc("Ucharcat");

This code is used in section 504.

§1460 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 601

1460. ⟨Cases of ‘Scan the argument for command c’ 1460 ⟩ ≡
XeTeX revision code : do nothing ;
XeTeX variation name code : begin scan font ident ; fnt ← cur val ;

if is aat font (fnt) then
begin scan int ; arg1 ← cur val ; arg2 ← 0;
end

else not aat font error (convert , c, fnt);
end;

XeTeX feature name code : begin scan font ident ; fnt ← cur val ;
if is aat font (fnt) ∨ is gr font (fnt) then
begin scan int ; arg1 ← cur val ; arg2 ← 0;
end

else not aat gr font error (convert , c, fnt);
end;

XeTeX selector name code : begin scan font ident ; fnt ← cur val ;
if is aat font (fnt) ∨ is gr font (fnt) then
begin scan int ; arg1 ← cur val ; scan int ; arg2 ← cur val ;
end

else not aat gr font error (convert , c, fnt);
end;

XeTeX glyph name code : begin scan font ident ; fnt ← cur val ;
if is native font (fnt) then
begin scan int ; arg1 ← cur val ;
end

else not native font error (convert , c, fnt);
end;

This code is used in section 506.

1461. ⟨Cases of ‘Print the result of command c’ 1461 ⟩ ≡
XeTeX revision code : print (XeTeX revision);
XeTeX variation name code : if is aat font (fnt) then

aat print font name (c, font layout engine [fnt], arg1 , arg2);
XeTeX feature name code ,XeTeX selector name code : if is aat font (fnt) then

aat print font name (c, font layout engine [fnt], arg1 , arg2)
else if is gr font (fnt) then gr print font name (c, font layout engine [fnt], arg1 , arg2);

XeTeX glyph name code : if is native font (fnt) then print glyph name (fnt , arg1);

This code is used in section 507.

1462. define eTeX ex ≡ (eTeX mode = 1) { is this extended mode? }
⟨Global variables 13 ⟩ +≡
eTeX mode : 0 . . 1; { identifies compatibility and extended mode }

1463. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
eTeX mode ← 0; { initially we are in compatibility mode }
⟨ Initialize variables for ε-TEX compatibility mode 1623 ⟩

1464. ⟨Dump the ε-TEX state 1464 ⟩ ≡
dump int (eTeX mode);

{ in a deliberate change from e-TeX, we allow non-zero state variables to be dumped }
See also section 1569.

This code is used in section 1361.

602 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1465

1465. ⟨Undump the ε-TEX state 1465 ⟩ ≡
undump (0)(1)(eTeX mode);
if eTeX ex then
begin ⟨ Initialize variables for ε-TEX extended mode 1624 ⟩
end

else begin ⟨ Initialize variables for ε-TEX compatibility mode 1623 ⟩
end;

This code is used in section 1362.

1466. The eTeX enabled function simply returns its first argument as result. This argument is true if an
optional ε-TEX feature is currently enabled; otherwise, if the argument is false , the function gives an error
message.

⟨Declare ε-TEX procedures for use by main control 1466 ⟩ ≡
function eTeX enabled (b : boolean ; j : quarterword ; k : halfword): boolean ;
begin if ¬b then
begin print err ("Improper␣"); print cmd chr (j, k);
help1 ("Sorry,␣this␣optional␣e−TeX␣feature␣has␣been␣disabled."); error ;
end;

eTeX enabled ← b;
end;

See also sections 1489 and 1505.

This code is used in section 863.

1467. First we implement the additional ε-TEX parameters in the table of equivalents.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("everyeof", assign toks , every eof loc);
primitive ("tracingassigns", assign int , int base + tracing assigns code);
primitive ("tracinggroups", assign int , int base + tracing groups code);
primitive ("tracingifs", assign int , int base + tracing ifs code);
primitive ("tracingscantokens", assign int , int base + tracing scan tokens code);
primitive ("tracingnesting", assign int , int base + tracing nesting code);
primitive ("predisplaydirection", assign int , int base + pre display direction code);
primitive ("lastlinefit", assign int , int base + last line fit code);
primitive ("savingvdiscards", assign int , int base + saving vdiscards code);
primitive ("savinghyphcodes", assign int , int base + saving hyph codes code);

1468. define every eof ≡ equiv (every eof loc)

⟨Cases of assign toks for print cmd chr 1468 ⟩ ≡
every eof loc : print esc("everyeof");
XeTeX inter char loc : print esc("XeTeXinterchartoks");

This code is used in section 257.

§1469 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 603

1469. ⟨Cases for print param 1469 ⟩ ≡
tracing assigns code : print esc("tracingassigns");
tracing groups code : print esc("tracinggroups");
tracing ifs code : print esc("tracingifs");
tracing scan tokens code : print esc("tracingscantokens");
tracing nesting code : print esc("tracingnesting");
pre display direction code : print esc("predisplaydirection");
last line fit code : print esc("lastlinefit");
saving vdiscards code : print esc("savingvdiscards");
saving hyph codes code : print esc("savinghyphcodes");

See also section 1510.

This code is used in section 263.

1470. In order to handle \everyeof we need an array eof seen of boolean variables.

⟨Global variables 13 ⟩ +≡
eof seen : array [1 . . max in open] of boolean ; { has eof been seen? }

604 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1471

1471. The print group procedure prints the current level of grouping and the name corresponding to
cur group .

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure print group(e : boolean);
label exit ;
begin case cur group of
bottom level : begin print ("bottom␣level"); return;
end;

simple group , semi simple group : begin if cur group = semi simple group then print ("semi␣");
print ("simple");
end;

hbox group , adjusted hbox group : begin if cur group = adjusted hbox group then print ("adjusted␣");
print ("hbox");
end;

vbox group : print ("vbox");
vtop group : print ("vtop");
align group ,no align group : begin if cur group = no align group then print ("no␣");
print ("align");
end;

output group : print ("output");
disc group : print ("disc");
insert group : print ("insert");
vcenter group : print ("vcenter");
math group ,math choice group ,math shift group ,math left group : begin print ("math");
if cur group = math choice group then print ("␣choice")
else if cur group = math shift group then print ("␣shift")

else if cur group = math left group then print ("␣left");
end;

end; { there are no other cases }
print ("␣group␣(level␣"); print int (qo(cur level)); print char (")");
if saved (−1) ̸= 0 then
begin if e then print ("␣entered␣at␣line␣")
else print ("␣at␣line␣");
print int (saved (−1));
end;

exit : end;

1472. The group trace procedure is called when a new level of grouping begins (e = false) or ends
(e = true) with saved (−1) containing the line number.

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
stat procedure group trace (e : boolean);
begin begin diagnostic ; print char ("{");
if e then print ("leaving␣")
else print ("entering␣");
print group(e); print char ("}"); end diagnostic(false);
end;
tats

§1473 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 605

1473. The \currentgrouplevel and \currentgrouptype commands return the current level of grouping
and the type of the current group respectively.

define current group level code = eTeX int + 1 { code for \currentgrouplevel }
define current group type code = eTeX int + 2 { code for \currentgrouptype }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("currentgrouplevel", last item , current group level code);
primitive ("currentgrouptype", last item , current group type code);

1474. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
current group level code : print esc("currentgrouplevel");
current group type code : print esc("currentgrouptype");

1475. ⟨Cases for fetching an integer value 1454 ⟩ +≡
current group level code : cur val ← cur level − level one ;
current group type code : cur val ← cur group ;

1476. The \currentiflevel, \currentiftype, and \currentifbranch commands return the current
level of conditionals and the type and branch of the current conditional.

define current if level code = eTeX int + 3 { code for \currentiflevel }
define current if type code = eTeX int + 4 { code for \currentiftype }
define current if branch code = eTeX int + 5 { code for \currentifbranch }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("currentiflevel", last item , current if level code);
primitive ("currentiftype", last item , current if type code);
primitive ("currentifbranch", last item , current if branch code);

1477. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
current if level code : print esc("currentiflevel");
current if type code : print esc("currentiftype");
current if branch code : print esc("currentifbranch");

1478. ⟨Cases for fetching an integer value 1454 ⟩ +≡
current if level code : begin q ← cond ptr ; cur val ← 0;
while q ̸= null do
begin incr (cur val); q ← link (q);
end;

end;
current if type code : if cond ptr = null then cur val ← 0
else if cur if < unless code then cur val ← cur if + 1
else cur val ← −(cur if − unless code + 1);

current if branch code : if (if limit = or code) ∨ (if limit = else code) then cur val ← 1
else if if limit = fi code then cur val ← −1
else cur val ← 0;

606 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1479

1479. The \fontcharwd, \fontcharht, \fontchardp, and \fontcharic commands return information
about a character in a font.

define font char wd code = eTeX dim { code for \fontcharwd }
define font char ht code = eTeX dim + 1 { code for \fontcharht }
define font char dp code = eTeX dim + 2 { code for \fontchardp }
define font char ic code = eTeX dim + 3 { code for \fontcharic }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("fontcharwd", last item , font char wd code);
primitive ("fontcharht", last item , font char ht code);
primitive ("fontchardp", last item , font char dp code);
primitive ("fontcharic", last item , font char ic code);

1480. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
font char wd code : print esc("fontcharwd");
font char ht code : print esc("fontcharht");
font char dp code : print esc("fontchardp");
font char ic code : print esc("fontcharic");

1481. ⟨Cases for fetching a dimension value 1458 ⟩ +≡
font char wd code , font char ht code , font char dp code , font char ic code : begin scan font ident ;

q ← cur val ; scan usv num ;
if is native font (q) then
begin case m of
font char wd code : cur val ← getnativecharwd (q, cur val);
font char ht code : cur val ← getnativecharht (q, cur val);
font char dp code : cur val ← getnativechardp (q, cur val);
font char ic code : cur val ← getnativecharic(q, cur val);
end; { there are no other cases }
end

else begin if (font bc [q] ≤ cur val) ∧ (font ec [q] ≥ cur val) then
begin i← char info(q)(qi (cur val));
case m of
font char wd code : cur val ← char width (q)(i);
font char ht code : cur val ← char height (q)(height depth (i));
font char dp code : cur val ← char depth (q)(height depth (i));
font char ic code : cur val ← char italic(q)(i);
end; { there are no other cases }
end

else cur val ← 0;
end

end;

1482. The \parshapedimen, \parshapeindent, and \parshapelength commands return the indent and
length parameters of the current \parshape specification.

define par shape length code = eTeX dim + 4 { code for \parshapelength }
define par shape indent code = eTeX dim + 5 { code for \parshapeindent }
define par shape dimen code = eTeX dim + 6 { code for \parshapedimen }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("parshapelength", last item , par shape length code);
primitive ("parshapeindent", last item , par shape indent code);
primitive ("parshapedimen", last item , par shape dimen code);

§1483 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 607

1483. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
par shape length code : print esc("parshapelength");
par shape indent code : print esc("parshapeindent");
par shape dimen code : print esc("parshapedimen");

1484. ⟨Cases for fetching a dimension value 1458 ⟩ +≡
par shape length code , par shape indent code , par shape dimen code : begin

q ← cur chr − par shape length code ; scan int ;
if (par shape ptr = null) ∨ (cur val ≤ 0) then cur val ← 0
else begin if q = 2 then

begin q ← cur val mod 2; cur val ← (cur val + q) div 2;
end;

if cur val > info(par shape ptr) then cur val ← info(par shape ptr);
cur val ← mem [par shape ptr + 2 ∗ cur val − q].sc ;
end;

cur val level ← dimen val ;
end;

1485. The \showgroups command displays all currently active grouping levels.

define show groups = 4 { \showgroups }
⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("showgroups", xray , show groups);

1486. ⟨Cases of xray for print cmd chr 1486 ⟩ ≡
show groups : print esc("showgroups");

See also sections 1495 and 1500.

This code is used in section 1346.

1487. ⟨Cases for show whatever 1487 ⟩ ≡
show groups : begin begin diagnostic ; show save groups ;
end;

See also section 1501.

This code is used in section 1347.

1488. ⟨Types in the outer block 18 ⟩ +≡
save pointer = 0 . . save size ; { index into save stack }

608 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1489

1489. The modifications of TEX required for the display produced by the show save groups procedure were
first discussed by Donald E. Knuth in TUGboat 11, 165–170 and 499–511, 1990.

In order to understand a group type we also have to know its mode. Since unrestricted horizontal modes
are not associated with grouping, they are skipped when traversing the semantic nest.

⟨Declare ε-TEX procedures for use by main control 1466 ⟩ +≡
procedure show save groups ;

label found1 , found2 , found , done ;
var p: 0 . . nest size ; { index into nest }
m: −mmode . . mmode ; {mode }
v: save pointer ; { saved value of save ptr }
l: quarterword ; { saved value of cur level }
c: group code ; { saved value of cur group }
a: −1 . . 1; { to keep track of alignments }
i: integer ; j: quarterword ; s: str number ;

begin p← nest ptr ; nest [p]← cur list ; { put the top level into the array }
v ← save ptr ; l← cur level ; c← cur group ; save ptr ← cur boundary ; decr (cur level);
a← 1; print nl (""); print ln ;
loop begin print nl ("###␣"); print group(true);
if cur group = bottom level then goto done ;
repeat m← nest [p].mode field ;
if p > 0 then decr (p)
else m← vmode ;

until m ̸= hmode ;
print ("␣(");
case cur group of
simple group : begin incr (p); goto found2 ;

end;
hbox group , adjusted hbox group : s← "hbox";
vbox group : s← "vbox";
vtop group : s← "vtop";
align group : if a = 0 then

begin if m = −vmode then s← "halign"

else s← "valign";
a← 1; goto found1 ;
end

else begin if a = 1 then print ("align␣entry")
else print esc("cr");
if p ≥ a then p← p− a;
a← 0; goto found ;
end;

no align group : begin incr (p); a← −1; print esc("noalign"); goto found2 ;
end;

output group : begin print esc("output"); goto found ;
end;

math group : goto found2 ;
disc group ,math choice group : begin if cur group = disc group then print esc("discretionary")

else print esc("mathchoice");
for i← 1 to 3 do

if i ≤ saved (−2) then print ("{}");
goto found2 ;
end;

insert group : begin if saved (−2) = 255 then print esc("vadjust")

§1489 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 609

else begin print esc("insert"); print int (saved (−2));
end;

goto found2 ;
end;

vcenter group : begin s← "vcenter"; goto found1 ;
end;

semi simple group : begin incr (p); print esc("begingroup"); goto found ;
end;

math shift group : begin if m = mmode then print char ("$")
else if nest [p].mode field = mmode then

begin print cmd chr (eq no , saved (−2)); goto found ;
end;

print char ("$"); goto found ;
end;

math left group : begin if type (nest [p+ 1].eTeX aux field) = left noad then print esc("left")
else print esc("middle");
goto found ;
end;

end; { there are no other cases }
⟨ Show the box context 1491 ⟩;

found1 : print esc(s); ⟨ Show the box packaging info 1490 ⟩;
found2 : print char ("{");
found : print char (")"); decr (cur level); cur group ← save level (save ptr);
save ptr ← save index (save ptr)
end;

done : save ptr ← v; cur level ← l; cur group ← c;
end;

1490. ⟨ Show the box packaging info 1490 ⟩ ≡
if saved (−2) ̸= 0 then
begin print char ("␣");
if saved (−3) = exactly then print ("to")
else print ("spread");
print scaled (saved (−2)); print ("pt");
end

This code is used in section 1489.

610 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1491

1491. ⟨ Show the box context 1491 ⟩ ≡
i← saved (−4);
if i ̸= 0 then
if i < box flag then

begin if abs (nest [p].mode field) = vmode then j ← hmove
else j ← vmove ;
if i > 0 then print cmd chr (j, 0)
else print cmd chr (j, 1);
print scaled (abs (i)); print ("pt");
end

else if i < ship out flag then
begin if i ≥ global box flag then
begin print esc("global"); i← i− (global box flag − box flag);
end;

print esc("setbox"); print int (i− box flag); print char ("=");
end

else print cmd chr (leader ship , i− (leader flag − a leaders))

This code is used in section 1489.

1492. The scan general text procedure is much like scan toks (false , false), but will be invoked via expand ,
i.e., recursively.

⟨Declare ε-TEX procedures for scanning 1492 ⟩ ≡
procedure scan general text ; forward ;

See also sections 1583, 1592, and 1597.

This code is used in section 443.

§1493 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 611

1493. The token list (balanced text) created by scan general text begins at link (temp head) and ends at
cur val . (If cur val = temp head , the list is empty.)

⟨Declare ε-TEX procedures for token lists 1493 ⟩ ≡
procedure scan general text ;
label found ;
var s: normal . . absorbing ; { to save scanner status }
w: pointer ; { to save warning index }
d: pointer ; { to save def ref }
p: pointer ; { tail of the token list being built }
q: pointer ; { new node being added to the token list via store new token }
unbalance : halfword ; { number of unmatched left braces }

begin s← scanner status ; w ← warning index ; d← def ref ; scanner status ← absorbing ;
warning index ← cur cs ; def ref ← get avail ; token ref count (def ref)← null ; p← def ref ;
scan left brace ; { remove the compulsory left brace }
unbalance ← 1;
loop begin get token ;
if cur tok < right brace limit then
if cur cmd < right brace then incr (unbalance)
else begin decr (unbalance);
if unbalance = 0 then goto found ;
end;

store new token (cur tok);
end;

found : q ← link (def ref); free avail (def ref); { discard reference count }
if q = null then cur val ← temp head else cur val ← p;
link (temp head)← q; scanner status ← s; warning index ← w; def ref ← d;
end;

See also section 1564.

This code is used in section 499.

1494. The \showtokens command displays a token list.

define show tokens = 5 { \showtokens , must be odd! }
⟨Generate all ε-TEX primitives 1399 ⟩ +≡

primitive ("showtokens", xray , show tokens);

1495. ⟨Cases of xray for print cmd chr 1486 ⟩ +≡
show tokens : print esc("showtokens");

1496. The \unexpanded primitive prevents expansion of tokens much as the result from \the applied to
a token variable. The \detokenize primitive converts a token list into a list of character tokens much as
if the token list were written to a file. We use the fact that the command modifiers for \unexpanded and
\detokenize are odd whereas those for \the and \showthe are even.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("unexpanded", the , 1);
primitive ("detokenize", the , show tokens);

1497. ⟨Cases of the for print cmd chr 1497 ⟩ ≡
else if chr code = 1 then print esc("unexpanded")
else print esc("detokenize")

This code is used in section 296.

612 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1498

1498. ⟨Handle \unexpanded or \detokenize and return 1498 ⟩ ≡
if odd (cur chr) then
begin c← cur chr ; scan general text ;
if c = 1 then the toks ← cur val
else begin old setting ← selector ; selector ← new string ; b← pool ptr ; p← get avail ;
link (p)← link (temp head); token show (p); flush list (p); selector ← old setting ;
the toks ← str toks (b);
end;

return;
end

This code is used in section 500.

1499. The \showifs command displays all currently active conditionals.

define show ifs = 6 { \showifs }
⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("showifs", xray , show ifs);

1500. ⟨Cases of xray for print cmd chr 1486 ⟩ +≡
show ifs : print esc("showifs");

1501.

define print if line (#) ≡
if # ̸= 0 then
begin print ("␣entered␣on␣line␣"); print int (#);
end

⟨Cases for show whatever 1487 ⟩ +≡
show ifs : begin begin diagnostic ; print nl (""); print ln ;
if cond ptr = null then
begin print nl ("###␣"); print ("no␣active␣conditionals");
end

else begin p← cond ptr ; n← 0;
repeat incr (n); p← link (p); until p = null ;
p← cond ptr ; t← cur if ; l← if line ; m← if limit ;
repeat print nl ("###␣level␣"); print int (n); print (":␣"); print cmd chr (if test , t);
if m = fi code then print esc("else");
print if line (l); decr (n); t← subtype (p); l← if line field (p); m← type (p); p← link (p);

until p = null ;
end;

end;

1502. The \interactionmode primitive allows to query and set the interaction mode.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("interactionmode", set page int , 2);

1503. ⟨Cases of set page int for print cmd chr 1503 ⟩ ≡
else if chr code = 2 then print esc("interactionmode")

This code is used in section 451.

1504. ⟨Cases for ‘Fetch the dead cycles or the insert penalties ’ 1504 ⟩ ≡
else if m = 2 then cur val ← interaction

This code is used in section 453.

§1505 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 613

1505. ⟨Declare ε-TEX procedures for use by main control 1466 ⟩ +≡
procedure new interaction ; forward ;

1506. ⟨Cases for alter integer 1506 ⟩ ≡
else if c = 2 then

begin if (cur val < batch mode) ∨ (cur val > error stop mode) then
begin print err ("Bad␣interaction␣mode");
help2 ("Modes␣are␣0=batch,␣1=nonstop,␣2=scroll,␣and")
("3=errorstop.␣Proceed,␣and␣I´ll␣ignore␣this␣case."); int error (cur val);
end

else begin cur chr ← cur val ; new interaction ;
end;

end

This code is used in section 1300.

1507. The middle feature of ε-TEX allows one ore several \middle delimiters to appear between \left

and \right.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("middle", left right ,middle noad);

1508. ⟨Cases of left right for print cmd chr 1508 ⟩ ≡
else if chr code = middle noad then print esc("middle")

This code is used in section 1243.

614 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1509

1509. In constructions such as

\hbox to \hsize{

\hskip 0pt plus 0.0001fil

...

\hfil\penalty−200\hfilneg

...}

the stretch components of \hfil and \hfilneg compensate; they may, however, get modified in order to
prevent arithmetic overflow during hlist out when each of them is multiplied by a large glue set value.
Since this “glue rounding” depends on state variables cur g and cur glue and TEX--XET is supposed to

emulate the behaviour of TEX-XET (plus a suitable postprocessor) as close as possible the glue rounding
cannot be postponed until (segments of) an hlist has been reversed.
The code below is invoked after the effective width, rule wd , of a glue node has been computed. The glue

node is either converted into a kern node or, for leaders, the glue specification is replaced by an equivalent
rigid one; the subtype of the glue node remains unchanged.

⟨Handle a glue node for mixed direction typesetting 1509 ⟩ ≡
if (((g sign = stretching) ∧ (stretch order (g) = g order)) ∨ ((g sign = shrinking) ∧ (shrink order (g) =

g order))) then
begin fast delete glue ref (g);
if subtype (p) < a leaders then
begin type (p)← kern node ; width (p)← rule wd ;
end

else begin g ← get node (glue spec size);
stretch order (g)← filll + 1; shrink order (g)← filll + 1; {will never match }
width (g)← rule wd ; stretch (g)← 0; shrink (g)← 0; glue ptr (p)← g;
end;

end

This code is used in sections 663 and 1537.

§1510 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 615

1510. The optional TeXXeT feature of ε-TEX contains the code for mixed left-to-right and right-to-left
typesetting. This code is inspired by but different from TEX-XET as presented by Donald E. Knuth and
Pierre MacKay in TUGboat 8, 14–25, 1987.
In order to avoid confusion with TEX-XET the present implementation of mixed direction typesetting is

called TEX--XET. It differs from TEX-XET in several important aspects: (1) Right-to-left text is reversed
explicitly by the ship out routine and is written to a normal DVI file without any begin reflect or end reflect
commands; (2) a math node is (ab)used instead of a whatsit node to record the \beginL, \endL, \beginR,
and \endR text direction primitives in order to keep the influence on the line breaking algorithm for pure left-
to-right text as small as possible; (3) right-to-left text interrupted by a displayed equation is automatically
resumed after that equation; and (4) the valign command code with a non-zero command modifier is (ab)used
for the text direction primitives.
Nevertheless there is a subtle difference between TEX and TEX--XET that may influence the line breaking

algorithm for pure left-to-right text. When a paragraph containing math mode material is broken into lines
TEX may generate lines where math mode material is not enclosed by properly nested \mathon and \mathoff

nodes. Unboxing such lines as part of a new paragraph may have the effect that hyphenation is attempted for
‘words’ originating from math mode or that hyphenation is inhibited for words originating from horizontal
mode.
In TEX--XET additional \beginM, resp. \endM math nodes are supplied at the start, resp. end of lines such

that math mode material inside a horizontal list always starts with either \mathon or \beginM and ends with
\mathoff or \endM. These additional nodes are transparent to operations such as \unskip, \lastpenalty,
or \lastbox but they do have the effect that hyphenation is never attempted for ‘words’ originating from
math mode and is never inhibited for words originating from horizontal mode.

define TeXXeT state ≡ eTeX state (TeXXeT code)
define TeXXeT en ≡ (TeXXeT state > 0) { is TEX--XET enabled? }
define XeTeX upwards state ≡ eTeX state (XeTeX upwards code)
define XeTeX upwards ≡ (XeTeX upwards state > 0)
define XeTeX use glyph metrics state ≡ eTeX state (XeTeX use glyph metrics code)
define XeTeX use glyph metrics ≡ (XeTeX use glyph metrics state > 0)
define XeTeX inter char tokens state ≡ eTeX state (XeTeX inter char tokens code)
define XeTeX inter char tokens en ≡ (XeTeX inter char tokens state > 0)
define XeTeX dash break state ≡ eTeX state (XeTeX dash break code)
define XeTeX dash break en ≡ (XeTeX dash break state > 0)
define XeTeX input normalization state ≡ eTeX state (XeTeX input normalization code)
define XeTeX tracing fonts state ≡ eTeX state (XeTeX tracing fonts code)
define XeTeX interword space shaping state ≡ eTeX state (XeTeX interword space shaping code)
define XeTeX generate actual text state ≡ eTeX state (XeTeX generate actual text code)
define XeTeX generate actual text en ≡ (XeTeX generate actual text state > 0)
define XeTeX default input mode ≡ eTeX state (XeTeX default input mode code)
define XeTeX default input encoding ≡ eTeX state (XeTeX default input encoding code)
define XeTeX hyphenatable length ≡ eTeX state (XeTeX hyphenatable length code)

⟨Cases for print param 1469 ⟩ +≡
suppress fontnotfound error code : print esc("suppressfontnotfounderror");
eTeX state code + TeXXeT code : print esc("TeXXeTstate");
eTeX state code + XeTeX upwards code : print esc("XeTeXupwardsmode");
eTeX state code + XeTeX use glyph metrics code : print esc("XeTeXuseglyphmetrics");
eTeX state code + XeTeX inter char tokens code : print esc("XeTeXinterchartokenstate");
eTeX state code + XeTeX dash break code : print esc("XeTeXdashbreakstate");
eTeX state code + XeTeX input normalization code : print esc("XeTeXinputnormalization");
eTeX state code + XeTeX tracing fonts code : print esc("XeTeXtracingfonts");
eTeX state code + XeTeX interword space shaping code : print esc("XeTeXinterwordspaceshaping");
eTeX state code + XeTeX generate actual text code : print esc("XeTeXgenerateactualtext");
eTeX state code + XeTeX hyphenatable length code : print esc("XeTeXhyphenatablelength");

616 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1511

1511. ⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("suppressfontnotfounderror", assign int , int base + suppress fontnotfound error code);
primitive ("TeXXeTstate", assign int , eTeX state base + TeXXeT code);
primitive ("XeTeXupwardsmode", assign int , eTeX state base + XeTeX upwards code);
primitive ("XeTeXuseglyphmetrics", assign int , eTeX state base + XeTeX use glyph metrics code);
primitive ("XeTeXinterchartokenstate", assign int , eTeX state base + XeTeX inter char tokens code);
primitive ("XeTeXdashbreakstate", assign int , eTeX state base + XeTeX dash break code);
primitive ("XeTeXinputnormalization", assign int , eTeX state base +XeTeX input normalization code);
primitive ("XeTeXtracingfonts", assign int , eTeX state base + XeTeX tracing fonts code);
primitive ("XeTeXinterwordspaceshaping", assign int ,

eTeX state base + XeTeX interword space shaping code);
primitive ("XeTeXgenerateactualtext", assign int , eTeX state base +XeTeX generate actual text code);
primitive ("XeTeXhyphenatablelength", assign int , eTeX state base +XeTeX hyphenatable length code);
primitive ("XeTeXinputencoding", extension ,XeTeX input encoding extension code);
primitive ("XeTeXdefaultencoding", extension ,XeTeX default encoding extension code);
primitive ("beginL", valign , begin L code); primitive ("endL", valign , end L code);
primitive ("beginR", valign , begin R code); primitive ("endR", valign , end R code);

1512. ⟨Cases of valign for print cmd chr 1512 ⟩ ≡
else case chr code of
begin L code : print esc("beginL");
end L code : print esc("endL");
begin R code : print esc("beginR");
othercases print esc("endR")
endcases

This code is used in section 296.

1513. ⟨Cases of main control for hmode + valign 1513 ⟩ ≡
if cur chr > 0 then
begin if eTeX enabled (TeXXeT en , cur cmd , cur chr) then tail append (new math (0, cur chr));
end

else

This code is used in section 1184.

1514. An hbox with subtype dlist will never be reversed, even when embedded in right-to-left text.

⟨Display if this box is never to be reversed 1514 ⟩ ≡
if (type (p) = hlist node) ∧ (box lr (p) = dlist) then print (",␣display")

This code is used in section 210.

§1515 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 617

1515. A number of routines are based on a stack of one-word nodes whose info fields contain end M code ,
end L code , or end R code . The top of the stack is pointed to by LR ptr .

When the stack manipulation macros of this section are used below, variable LR ptr might be the global
variable declared here for hpack and ship out , or might be local to post line break .

define put LR(#) ≡
begin temp ptr ← get avail ; info(temp ptr)← #; link (temp ptr)← LR ptr ;
LR ptr ← temp ptr ;
end

define push LR(#) ≡ put LR(end LR type (#))

define pop LR ≡
begin temp ptr ← LR ptr ; LR ptr ← link (temp ptr); free avail (temp ptr);
end

⟨Global variables 13 ⟩ +≡
LR ptr : pointer ; { stack of LR codes for hpack , ship out , and init math }
LR problems : integer ; { counts missing begins and ends }
cur dir : small number ; { current text direction }

1516. ⟨ Set initial values of key variables 23 ⟩ +≡
LR ptr ← null ; LR problems ← 0; cur dir ← left to right ;

1517. ⟨ Insert LR nodes at the beginning of the current line and adjust the LR stack based on LR nodes
in this line 1517 ⟩ ≡

begin q ← link (temp head);
if LR ptr ̸= null then
begin temp ptr ← LR ptr ; r ← q;
repeat s← new math (0, begin LR type (info(temp ptr))); link (s)← r; r ← s;

temp ptr ← link (temp ptr);
until temp ptr = null ;
link (temp head)← r;
end;

while q ̸= cur break (cur p) do
begin if ¬is char node (q) then

if type (q) = math node then ⟨Adjust the LR stack for the post line break routine 1518 ⟩;
q ← link (q);
end;

end

This code is used in section 928.

1518. ⟨Adjust the LR stack for the post line break routine 1518 ⟩ ≡
if end LR(q) then
begin if LR ptr ̸= null then

if info(LR ptr) = end LR type (q) then pop LR ;
end

else push LR(q)

This code is used in sections 927, 929, and 1517.

618 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1519

1519. We use the fact that q now points to the node with \rightskip glue.

⟨ Insert LR nodes at the end of the current line 1519 ⟩ ≡
if LR ptr ̸= null then
begin s← temp head ; r ← link (s);
while r ̸= q do
begin s← r; r ← link (s);
end;

r ← LR ptr ;
while r ̸= null do
begin temp ptr ← new math (0, info(r)); link (s)← temp ptr ; s← temp ptr ; r ← link (r);
end;

link (s)← q;
end

This code is used in section 928.

1520. ⟨ Initialize the LR stack 1520 ⟩ ≡
put LR(before) { this will never match }

This code is used in sections 689, 1524, and 1545.

1521. ⟨Adjust the LR stack for the hpack routine 1521 ⟩ ≡
if end LR(p) then
if info(LR ptr) = end LR type (p) then pop LR
else begin incr (LR problems); type (p)← kern node ; subtype (p)← explicit ;
end

else push LR(p)

This code is used in section 691.

1522. ⟨Check for LR anomalies at the end of hpack 1522 ⟩ ≡
begin if info(LR ptr) ̸= before then
begin while link (q) ̸= null do q ← link (q);
repeat temp ptr ← q; q ← new math (0, info(LR ptr)); link (temp ptr)← q;

LR problems ← LR problems + 10000; pop LR ;
until info(LR ptr) = before ;
end;

if LR problems > 0 then
begin ⟨Report LR problems 1523 ⟩;
goto common ending ;
end;

pop LR ;
if LR ptr ̸= null then confusion ("LR1");
end

This code is used in section 689.

1523. ⟨Report LR problems 1523 ⟩ ≡
begin print ln ; print nl ("\endL␣or␣\endR␣problem␣(");
print int (LR problems div 10000); print ("␣missing,␣");
print int (LR problems mod 10000); print ("␣extra");
LR problems ← 0;
end

This code is used in sections 1522 and 1541.

§1524 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 619

1524. ⟨ Initialize hlist out for mixed direction typesetting 1524 ⟩ ≡
if eTeX ex then
begin ⟨ Initialize the LR stack 1520 ⟩;
if box lr (this box) = dlist then

if cur dir = right to left then
begin cur dir ← left to right ; cur h ← cur h − width (this box);
end

else set box lr (this box)(0);
if (cur dir = right to left) ∧ (box lr (this box) ̸= reversed) then
⟨Reverse the complete hlist and set the subtype to reversed 1531 ⟩;

end

This code is used in section 655.

1525. ⟨Finish hlist out for mixed direction typesetting 1525 ⟩ ≡
if eTeX ex then
begin ⟨Check for LR anomalies at the end of hlist out 1528 ⟩;
if box lr (this box) = dlist then cur dir ← right to left ;
end

This code is used in section 655.

1526. ⟨Handle a math node in hlist out 1526 ⟩ ≡
begin if eTeX ex then ⟨Adjust the LR stack for the hlist out routine; if necessary reverse an hlist

segment and goto reswitch 1527 ⟩;
cur h ← cur h + width (p);
end

This code is used in section 660.

1527. Breaking a paragraph into lines while TEX--XET is disabled may result in lines whith unpaired math
nodes. Such hlists are silently accepted in the absence of text direction directives.

define LR dir (#) ≡ (subtype (#) div R code) { text direction of a ‘math node’ }
⟨Adjust the LR stack for the hlist out routine; if necessary reverse an hlist segment and goto

reswitch 1527 ⟩ ≡
begin if end LR(p) then
if info(LR ptr) = end LR type (p) then pop LR
else begin if subtype (p) > L code then incr (LR problems);

end
else begin push LR(p);
if LR dir (p) ̸= cur dir then ⟨Reverse an hlist segment and goto reswitch 1532 ⟩;
end;

type (p)← kern node ;
end

This code is used in section 1526.

1528. ⟨Check for LR anomalies at the end of hlist out 1528 ⟩ ≡
begin while info(LR ptr) ̸= before do
begin if info(LR ptr) > L code then LR problems ← LR problems + 10000;
pop LR ;
end;

pop LR ;
end

This code is used in section 1525.

620 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1529

1529. define edge node = style node { a style node does not occur in hlists }
define edge node size = style node size { number of words in an edge node }
define edge dist (#) ≡ depth (#)

{ new left edge position relative to cur h (after width has been taken into account) }
⟨Declare procedures needed in hlist out , vlist out 1431 ⟩ +≡
function new edge (s : small number ; w : scaled): pointer ; { create an edge node }
var p: pointer ; { the new node }
begin p← get node (edge node size); type (p)← edge node ; subtype (p)← s; width (p)← w;
edge dist (p)← 0; { the edge dist field will be set later }
new edge ← p;
end;

1530. ⟨Cases of hlist out that arise in mixed direction text only 1530 ⟩ ≡
edge node : begin cur h ← cur h + width (p); left edge ← cur h + edge dist (p); cur dir ← subtype (p);
end;

This code is used in section 660.

1531. We detach the hlist, start a new one consisting of just one kern node, append the reversed list, and
set the width of the kern node.

⟨Reverse the complete hlist and set the subtype to reversed 1531 ⟩ ≡
begin save h ← cur h ; temp ptr ← p; p← new kern (0); link (prev p)← p; cur h ← 0;
link (p)← reverse (this box ,null , cur g , cur glue); width (p)← −cur h ; cur h ← save h ;
set box lr (this box)(reversed);
end

This code is used in section 1524.

1532. We detach the remainder of the hlist, replace the math node by an edge node, and append the
reversed hlist segment to it; the tail of the reversed segment is another edge node and the remainder of the
original list is attached to it.

⟨Reverse an hlist segment and goto reswitch 1532 ⟩ ≡
begin save h ← cur h ; temp ptr ← link (p); rule wd ← width (p); free node (p, small node size);
cur dir ← reflected ; p← new edge (cur dir , rule wd); link (prev p)← p;
cur h ← cur h − left edge + rule wd ; link (p)← reverse (this box ,new edge (reflected , 0), cur g , cur glue);
edge dist (p)← cur h ; cur dir ← reflected ; cur h ← save h ; goto reswitch ;
end

This code is used in section 1527.

§1533 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 621

1533. The reverse function defined here is responsible to reverse the nodes of an hlist (segment). The first
parameter this box is the enclosing hlist node, the second parameter t is to become the tail of the reversed
list, and the global variable temp ptr is the head of the list to be reversed. Finally cur g and cur glue are
the current glue rounding state variables, to be updated by this function. We remove nodes from the original
list and add them to the head of the new one.

⟨Declare procedures needed in hlist out , vlist out 1431 ⟩ +≡
function reverse (this box , t : pointer ; var cur g : scaled ; var cur glue : real): pointer ;

label reswitch ,next p , done ;
var l: pointer ; { the new list }
p: pointer ; { the current node }
q: pointer ; { the next node }
g order : glue ord ; { applicable order of infinity for glue }
g sign : normal . . shrinking ; { selects type of glue }
glue temp : real ; { glue value before rounding }
m,n: halfword ; { count of unmatched math nodes }

begin g order ← glue order (this box); g sign ← glue sign (this box); l← t; p← temp ptr ;
m← min halfword ; n← min halfword ;
loop begin while p ̸= null do ⟨Move node p to the new list and go to the next node; or goto done if

the end of the reflected segment has been reached 1534 ⟩;
if (t = null) ∧ (m = min halfword) ∧ (n = min halfword) then goto done ;
p← new math (0, info(LR ptr)); LR problems ← LR problems + 10000;

{manufacture one missing math node }
end;

done : reverse ← l;
end;

1534. ⟨Move node p to the new list and go to the next node; or goto done if the end of the reflected
segment has been reached 1534 ⟩ ≡

reswitch : if is char node (p) then
repeat f ← font (p); c← character (p); cur h ← cur h + char width (f)(char info(f)(c)); q ← link (p);

link (p)← l; l← p; p← q;
until ¬is char node (p)

else ⟨Move the non-char node p to the new list 1535 ⟩
This code is used in section 1533.

1535. ⟨Move the non-char node p to the new list 1535 ⟩ ≡
begin q ← link (p);
case type (p) of
hlist node , vlist node , rule node , kern node : rule wd ← width (p);
⟨Cases of reverse that need special treatment 1536 ⟩
edge node : confusion ("LR2");
othercases goto next p
endcases;
cur h ← cur h + rule wd ;

next p : link (p)← l;
if type (p) = kern node then
if (rule wd = 0) ∨ (l = null) then
begin free node (p, small node size); p← l;
end;

l← p; p← q;
end

This code is used in section 1534.

622 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1536

1536. Need to measure native word and picture nodes when reversing!

⟨Cases of reverse that need special treatment 1536 ⟩ ≡
whatsit node : if (is native word subtype (p)) ∨ (subtype (p) = glyph node) ∨ (subtype (p) =

pic node) ∨ (subtype (p) = pdf node) then rule wd ← width (p)
else goto next p ;

See also sections 1537, 1538, and 1539.

This code is used in section 1535.

1537. Here we compute the effective width of a glue node as in hlist out .

⟨Cases of reverse that need special treatment 1536 ⟩ +≡
glue node : begin round glue ; ⟨Handle a glue node for mixed direction typesetting 1509 ⟩;

end;

1538. A ligature node is replaced by a char node.

⟨Cases of reverse that need special treatment 1536 ⟩ +≡
ligature node : begin flush node list (lig ptr (p)); temp ptr ← p; p← get avail ;

mem [p]← mem [lig char (temp ptr)]; link (p)← q; free node (temp ptr , small node size); goto reswitch ;
end;

1539. Math nodes in an inner reflected segment are modified, those at the outer level are changed into
kern nodes.

⟨Cases of reverse that need special treatment 1536 ⟩ +≡
math node : begin rule wd ← width (p);
if end LR(p) then
if info(LR ptr) ̸= end LR type (p) then
begin type (p)← kern node ; incr (LR problems);
end

else begin pop LR ;
if n > min halfword then
begin decr (n); decr (subtype (p)); { change after into before }
end

else begin type (p)← kern node ;
if m > min halfword then decr (m)
else ⟨Finish the reversed hlist segment and goto done 1540 ⟩;
end;

end
else begin push LR(p);
if (n > min halfword) ∨ (LR dir (p) ̸= cur dir) then

begin incr (n); incr (subtype (p)); { change before into after }
end

else begin type (p)← kern node ; incr (m);
end;

end;
end;

§1540 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 623

1540. Finally we have found the end of the hlist segment to be reversed; the final math node is released
and the remaining list attached to the edge node terminating the reversed segment.

⟨Finish the reversed hlist segment and goto done 1540 ⟩ ≡
begin free node (p, small node size); link (t)← q; width (t)← rule wd ; edge dist (t)← −cur h − rule wd ;
goto done ;
end

This code is used in section 1539.

1541. ⟨Check for LR anomalies at the end of ship out 1541 ⟩ ≡
begin if LR problems > 0 then
begin ⟨Report LR problems 1523 ⟩;
print char (")"); print ln ;
end;

if (LR ptr ̸= null) ∨ (cur dir ̸= left to right) then confusion ("LR3");
end

This code is used in section 676.

1542. Some special actions are required for displayed equation in paragraphs with mixed direction texts.
First of all we have to set the text direction preceding the display.

⟨ Set the value of x to the text direction before the display 1542 ⟩ ≡
if LR save = null then x← 0
else if info(LR save) ≥ R code then x← −1 else x← 1

This code is used in sections 1543 and 1545.

1543. ⟨Prepare for display after an empty paragraph 1543 ⟩ ≡
begin pop nest ; ⟨ Set the value of x to the text direction before the display 1542 ⟩;
end

This code is used in section 1199.

624 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1544

1544. When calculating the natural width, w, of the final line preceding the display, we may have to
copy all or part of its hlist. We copy, however, only those parts of the original list that are relevant for the
computation of pre display size .

⟨Declare subprocedures for init math 1544 ⟩ ≡
procedure just copy (p, h, t : pointer);
label found ,not found ;
var r: pointer ; { current node being fabricated for new list }
words : 0 . . 5; { number of words remaining to be copied }

begin while p ̸= null do
begin words ← 1; { this setting occurs in more branches than any other }
if is char node (p) then r ← get avail
else case type (p) of

hlist node , vlist node : begin r ← get node (box node size); mem [r + 6]← mem [p+ 6];
mem [r + 5]← mem [p+ 5]; { copy the last two words }
words ← 5; list ptr (r)← null ; { this affects mem [r + 5] }
end;

rule node : begin r ← get node (rule node size); words ← rule node size ;
end;

ligature node : begin r ← get avail ; { only font and character are needed }
mem [r]← mem [lig char (p)]; goto found ;
end;

kern node ,math node : begin r ← get node (small node size); words ← small node size ;
end;

glue node : begin r ← get node (small node size); add glue ref (glue ptr (p));
glue ptr (r)← glue ptr (p); leader ptr (r)← null ;
end;

whatsit node : ⟨Make a partial copy of the whatsit node p and make r point to it; set words to the
number of initial words not yet copied 1417 ⟩;

othercases goto not found
endcases;

while words > 0 do
begin decr (words); mem [r + words]← mem [p+ words];
end;

found : link (h)← r; h← r;
not found : p← link (p);
end;

link (h)← t;
end;

See also section 1549.

This code is used in section 1192.

§1545 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 625

1545. When the final line ends with R-text, the value w refers to the line reflected with respect to the left
edge of the enclosing vertical list.

⟨Prepare for display after a non-empty paragraph 1545 ⟩ ≡
if eTeX ex then ⟨Let j be the prototype box for the display 1551 ⟩;
v ← shift amount (just box); ⟨ Set the value of x to the text direction before the display 1542 ⟩;
if x ≥ 0 then
begin p← list ptr (just box); link (temp head)← null ;
end

else begin v ← −v − width (just box); p← new math (0, begin L code); link (temp head)← p;
just copy (list ptr (just box), p, new math (0, end L code)); cur dir ← right to left ;
end;

v ← v + 2 ∗ quad (cur font);
if TeXXeT en then ⟨ Initialize the LR stack 1520 ⟩

This code is used in section 1200.

1546. ⟨Finish the natural width computation 1546 ⟩ ≡
if TeXXeT en then
begin while LR ptr ̸= null do pop LR ;
if LR problems ̸= 0 then

begin w ← max dimen ; LR problems ← 0;
end;

end;
cur dir ← left to right ; flush node list (link (temp head))

This code is used in section 1200.

1547. In the presence of text direction directives we assume that any LR problems have been fixed by the
hpack routine. If the final line contains, however, text direction directives while TEX--XET is disabled, then
we set w ← max dimen .

⟨Cases of ‘Let d be the natural width’ that need special treatment 1547 ⟩ ≡
math node : begin d← width (p);
if TeXXeT en then ⟨Adjust the LR stack for the init math routine 1548 ⟩
else if subtype (p) ≥ L code then

begin w ← max dimen ; goto done ;
end;

end;
edge node : begin d← width (p); cur dir ← subtype (p);
end;

This code is used in section 1201.

626 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1548

1548. ⟨Adjust the LR stack for the init math routine 1548 ⟩ ≡
if end LR(p) then
begin if info(LR ptr) = end LR type (p) then pop LR
else if subtype (p) > L code then

begin w ← max dimen ; goto done ;
end

end
else begin push LR(p);
if LR dir (p) ̸= cur dir then
begin just reverse (p); p← temp head ;
end;

end

This code is used in section 1547.

1549. ⟨Declare subprocedures for init math 1544 ⟩ +≡
procedure just reverse (p : pointer);
label found , done ;
var l: pointer ; { the new list }
t: pointer ; { tail of reversed segment }
q: pointer ; { the next node }
m,n: halfword ; { count of unmatched math nodes }

begin m← min halfword ; n← min halfword ;
if link (temp head) = null then
begin just copy (link (p), temp head ,null); q ← link (temp head);
end

else begin q ← link (p); link (p)← null ; flush node list (link (temp head));
end;

t← new edge (cur dir , 0); l← t; cur dir ← reflected ;
while q ̸= null do
if is char node (q) then

repeat p← q; q ← link (p); link (p)← l; l← p;
until ¬is char node (q)

else begin p← q; q ← link (p);
if type (p) = math node then ⟨Adjust the LR stack for the just reverse routine 1550 ⟩;
link (p)← l; l← p;
end;

goto done ;
found : width (t)← width (p); link (t)← q; free node (p, small node size);
done : link (temp head)← l;
end;

§1550 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 627

1550. ⟨Adjust the LR stack for the just reverse routine 1550 ⟩ ≡
if end LR(p) then
if info(LR ptr) ̸= end LR type (p) then
begin type (p)← kern node ; incr (LR problems);
end

else begin pop LR ;
if n > min halfword then
begin decr (n); decr (subtype (p)); { change after into before }
end

else begin if m > min halfword then decr (m) else goto found ;
type (p)← kern node ;
end;

end
else begin push LR(p);
if (n > min halfword) ∨ (LR dir (p) ̸= cur dir) then

begin incr (n); incr (subtype (p)); { change before into after }
end

else begin type (p)← kern node ; incr (m);
end;

end

This code is used in section 1549.

1551. The prototype box is an hlist node with the width, glue set, and shift amount of just box , i.e., the
last line preceding the display. Its hlist reflects the current \leftskip and \rightskip.

⟨Let j be the prototype box for the display 1551 ⟩ ≡
begin if right skip = zero glue then j ← new kern (0)
else j ← new param glue (right skip code);
if left skip = zero glue then p← new kern (0)
else p← new param glue (left skip code);
link (p)← j; j ← new null box ; width (j)← width (just box); shift amount (j)← shift amount (just box);
list ptr (j)← p; glue order (j)← glue order (just box); glue sign (j)← glue sign (just box);
glue set (j)← glue set (just box);
end

This code is used in section 1545.

1552. At the end of a displayed equation we retrieve the prototype box.

⟨Local variables for finishing a displayed formula 1252 ⟩ +≡
j: pointer ; { prototype box }

1553. ⟨Retrieve the prototype box 1553 ⟩ ≡
if mode = mmode then j ← LR box

This code is used in sections 1248 and 1248.

1554. ⟨Flush the prototype box 1554 ⟩ ≡
flush node list (j)

This code is used in section 1253.

628 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1555

1555. The app display procedure used to append the displayed equation and/or equation number to the
current vertical list has three parameters: the prototype box, the hbox to be appended, and the displacement
of the hbox in the display line.

⟨Declare subprocedures for after math 1555 ⟩ ≡
procedure app display (j, b : pointer ; d : scaled);

var z: scaled ; {width of the line }
s: scaled ; {move the line right this much }
e: scaled ; { distance from right edge of box to end of line }
x: integer ; { pre display direction }
p, q, r, t, u: pointer ; { for list manipulation }

begin s← display indent ; x← pre display direction ;
if x = 0 then shift amount (b)← s+ d
else begin z ← display width ; p← b; ⟨ Set up the hlist for the display line 1556 ⟩;
⟨Package the display line 1557 ⟩;
end;

append to vlist (b);
end;

This code is used in section 1248.

1556. Here we construct the hlist for the display, starting with node p and ending with node q. We also
set d and e to the amount of kerning to be added before and after the hlist (adjusted for the prototype box).

⟨ Set up the hlist for the display line 1556 ⟩ ≡
if x > 0 then e← z − d− width (p)
else begin e← d; d← z − e− width (p);
end;

if j ̸= null then
begin b← copy node list (j); height (b)← height (p); depth (b)← depth (p); s← s− shift amount (b);
d← d+ s; e← e+ width (b)− z − s;
end;

if box lr (p) = dlist then q ← p { display or equation number }
else begin { display and equation number }
r ← list ptr (p); free node (p, box node size);
if r = null then confusion ("LR4");
if x > 0 then
begin p← r;
repeat q ← r; r ← link (r); { find tail of list }
until r = null ;
end

else begin p← null ; q ← r;
repeat t← link (r); link (r)← p; p← r; r ← t; { reverse list }
until r = null ;
end;

end

This code is used in section 1555.

§1557 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 629

1557. In the presence of a prototype box we use its shift amount and width to adjust the values of kerning
and add these values to the glue nodes inserted to cancel the \leftskip and \rightskip. If there is no
prototype box (because the display is preceded by an empty paragraph), or if the skip parameters are zero,
we just add kerns.
The cancel glue macro creates and links a glue node that is, together with another glue node, equivalent

to a given amount of kerning. We can use j as temporary pointer, since all we need is j ̸= null .

define cancel glue (#) ≡ j ← new skip param (#); cancel glue cont
define cancel glue cont (#) ≡ link (#)← j; cancel glue cont cont
define cancel glue cont cont (#) ≡ link (j)← #; cancel glue end
define cancel glue end (#) ≡ j ← glue ptr (#); cancel glue end end
define cancel glue end end (#) ≡ stretch order (temp ptr)← stretch order (j);

shrink order (temp ptr)← shrink order (j); width (temp ptr)← #− width (j);
stretch (temp ptr)← −stretch (j); shrink (temp ptr)← −shrink (j)

⟨Package the display line 1557 ⟩ ≡
if j = null then
begin r ← new kern (0); t← new kern (0); { the widths will be set later }
end

else begin r ← list ptr (b); t← link (r);
end;

u← new math (0, end M code);
if type (t) = glue node then { t is \rightskip glue }
begin cancel glue (right skip code)(q)(u)(t)(e); link (u)← t;
end

else begin width (t)← e; link (t)← u; link (q)← t;
end;

u← new math (0, begin M code);
if type (r) = glue node then { r is \leftskip glue }
begin cancel glue (left skip code)(u)(p)(r)(d); link (r)← u;
end

else begin width (r)← d; link (r)← p; link (u)← r;
if j = null then
begin b← hpack (u,natural); shift amount (b)← s;
end

else list ptr (b)← u;
end

This code is used in section 1555.

1558. The scan tokens feature of ε-TEX defines the \scantokens primitive.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("scantokens", input , 2);

1559. ⟨Cases of input for print cmd chr 1559 ⟩ ≡
else if chr code = 2 then print esc("scantokens")

This code is used in section 411.

1560. ⟨Cases for input 1560 ⟩ ≡
else if cur chr = 2 then pseudo start

This code is used in section 412.

630 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1561

1561. The global variable pseudo files is used to maintain a stack of pseudo files. The info field of each
pseudo file points to a linked list of variable size nodes representing lines not yet processed: the info field of
the first word contains the size of this node, all the following words contain ASCII codes.

⟨Global variables 13 ⟩ +≡
pseudo files : pointer ; { stack of pseudo files }

1562. ⟨ Set initial values of key variables 23 ⟩ +≡
pseudo files ← null ;

1563. The pseudo start procedure initiates reading from a pseudo file.

⟨Declare ε-TEX procedures for expanding 1563 ⟩ ≡
procedure pseudo start ; forward ;

See also sections 1621, 1626, and 1630.

This code is used in section 396.

1564. ⟨Declare ε-TEX procedures for token lists 1493 ⟩ +≡
procedure pseudo start ;

var old setting : 0 . . max selector ; { holds selector setting }
s: str number ; { string to be converted into a pseudo file }
l,m: pool pointer ; { indices into str pool }
p, q, r: pointer ; { for list construction }
w: four quarters ; { four ASCII codes }
nl , sz : integer ;

begin scan general text ; old setting ← selector ; selector ← new string ; token show (temp head);
selector ← old setting ; flush list (link (temp head)); str room (1); s← make string ;
⟨Convert string s into a new pseudo file 1565 ⟩;
flush string ; ⟨ Initiate input from new pseudo file 1566 ⟩;
end;

§1565 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 631

1565. ⟨Convert string s into a new pseudo file 1565 ⟩ ≡
str pool [pool ptr]← si ("␣"); l← str start macro(s); nl ← si (new line char); p← get avail ; q ← p;
while l < pool ptr do
begin m← l;
while (l < pool ptr) ∧ (str pool [l] ̸= nl) do incr (l);
sz ← (l −m+ 7) div 4;
if sz = 1 then sz ← 2;
r ← get node (sz); link (q)← r; q ← r; info(q)← hi (sz);
while sz > 2 do

begin decr (sz); incr (r); w.b0 ← qi (so(str pool [m])); w.b1 ← qi (so(str pool [m+ 1]));
w.b2 ← qi (so(str pool [m+ 2])); w.b3 ← qi (so(str pool [m+ 3])); mem [r].qqqq ← w; m← m+ 4;
end;

w.b0 ← qi ("␣"); w.b1 ← qi ("␣"); w.b2 ← qi ("␣"); w.b3 ← qi ("␣");
if l > m then
begin w.b0 ← qi (so(str pool [m]));
if l > m+ 1 then

begin w.b1 ← qi (so(str pool [m+ 1]));
if l > m+ 2 then
begin w.b2 ← qi (so(str pool [m+ 2]));
if l > m+ 3 then w.b3 ← qi (so(str pool [m+ 3]));
end;

end;
end;

mem [r + 1].qqqq ← w;
if str pool [l] = nl then incr (l);
end;

info(p)← link (p); link (p)← pseudo files ; pseudo files ← p

This code is used in section 1564.

1566. ⟨ Initiate input from new pseudo file 1566 ⟩ ≡
begin file reading ; { set up cur file and new level of input }
line ← 0; limit ← start ; loc ← limit + 1; { force line read }
if tracing scan tokens > 0 then
begin if term offset > max print line − 3 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char ("␣");
name ← 19; print ("(␣"); incr (open parens); update terminal ;
end

else name ← 18

This code is used in section 1564.

632 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1567

1567. Here we read a line from the current pseudo file into buffer .

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
function pseudo input : boolean ; { inputs the next line or returns false }

var p: pointer ; { current line from pseudo file }
sz : integer ; { size of node p }
w: four quarters ; { four ASCII codes }
r: pointer ; { loop index }

begin last ← first ; { cf. Matthew 19 : 30 }
p← info(pseudo files);
if p = null then pseudo input ← false
else begin info(pseudo files)← link (p); sz ← ho(info(p));
if 4 ∗ sz − 3 ≥ buf size − last then ⟨Report overflow of the input buffer, and abort 35 ⟩;
last ← first ;
for r ← p+ 1 to p+ sz − 1 do

begin w ← mem [r].qqqq ; buffer [last]← w.b0 ; buffer [last + 1]← w.b1 ; buffer [last + 2]← w.b2 ;
buffer [last + 3]← w.b3 ; last ← last + 4;
end;

if last ≥ max buf stack then max buf stack ← last + 1;
while (last > first) ∧ (buffer [last − 1] = "␣") do decr (last);
free node (p, sz); pseudo input ← true ;
end;

end;

1568. When we are done with a pseudo file we ‘close’ it.

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure pseudo close ; { close the top level pseudo file }

var p, q: pointer ;
begin p← link (pseudo files); q ← info(pseudo files); free avail (pseudo files); pseudo files ← p;
while q ̸= null do
begin p← q; q ← link (p); free node (p, ho(info(p)));
end;

end;

1569. ⟨Dump the ε-TEX state 1464 ⟩ +≡
while pseudo files ̸= null do pseudo close ; { flush pseudo files }

1570. ⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("readline", read to cs , 1);

1571. ⟨Cases of read for print cmd chr 1571 ⟩ ≡
else print esc("readline")

This code is used in section 296.

§1572 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 633

1572. ⟨Handle \readline and goto done 1572 ⟩ ≡
if j = 1 then
begin while loc ≤ limit do { current line not yet finished }
begin cur chr ← buffer [loc]; incr (loc);
if cur chr = "␣" then cur tok ← space token else cur tok ← cur chr + other token ;
store new token (cur tok);
end;

goto done ;
end

This code is used in section 518.

1573. Here we define the additional conditionals of ε-TEX as well as the \unless prefix.

define if def code = 17 { ‘\ifdefined’ }
define if cs code = 18 { ‘\ifcsname’ }
define if font char code = 19 { ‘\iffontchar’ }
define if in csname code = 20 { ‘\ifincsname’ }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("unless", expand after , 1);
primitive ("ifdefined", if test , if def code); primitive ("ifcsname", if test , if cs code);
primitive ("iffontchar", if test , if font char code); primitive ("ifincsname", if test , if in csname code);

1574. ⟨Cases of expandafter for print cmd chr 1574 ⟩ ≡
else print esc("unless")

This code is used in section 296.

1575. ⟨Cases of if test for print cmd chr 1575 ⟩ ≡
if def code : print esc("ifdefined");
if cs code : print esc("ifcsname");
if font char code : print esc("iffontchar");
if in csname code : print esc("ifincsname");

This code is used in section 523.

1576. The result of a boolean condition is reversed when the conditional is preceded by \unless.

⟨Negate a boolean conditional and goto reswitch 1576 ⟩ ≡
begin get token ;
if (cur cmd = if test) ∧ (cur chr ̸= if case code) then
begin cur chr ← cur chr + unless code ; goto reswitch ;
end;

print err ("You␣can´t␣use␣`"); print esc("unless"); print ("´␣before␣`");
print cmd chr (cur cmd , cur chr); print char ("´");
help1 ("Continue,␣and␣I´ll␣forget␣that␣it␣ever␣happened."); back error ;
end

This code is used in section 399.

634 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1577

1577. The conditional \ifdefined tests if a control sequence is defined.
We need to reset scanner status , since \outer control sequences are allowed, but we might be scanning a

macro definition or preamble.

⟨Cases for conditional 1577 ⟩ ≡
if def code : begin save scanner status ← scanner status ; scanner status ← normal ; get next ;

b← (cur cmd ̸= undefined cs); scanner status ← save scanner status ;
end;

See also sections 1578 and 1580.

This code is used in section 536.

1578. The conditional \ifcsname is equivalent to {\expandafter }\expandafter \ifdefined \csname,
except that no new control sequence will be entered into the hash table (once all tokens preceding the
mandatory \endcsname have been expanded).

⟨Cases for conditional 1577 ⟩ +≡
if cs code : begin n← get avail ; p← n; { head of the list of characters }
e← is in csname ; is in csname ← true ;
repeat get x token ;
if cur cs = 0 then store new token (cur tok);

until cur cs ̸= 0;
if cur cmd ̸= end cs name then ⟨Complain about missing \endcsname 407 ⟩;
⟨Look up the characters of list n in the hash table, and set cur cs 1579 ⟩;
flush list (n); b← (eq type (cur cs) ̸= undefined cs); is in csname ← e;
end;

1579. ⟨Look up the characters of list n in the hash table, and set cur cs 1579 ⟩ ≡
m← first ; p← link (n);
while p ̸= null do
begin if m ≥ max buf stack then

begin max buf stack ← m+ 1;
if max buf stack = buf size then overflow ("buffer␣size", buf size);
end;

buffer [m]← info(p)mod max char val ; incr (m); p← link (p);
end;

if m > first + 1 then cur cs ← id lookup(first ,m− first) {no new control sequence is true }
else if m = first then cur cs ← null cs { the list is empty }
else cur cs ← single base + buffer [first] { the list has length one }

This code is used in section 1578.

1580. The conditional \iffontchar tests the existence of a character in a font.

⟨Cases for conditional 1577 ⟩ +≡
if in csname code : b← is in csname ;
if font char code : begin scan font ident ; n← cur val ; scan usv num ;

if is native font (n) then b← (map char to glyph (n, cur val) > 0)
else begin if (font bc [n] ≤ cur val) ∧ (font ec [n] ≥ cur val) then

b← char exists (char info(n)(qi (cur val)))
else b← false ;
end;

end;

§1581 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 635

1581. The protected feature of ε-TEX defines the \protected prefix command for macro definitions. Such
macros are protected against expansions when lists of expanded tokens are built, e.g., for \edef or during
\write.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("protected", prefix , 8);

1582. ⟨Cases of prefix for print cmd chr 1582 ⟩ ≡
else if chr code = 8 then print esc("protected")

This code is used in section 1263.

1583. The get x or protected procedure is like get x token except that protected macros are not expanded.

⟨Declare ε-TEX procedures for scanning 1492 ⟩ +≡
procedure get x or protected ; { sets cur cmd , cur chr , cur tok , and expands non-protected macros }

label exit ;
begin loop begin get token ;
if cur cmd ≤ max command then return;
if (cur cmd ≥ call) ∧ (cur cmd < end template) then

if info(link (cur chr)) = protected token then return;
expand ;
end;

exit : end;

1584. A group entered (or a conditional started) in one file may end in a different file. Such slight
anomalies, although perfectly legitimate, may cause errors that are difficult to locate. In order to be able to
give a warning message when such anomalies occur, ε-TEX uses the grp stack and if stack arrays to record
the initial cur boundary and cond ptr values for each input file.

⟨Global variables 13 ⟩ +≡
grp stack : array [0 . . max in open] of save pointer ; { initial cur boundary }
if stack : array [0 . . max in open] of pointer ; { initial cond ptr }

636 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1585

1585. When a group ends that was apparently entered in a different input file, the group warning procedure
is invoked in order to update the grp stack . If moreover \tracingnesting is positive we want to give a
warning message. The situation is, however, somewhat complicated by two facts: (1) There may be grp stack
elements without a corresponding \input file or \scantokens pseudo file (e.g., error insertions from the
terminal); and (2) the relevant information is recorded in the name field of the input stack only loosely
synchronized with the in open variable indexing grp stack .

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure group warning ;
var i: 0 . . max in open ; { index into grp stack }
w: boolean ; { do we need a warning? }

begin base ptr ← input ptr ; input stack [base ptr]← cur input ; { store current state }
i← in open ; w ← false ;
while (grp stack [i] = cur boundary) ∧ (i > 0) do
begin ⟨ Set variable w to indicate if this case should be reported 1586 ⟩;
grp stack [i]← save index (save ptr); decr (i);
end;

if w then
begin print nl ("Warning:␣end␣of␣"); print group(true); print ("␣of␣a␣different␣file"); print ln ;
if tracing nesting > 1 then show context ;
if history = spotless then history ← warning issued ;
end;

end;

1586. This code scans the input stack in order to determine the type of the current input file.

⟨ Set variable w to indicate if this case should be reported 1586 ⟩ ≡
if tracing nesting > 0 then
begin while (input stack [base ptr].state field = token list)∨ (input stack [base ptr].index field > i) do

decr (base ptr);
if input stack [base ptr].name field > 17 then w ← true ;
end

This code is used in sections 1585 and 1587.

§1587 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 637

1587. When a conditional ends that was apparently started in a different input file, the if warning
procedure is invoked in order to update the if stack . If moreover \tracingnesting is positive we want
to give a warning message (with the same complications as above).

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure if warning ;
var i: 0 . . max in open ; { index into if stack }
w: boolean ; { do we need a warning? }

begin base ptr ← input ptr ; input stack [base ptr]← cur input ; { store current state }
i← in open ; w ← false ;
while if stack [i] = cond ptr do
begin ⟨ Set variable w to indicate if this case should be reported 1586 ⟩;
if stack [i]← link (cond ptr); decr (i);
end;

if w then
begin print nl ("Warning:␣end␣of␣"); print cmd chr (if test , cur if); print if line (if line);
print ("␣of␣a␣different␣file"); print ln ;
if tracing nesting > 1 then show context ;
if history = spotless then history ← warning issued ;
end;

end;

1588. Conversely, the file warning procedure is invoked when a file ends and some groups entered or
conditionals started while reading from that file are still incomplete.

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure file warning ;

var p: pointer ; { saved value of save ptr or cond ptr }
l: quarterword ; { saved value of cur level or if limit }
c: quarterword ; { saved value of cur group or cur if }
i: integer ; { saved value of if line }

begin p← save ptr ; l← cur level ; c← cur group ; save ptr ← cur boundary ;
while grp stack [in open] ̸= save ptr do
begin decr (cur level); print nl ("Warning:␣end␣of␣file␣when␣"); print group(true);
print ("␣is␣incomplete");
cur group ← save level (save ptr); save ptr ← save index (save ptr)
end;

save ptr ← p; cur level ← l; cur group ← c; { restore old values }
p← cond ptr ; l← if limit ; c← cur if ; i← if line ;
while if stack [in open] ̸= cond ptr do
begin print nl ("Warning:␣end␣of␣file␣when␣"); print cmd chr (if test , cur if);
if if limit = fi code then print esc("else");
print if line (if line); print ("␣is␣incomplete");
if line ← if line field (cond ptr); cur if ← subtype (cond ptr); if limit ← type (cond ptr);
cond ptr ← link (cond ptr);
end;

cond ptr ← p; if limit ← l; cur if ← c; if line ← i; { restore old values }
print ln ;
if tracing nesting > 1 then show context ;
if history = spotless then history ← warning issued ;
end;

638 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1589

1589. Here are the additional ε-TEX primitives for expressions.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("numexpr", last item , eTeX expr − int val + int val);
primitive ("dimexpr", last item , eTeX expr − int val + dimen val);
primitive ("glueexpr", last item , eTeX expr − int val + glue val);
primitive ("muexpr", last item , eTeX expr − int val +mu val);

1590. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
eTeX expr − int val + int val : print esc("numexpr");
eTeX expr − int val + dimen val : print esc("dimexpr");
eTeX expr − int val + glue val : print esc("glueexpr");
eTeX expr − int val +mu val : print esc("muexpr");

1591. This code for reducing cur val level and/or negating the result is similar to the one for all the other
cases of scan something internal , with the difference that scan expr has already increased the reference count
of a glue specification.

⟨Process an expression and return 1591 ⟩ ≡
begin if m < eTeX mu then
begin case m of
⟨Cases for fetching a glue value 1618 ⟩

end; { there are no other cases }
cur val level ← glue val ;
end

else if m < eTeX expr then
begin case m of
⟨Cases for fetching a mu value 1619 ⟩

end; { there are no other cases }
cur val level ← mu val ;
end

else begin cur val level ← m− eTeX expr + int val ; scan expr ;
end;

while cur val level > level do
begin if cur val level = glue val then
begin m← cur val ; cur val ← width (m); delete glue ref (m);
end

else if cur val level = mu val then mu error ;
decr (cur val level);
end;

if negative then
if cur val level ≥ glue val then

begin m← cur val ; cur val ← new spec(m); delete glue ref (m);
⟨Negate all three glue components of cur val 465 ⟩;
end

else negate (cur val);
return;
end

This code is used in section 458.

1592. ⟨Declare ε-TEX procedures for scanning 1492 ⟩ +≡
procedure scan expr ; forward ;

§1593 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 639

1593. The scan expr procedure scans and evaluates an expression.

⟨Declare procedures needed for expressions 1593 ⟩ ≡
⟨Declare subprocedures for scan expr 1604 ⟩
procedure scan expr ; { scans and evaluates an expression }

label restart , continue , found ;
var a, b: boolean ; { saved values of arith error }
l: small number ; { type of expression }
r: small number ; { state of expression so far }
s: small number ; { state of term so far }
o: small number ; { next operation or type of next factor }
e: integer ; { expression so far }
t: integer ; { term so far }
f : integer ; { current factor }
n: integer ; { numerator of combined multiplication and division }
p: pointer ; { top of expression stack }
q: pointer ; { for stack manipulations }

begin l← cur val level ; a← arith error ; b← false ; p← null ; incr (expand depth count);
if expand depth count ≥ expand depth then overflow ("expansion␣depth", expand depth);
⟨ Scan and evaluate an expression e of type l 1594 ⟩;
decr (expand depth count);
if b then
begin print err ("Arithmetic␣overflow"); help2 ("I␣can´t␣evaluate␣this␣expression,")
("since␣the␣result␣is␣out␣of␣range."); error ;
if l ≥ glue val then
begin delete glue ref (e); e← zero glue ; add glue ref (e);
end

else e← 0;
end;

arith error ← a; cur val ← e; cur val level ← l;
end;

See also section 1598.

This code is used in section 496.

640 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1594

1594. Evaluating an expression is a recursive process: When the left parenthesis of a subexpression is
scanned we descend to the next level of recursion; the previous level is resumed with the matching right
parenthesis.

define expr none = 0 { (seen, or (⟨expr⟩) seen }
define expr add = 1 { (⟨expr⟩ + seen }
define expr sub = 2 { (⟨expr⟩ − seen }
define expr mult = 3 { ⟨term⟩ * seen }
define expr div = 4 { ⟨term⟩ / seen }
define expr scale = 5 { ⟨term⟩ * ⟨factor⟩ / seen }

⟨ Scan and evaluate an expression e of type l 1594 ⟩ ≡
restart : r ← expr none ; e← 0; s← expr none ; t← 0; n← 0;
continue : if s = expr none then o← l else o← int val ;
⟨ Scan a factor f of type o or start a subexpression 1596 ⟩;

found : ⟨ Scan the next operator and set o 1595 ⟩;
arith error ← b; ⟨Make sure that f is in the proper range 1601 ⟩;
case s of
⟨Cases for evaluation of the current term 1602 ⟩

end; { there are no other cases }
if o > expr sub then s← o else ⟨Evaluate the current expression 1603 ⟩;
b← arith error ;
if o ̸= expr none then goto continue ;
if p ̸= null then ⟨Pop the expression stack and goto found 1600 ⟩

This code is used in section 1593.

1595. ⟨ Scan the next operator and set o 1595 ⟩ ≡
⟨Get the next non-blank non-call token 440 ⟩;
if cur tok = other token + "+" then o← expr add
else if cur tok = other token + "−" then o← expr sub
else if cur tok = other token + "*" then o← expr mult
else if cur tok = other token + "/" then o← expr div
else begin o← expr none ;
if p = null then
begin if cur cmd ̸= relax then back input ;
end

else if cur tok ̸= other token + ")" then
begin print err ("Missing␣)␣inserted␣for␣expression");
help1 ("I␣was␣expecting␣to␣see␣`+´,␣`−´,␣`*´,␣`/´,␣or␣`)´.␣Didn´t."); back error ;
end;

end

This code is used in section 1594.

1596. ⟨ Scan a factor f of type o or start a subexpression 1596 ⟩ ≡
⟨Get the next non-blank non-call token 440 ⟩;
if cur tok = other token + "(" then ⟨Push the expression stack and goto restart 1599 ⟩;
back input ;
if o = int val then scan int
else if o = dimen val then scan normal dimen
else if o = glue val then scan normal glue
else scan mu glue ;

f ← cur val

This code is used in section 1594.

§1597 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 641

1597. ⟨Declare ε-TEX procedures for scanning 1492 ⟩ +≡
procedure scan normal glue ; forward ;
procedure scan mu glue ; forward ;

1598. Here we declare two trivial procedures in order to avoid mutually recursive procedures with param-
eters.

⟨Declare procedures needed for expressions 1593 ⟩ +≡
procedure scan normal glue ;

begin scan glue (glue val);
end;

procedure scan mu glue ;
begin scan glue (mu val);
end;

1599. Parenthesized subexpressions can be inside expressions, and this nesting has a stack. Seven local
variables represent the top of the expression stack: p points to pushed-down entries, if any; l specifies the
type of expression currently beeing evaluated; e is the expression so far and r is the state of its evaluation; t
is the term so far and s is the state of its evaluation; finally n is the numerator for a combined multiplication
and division, if any.

define expr node size = 4 { number of words in stack entry for subexpressions }
define expr e field (#) ≡ mem [#+ 1].int { saved expression so far }
define expr t field (#) ≡ mem [#+ 2].int { saved term so far }
define expr n field (#) ≡ mem [#+ 3].int { saved numerator }

⟨Push the expression stack and goto restart 1599 ⟩ ≡
begin q ← get node (expr node size); link (q)← p; type (q)← l; subtype (q)← 4 ∗ s+ r;
expr e field (q)← e; expr t field (q)← t; expr n field (q)← n; p← q; l← o; goto restart ;
end

This code is used in section 1596.

1600. ⟨Pop the expression stack and goto found 1600 ⟩ ≡
begin f ← e; q ← p; e← expr e field (q); t← expr t field (q); n← expr n field (q); s← subtype (q)div 4;
r ← subtype (q)mod 4; l← type (q); p← link (q); free node (q, expr node size); goto found ;
end

This code is used in section 1594.

642 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1601

1601. We want to make sure that each term and (intermediate) result is in the proper range. Integer
values must not exceed infinity (231−1) in absolute value, dimensions must not exceed max dimen (230−1).
We avoid the absolute value of an integer, because this might fail for the value −231 using 32-bit arithmetic.

define num error (#) ≡ { clear a number or dimension and set arith error }
begin arith error ← true ; #← 0;
end

define glue error (#) ≡ { clear a glue spec and set arith error }
begin arith error ← true ; delete glue ref (#); #← new spec(zero glue);
end

⟨Make sure that f is in the proper range 1601 ⟩ ≡
if (l = int val) ∨ (s > expr sub) then
begin if (f > infinity) ∨ (f < −infinity) then num error (f);
end

else if l = dimen val then
begin if abs (f) > max dimen then num error (f);
end

else begin if (abs (width (f)) > max dimen) ∨ (abs (stretch (f)) > max dimen) ∨
(abs (shrink (f)) > max dimen) then glue error (f);

end

This code is used in section 1594.

1602. Applying the factor f to the partial term t (with the operator s) is delayed until the next operator
o has been scanned. Here we handle the first factor of a partial term. A glue spec has to be copied unless
the next operator is a right parenthesis; this allows us later on to simply modify the glue components.

define normalize glue (#) ≡
if stretch (#) = 0 then stretch order (#)← normal ;

if shrink (#) = 0 then shrink order (#)← normal

⟨Cases for evaluation of the current term 1602 ⟩ ≡
expr none : if (l ≥ glue val) ∧ (o ̸= expr none) then

begin t← new spec(f); delete glue ref (f); normalize glue (t);
end

else t← f ;

See also sections 1606, 1607, and 1609.

This code is used in section 1594.

1603. When a term t has been completed it is copied to, added to, or subtracted from the expression e.

define expr add sub(#) ≡ add or sub(#, r = expr sub)
define expr a (#) ≡ expr add sub(#,max dimen)

⟨Evaluate the current expression 1603 ⟩ ≡
begin s← expr none ;
if r = expr none then e← t
else if l = int val then e← expr add sub(e, t, infinity)
else if l = dimen val then e← expr a (e, t)

else ⟨Compute the sum or difference of two glue specs 1605 ⟩;
r ← o;
end

This code is used in section 1594.

§1604 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 643

1604. The function add or sub(x, y,max answer ,negative) computes the sum (for negative = false) or
difference (for negative = true) of x and y, provided the absolute value of the result does not exceed
max answer .

⟨Declare subprocedures for scan expr 1604 ⟩ ≡
function add or sub(x, y,max answer : integer ; negative : boolean): integer ;
var a: integer ; { the answer }
begin if negative then negate (y);
if x ≥ 0 then
if y ≤ max answer − x then a← x+ y else num error (a)

else if y ≥ −max answer − x then a← x+ y else num error (a);
add or sub ← a;
end;

See also sections 1608 and 1610.

This code is used in section 1593.

1605. We know that stretch order (e) > normal implies stretch (e) ̸= 0 and shrink order (e) > normal
implies shrink (e) ̸= 0.

⟨Compute the sum or difference of two glue specs 1605 ⟩ ≡
begin width (e)← expr a (width (e),width (t));
if stretch order (e) = stretch order (t) then stretch (e)← expr a (stretch (e), stretch (t))
else if (stretch order (e) < stretch order (t)) ∧ (stretch (t) ̸= 0) then

begin stretch (e)← stretch (t); stretch order (e)← stretch order (t);
end;

if shrink order (e) = shrink order (t) then shrink (e)← expr a (shrink (e), shrink (t))
else if (shrink order (e) < shrink order (t)) ∧ (shrink (t) ̸= 0) then

begin shrink (e)← shrink (t); shrink order (e)← shrink order (t);
end;

delete glue ref (t); normalize glue (e);
end

This code is used in section 1603.

1606. If a multiplication is followed by a division, the two operations are combined into a ‘scaling’
operation. Otherwise the term t is multiplied by the factor f .

define expr m (#) ≡ #← nx plus y (#, f , 0)

⟨Cases for evaluation of the current term 1602 ⟩ +≡
expr mult : if o = expr div then

begin n← f ; o← expr scale ;
end

else if l = int val then t← mult integers (t, f)
else if l = dimen val then expr m (t)
else begin expr m (width (t)); expr m (stretch (t)); expr m (shrink (t));

end;

1607. Here we divide the term t by the factor f .

define expr d (#) ≡ #← quotient (#, f)

⟨Cases for evaluation of the current term 1602 ⟩ +≡
expr div : if l < glue val then expr d (t)
else begin expr d (width (t)); expr d (stretch (t)); expr d (shrink (t));
end;

644 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1608

1608. The function quotient (n, d) computes the rounded quotient q = ⌊n/d+ 1
2⌋, when n and d are positive.

⟨Declare subprocedures for scan expr 1604 ⟩ +≡
function quotient (n, d : integer): integer ;

var negative : boolean ; { should the answer be negated? }
a: integer ; { the answer }

begin if d = 0 then num error (a)
else begin if d > 0 then negative ← false
else begin negate (d); negative ← true ;
end;

if n < 0 then
begin negate (n); negative ← ¬negative ;
end;

a← n div d; n← n− a ∗ d; d← n− d; { avoid certain compiler optimizations! }
if d+ n ≥ 0 then incr (a);
if negative then negate (a);
end;

quotient ← a;
end;

1609. Here the term t is multiplied by the quotient n/f .

define expr s (#) ≡ #← fract (#, n, f ,max dimen)

⟨Cases for evaluation of the current term 1602 ⟩ +≡
expr scale : if l = int val then t← fract (t, n, f , infinity)

else if l = dimen val then expr s (t)
else begin expr s (width (t)); expr s (stretch (t)); expr s (shrink (t));
end;

§1610 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 645

1610. Finally, the function fract (x, n, d,max answer) computes the integer q = ⌊xn/d + 1
2⌋, when x, n,

and d are positive and the result does not exceed max answer . We can’t use floating point arithmetic since
the routine must produce identical results in all cases; and it would be too dangerous to multiply by n and
then divide by d, in separate operations, since overflow might well occur. Hence this subroutine simulates
double precision arithmetic, somewhat analogous to METAFONT’s make fraction and take fraction routines.

define too big = 88 { go here when the result is too big }
⟨Declare subprocedures for scan expr 1604 ⟩ +≡
function fract (x, n, d,max answer : integer): integer ;
label found , found1 , too big , done ;
var negative : boolean ; { should the answer be negated? }
a: integer ; { the answer }
f : integer ; { a proper fraction }
h: integer ; { smallest integer such that 2 ∗ h ≥ d }
r: integer ; { intermediate remainder }
t: integer ; { temp variable }

begin if d = 0 then goto too big ;
a← 0;
if d > 0 then negative ← false
else begin negate (d); negative ← true ;
end;

if x < 0 then
begin negate (x); negative ← ¬negative ;
end

else if x = 0 then goto done ;
if n < 0 then
begin negate (n); negative ← ¬negative ;
end;

t← n div d;
if t > max answer div x then goto too big ;
a← t ∗ x; n← n− t ∗ d;
if n = 0 then goto found ;
t← x div d;
if t > (max answer − a) div n then goto too big ;
a← a+ t ∗ n; x← x− t ∗ d;
if x = 0 then goto found ;
if x < n then
begin t← x; x← n; n← t;
end; { now 0 < n ≤ x < d }
⟨Compute f = ⌊xn/d+ 1

2⌋ 1611 ⟩
if f > (max answer − a) then goto too big ;
a← a+ f ;

found : if negative then negate (a);
goto done ;

too big : num error (a);
done : fract ← a;
end;

646 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1611

1611. The loop here preserves the following invariant relations between f , x, n, and r: (i) f + ⌊(xn+(r+
d))/d⌋ = ⌊x0n0/d+

1
2⌋; (ii) −d ≤ r < 0 < n ≤ x < d, where x0, n0 are the original values of x and n.

Notice that the computation specifies (x− d)+ x instead of (x+ x)− d, because the latter could overflow.

⟨Compute f = ⌊xn/d+ 1
2⌋ 1611 ⟩ ≡

f ← 0; r ← (d div 2)− d; h← −r;
loop begin if odd (n) then

begin r ← r + x;
if r ≥ 0 then

begin r ← r − d; incr (f);
end;

end;
n← n div 2;
if n = 0 then goto found1 ;
if x < h then x← x+ x
else begin t← x− d; x← t+ x; f ← f + n;
if x < n then
begin if x = 0 then goto found1 ;
t← x; x← n; n← t;
end;

end;
end;

found1 :

This code is used in section 1610.

1612. The \gluestretch, \glueshrink, \gluestretchorder, and \glueshrinkorder commands return
the stretch and shrink components and their orders of “infinity” of a glue specification.

define glue stretch order code = eTeX int + 6 { code for \gluestretchorder }
define glue shrink order code = eTeX int + 7 { code for \glueshrinkorder }
define glue stretch code = eTeX dim + 7 { code for \gluestretch }
define glue shrink code = eTeX dim + 8 { code for \glueshrink }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("gluestretchorder", last item , glue stretch order code);
primitive ("glueshrinkorder", last item , glue shrink order code);
primitive ("gluestretch", last item , glue stretch code);
primitive ("glueshrink", last item , glue shrink code);

1613. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
glue stretch order code : print esc("gluestretchorder");
glue shrink order code : print esc("glueshrinkorder");
glue stretch code : print esc("gluestretch");
glue shrink code : print esc("glueshrink");

1614. ⟨Cases for fetching an integer value 1454 ⟩ +≡
glue stretch order code , glue shrink order code : begin scan normal glue ; q ← cur val ;

if m = glue stretch order code then cur val ← stretch order (q)
else cur val ← shrink order (q);
delete glue ref (q);
end;

§1615 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 647

1615. ⟨Cases for fetching a dimension value 1458 ⟩ +≡
glue stretch code , glue shrink code : begin scan normal glue ; q ← cur val ;

if m = glue stretch code then cur val ← stretch (q)
else cur val ← shrink (q);
delete glue ref (q);
end;

1616. The \mutoglue and \gluetomu commands convert “math” glue into normal glue and vice versa;
they allow to manipulate math glue with \gluestretch etc.

define mu to glue code = eTeX glue { code for \mutoglue }
define glue to mu code = eTeX mu { code for \gluetomu }

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("mutoglue", last item ,mu to glue code); primitive ("gluetomu", last item , glue to mu code);

1617. ⟨Cases of last item for print cmd chr 1453 ⟩ +≡
mu to glue code : print esc("mutoglue");
glue to mu code : print esc("gluetomu");

1618. ⟨Cases for fetching a glue value 1618 ⟩ ≡
mu to glue code : scan mu glue ;

This code is used in section 1591.

1619. ⟨Cases for fetching a mu value 1619 ⟩ ≡
glue to mu code : scan normal glue ;

This code is used in section 1591.

1620. ε-TEX (in extended mode) supports 32768 (i.e., 215) count, dimen, skip, muskip, box, and token
registers. As in TEX the first 256 registers of each kind are realized as arrays in the table of equivalents;
the additional registers are realized as tree structures built from variable-size nodes with individual registers
existing only when needed. Default values are used for nonexistent registers: zero for count and dimen
values, zero glue for glue (skip and muskip) values, void for boxes, and null for token lists (and current
marks discussed below).
Similarly there are 32768 mark classes; the command \marksn creates a mark node for a given mark class

0 ≤ n ≤ 32767 (where \marks0 is synonymous to \mark). The page builder (actually the fire up routine)
and the vsplit routine maintain the current values of top mark , first mark , bot mark , split first mark ,
and split bot mark for each mark class. They are accessed as \topmarksn etc., and \topmarks0 is again
synonymous to \topmark. As in TEX the five current marks for mark class zero are realized as cur mark
array. The additional current marks are again realized as tree structure with individual mark classes existing
only when needed.

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("marks",mark ,marks code);
primitive ("topmarks", top bot mark , top mark code +marks code);
primitive ("firstmarks", top bot mark ,first mark code +marks code);
primitive ("botmarks", top bot mark , bot mark code +marks code);
primitive ("splitfirstmarks", top bot mark , split first mark code +marks code);
primitive ("splitbotmarks", top bot mark , split bot mark code +marks code);

1621. The scan register num procedure scans a register number that must not exceed 255 in compatibility
mode resp. 32767 in extended mode.

⟨Declare ε-TEX procedures for expanding 1563 ⟩ +≡
procedure scan register num ; forward ;

648 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1622

1622. ⟨Declare procedures that scan restricted classes of integers 467 ⟩ +≡
procedure scan register num ;

begin scan int ;
if (cur val < 0) ∨ (cur val > max reg num) then
begin print err ("Bad␣register␣code");
help2 (max reg help line)("I␣changed␣this␣one␣to␣zero."); int error (cur val); cur val ← 0;
end;

end;

1623. ⟨ Initialize variables for ε-TEX compatibility mode 1623 ⟩ ≡
max reg num ← 255; max reg help line ← "A␣register␣number␣must␣be␣between␣0␣and␣255.";

This code is used in sections 1463 and 1465.

1624. ⟨ Initialize variables for ε-TEX extended mode 1624 ⟩ ≡
max reg num ← 32767; max reg help line ← "A␣register␣number␣must␣be␣between␣0␣and␣32767.";

This code is used in sections 1451 and 1465.

1625. ⟨Global variables 13 ⟩ +≡
max reg num : halfword ; { largest allowed register number }
max reg help line : str number ; { first line of help message }

§1626 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 649

1626. There are eight almost identical doubly linked trees, one for the sparse array of the up to 32512
additional registers of each kind, one for inter-character token lists at specified class transitions, and one for
the sparse array of the up to 32767 additional mark classes. The root of each such tree, if it exists, is an
index node containing 64 pointers to subtrees for 644 consecutive array elements. Similar index nodes are
the starting points for all nonempty subtrees for 643, 642, and 64 consecutive array elements. These four
levels of index nodes are followed by a fifth level with nodes for the individual array elements.
Each index node is 33 words long. The pointers to the 64 possible subtrees or nodes are kept in the

info and link fields of the last 32 words. (It would be both elegant and efficient to declare them as array,
unfortunately Pascal doesn’t allow this.)
The fields in the first word of each index node and in the nodes for the array elements are closely related.

The link field points to the next lower index node and the sa index field contains four bits (one hexadecimal
digit) of the register number or mark class. For the lowest index node the link field is null and the sa index
field indicates the type of quantity (int val , dimen val , glue val , mu val , box val , tok val , inter char val or
mark val). The sa used field in the index nodes counts how many of the 64 pointers are non-null.

The sa index field in the nodes for array elements contains the six bits plus 64 times the type. Therefore
such a node represents a count or dimen register if and only if sa index < dimen val limit ; it represents
a skip or muskip register if and only if dimen val limit ≤ sa index < mu val limit ; it represents a box
register if and only if mu val limit ≤ sa index < box val limit ; it represents a token list register if and only
if box val limit ≤ sa index < tok val limit ; finally it represents a mark class if and only if tok val limit ≤
sa index .

The new index procedure creates an index node (returned in cur ptr) having given contents of the sa index
and link fields.

define box val ≡ 4 { the additional box registers }
define mark val = 7 { the additional mark classes }
define dimen val limit = ˝80 { 26 · (dimen val + 1) }
define mu val limit = ˝100 { 26 · (mu val + 1) }
define box val limit = ˝140 { 26 · (box val + 1) }
define tok val limit = ˝180 { 26 · (tok val + 1) }
define index node size = 33 { size of an index node }
define sa index ≡ type { a four-bit address or a type or both }
define sa used ≡ subtype { count of non-null pointers }

⟨Declare ε-TEX procedures for expanding 1563 ⟩ +≡
procedure new index (i : quarterword ; q : pointer);
var k: small number ; { loop index }
begin cur ptr ← get node (index node size); sa index (cur ptr)← i; sa used (cur ptr)← 0;
link (cur ptr)← q;
for k ← 1 to index node size − 1 do { clear all 64 pointers }
mem [cur ptr + k]← sa null ;

end;

1627. The roots of the eight trees for the additional registers and mark classes are kept in the sa root
array. The first seven locations must be dumped and undumped; the last one is also known as sa mark .

define sa mark ≡ sa root [mark val] { root for mark classes }
⟨Global variables 13 ⟩ +≡
sa root : array [int val . . mark val] of pointer ; { roots of sparse arrays }
cur ptr : pointer ; { value returned by new index and find sa element }
sa null : memory word ; { two null pointers }

1628. ⟨ Set initial values of key variables 23 ⟩ +≡
sa mark ← null ; sa null .hh .lh ← null ; sa null .hh .rh ← null ;

650 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1629

1629. ⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
for i← int val to inter char val do sa root [i]← null ;

§1630 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 651

1630. Given a type t and a twenty-four-bit number n, the find sa element procedure returns (in cur ptr)
a pointer to the node for the corresponding array element, or null when no such element exists. The third
parameter w is set true if the element must exist, e.g., because it is about to be modified. The procedure
has two main branches: one follows the existing tree structure, the other (only used when w is true) creates
the missing nodes.
We use macros to extract the six-bit pieces from a twenty-four-bit register number or mark class and to

fetch or store one of the 64 pointers from an index node. (Note that the hex dig macros are mis-named since
the conversion from 4-bit to 6-bit fields for X ETEX!)

define if cur ptr is null then return or goto(#) ≡ { some tree element is missing }
begin if cur ptr = null then
if w then goto # else return;

end

define hex dig1 (#) ≡ # div ˝40000 { the fourth lowest 6-bit field }
define hex dig2 (#) ≡ (# div ˝1000)mod ˝40 { the third lowest 6-bit field }
define hex dig3 (#) ≡ (# div ˝40)mod ˝40 { the second lowest 6-bit field }
define hex dig4 (#) ≡ #mod ˝40 { the lowest 6-bit field }
define get sa ptr ≡

if odd (i) then cur ptr ← link (q + (i div 2) + 1)
else cur ptr ← info(q + (i div 2) + 1)

{ set cur ptr to the pointer indexed by i from index node q }
define put sa ptr (#) ≡

if odd (i) then link (q + (i div 2) + 1)← #

else info(q + (i div 2) + 1)← # { store the pointer indexed by i in index node q }
define add sa ptr ≡

begin put sa ptr (cur ptr); incr (sa used (q));
end { add cur ptr as the pointer indexed by i in index node q }

define delete sa ptr ≡
begin put sa ptr (null); decr (sa used (q));
end { delete the pointer indexed by i in index node q }

⟨Declare ε-TEX procedures for expanding 1563 ⟩ +≡
procedure find sa element (t : small number ; n : halfword ; w : boolean);

{ sets cur val to sparse array element location or null }
label not found ,not found1 ,not found2 ,not found3 ,not found4 , exit ;
var q: pointer ; { for list manipulations }
i: small number ; { a six bit index }

begin cur ptr ← sa root [t]; if cur ptr is null then return or goto(not found);
q ← cur ptr ; i← hex dig1 (n); get sa ptr ; if cur ptr is null then return or goto(not found1);
q ← cur ptr ; i← hex dig2 (n); get sa ptr ; if cur ptr is null then return or goto(not found2);
q ← cur ptr ; i← hex dig3 (n); get sa ptr ; if cur ptr is null then return or goto(not found3);
q ← cur ptr ; i← hex dig4 (n); get sa ptr ;
if (cur ptr = null) ∧ w then goto not found4 ;
return;

not found : new index (t,null); { create first level index node }
sa root [t]← cur ptr ; q ← cur ptr ; i← hex dig1 (n);

not found1 : new index (i, q); { create second level index node }
add sa ptr ; q ← cur ptr ; i← hex dig2 (n);

not found2 : new index (i, q); { create third level index node }
add sa ptr ; q ← cur ptr ; i← hex dig3 (n);

not found3 : new index (i, q); { create fourth level index node }
add sa ptr ; q ← cur ptr ; i← hex dig4 (n);

not found4 : ⟨Create a new array element of type t with index i 1631 ⟩;

652 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1630

link (cur ptr)← q; add sa ptr ;
exit : end;

1631. The array elements for registers are subject to grouping and have an sa lev field (quite analogous to
eq level) instead of sa used . Since saved values as well as shorthand definitions (created by e.g., \countdef)
refer to the location of the respective array element, we need a reference count that is kept in the sa ref
field. An array element can be deleted (together with all references to it) when its sa ref value is null and
its value is the default value.
Skip, muskip, box, and token registers use two word nodes, their values are stored in the sa ptr field.

Count and dimen registers use three word nodes, their values are stored in the sa int resp. sa dim field in
the third word; the sa ptr field is used under the name sa num to store the register number. Mark classes
use four word nodes. The last three words contain the five types of current marks

define sa lev ≡ sa used { grouping level for the current value }
define pointer node size = 2 { size of an element with a pointer value }
define sa type (#) ≡ (sa index (#) div 64) { type part of combined type/index }
define sa ref (#) ≡ info(#+ 1) { reference count of a sparse array element }
define sa ptr (#) ≡ link (#+ 1) { a pointer value }
define word node size = 3 { size of an element with a word value }
define sa num ≡ sa ptr { the register number }
define sa int (#) ≡ mem [#+ 2].int { an integer }
define sa dim (#) ≡ mem [#+ 2].sc { a dimension (a somewhat esotheric distinction) }
define mark class node size = 4 { size of an element for a mark class }
define fetch box (#) ≡ { fetch box (cur val) }

if cur val < 256 then #← box (cur val)
else begin find sa element (box val , cur val , false);
if cur ptr = null then #← null else #← sa ptr (cur ptr);
end

⟨Create a new array element of type t with index i 1631 ⟩ ≡
if t = mark val then { a mark class }
begin cur ptr ← get node (mark class node size); mem [cur ptr + 1]← sa null ;
mem [cur ptr + 2]← sa null ; mem [cur ptr + 3]← sa null ;
end

else begin if t ≤ dimen val then { a count or dimen register }
begin cur ptr ← get node (word node size); sa int (cur ptr)← 0; sa num (cur ptr)← n;
end

else begin cur ptr ← get node (pointer node size);
if t ≤ mu val then { a skip or muskip register }

begin sa ptr (cur ptr)← zero glue ; add glue ref (zero glue);
end

else sa ptr (cur ptr)← null ; { a box or token list register }
end;

sa ref (cur ptr)← null ; { all registers have a reference count }
end;

sa index (cur ptr)← 64 ∗ t+ i; sa lev (cur ptr)← level one

This code is used in section 1630.

§1632 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 653

1632. The delete sa ref procedure is called when a pointer to an array element representing a register is
being removed; this means that the reference count should be decreased by one. If the reduced reference count
is null and the register has been (globally) assigned its default value the array element should disappear,
possibly together with some index nodes. This procedure will never be used for mark class nodes.

define add sa ref (#) ≡ incr (sa ref (#)) { increase reference count }
define change box (#) ≡ { change box (cur val), the eq level stays the same }

if cur val < 256 then box (cur val)← # else set sa box (#)
define set sa box (#) ≡

begin find sa element (box val , cur val , false);
if cur ptr ̸= null then
begin sa ptr (cur ptr)← #; add sa ref (cur ptr); delete sa ref (cur ptr);
end;

end

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure delete sa ref (q : pointer); { reduce reference count }
label exit ;
var p: pointer ; { for list manipulations }
i: small number ; { a four bit index }
s: small number ; { size of a node }

begin decr (sa ref (q));
if sa ref (q) ̸= null then return;
if sa index (q) < dimen val limit then
if sa int (q) = 0 then s← word node size
else return

else begin if sa index (q) < mu val limit then
if sa ptr (q) = zero glue then delete glue ref (zero glue)
else return

else if sa ptr (q) ̸= null then return;
s← pointer node size ;
end;

repeat i← hex dig4 (sa index (q)); p← q; q ← link (p); free node (p, s);
if q = null then { the whole tree has been freed }

begin sa root [i]← null ; return;
end;

delete sa ptr ; s← index node size ; { node q is an index node }
until sa used (q) > 0;

exit : end;

1633. The print sa num procedure prints the register number corresponding to an array element.

⟨Basic printing procedures 57 ⟩ +≡
procedure print sa num (q : pointer); { print register number }

var n: halfword ; { the register number }
begin if sa index (q) < dimen val limit then n← sa num (q) { the easy case }
else begin n← hex dig4 (sa index (q)); q ← link (q); n← n+ 64 ∗ sa index (q); q ← link (q);
n← n+ 64 ∗ 64 ∗ (sa index (q) + 64 ∗ sa index (link (q)));
end;

print int (n);
end;

654 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1634

1634. Here is a procedure that displays the contents of an array element symbolically. It is used under
similar circumstances as is restore trace (together with show eqtb) for the quantities kept in the eqtb array.

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
stat procedure show sa (p : pointer ; s : str number);
var t: small number ; { the type of element }
begin begin diagnostic ; print char ("{"); print (s); print char ("␣");
if p = null then print char ("?") { this can’t happen }
else begin t← sa type (p);
if t < box val then print cmd chr (register , p)
else if t = box val then

begin print esc("box"); print sa num (p);
end

else if t = tok val then print cmd chr (toks register , p)
else print char ("?"); { this can’t happen either }

print char ("=");
if t = int val then print int (sa int (p))
else if t = dimen val then

begin print scaled (sa dim (p)); print ("pt");
end

else begin p← sa ptr (p);
if t = glue val then print spec(p, "pt")
else if t = mu val then print spec(p, "mu")
else if t = box val then

if p = null then print ("void")
else begin depth threshold ← 0; breadth max ← 1; show node list (p);
end

else if t = tok val then
begin if p ̸= null then show token list (link (p),null , 32);
end

else print char ("?"); { this can’t happen either }
end;

end;
print char ("}"); end diagnostic(false);
end;
tats

1635. Here we compute the pointer to the current mark of type t and mark class cur val .

⟨Compute the mark pointer for mark type t and class cur val 1635 ⟩ ≡
begin find sa element (mark val , cur val , false);
if cur ptr ̸= null then
if odd (t) then cur ptr ← link (cur ptr + (t div 2) + 1)
else cur ptr ← info(cur ptr + (t div 2) + 1);

end

This code is used in section 420.

§1636 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 655

1636. The current marks for all mark classes are maintained by the vsplit and fire up routines and are
finally destroyed (for INITEX only) by the final cleanup routine. Apart from updating the current marks
when mark nodes are encountered, these routines perform certain actions on all existing mark classes. The
recursive do marks procedure walks through the whole tree or a subtree of existing mark class nodes and
preforms certain actions indicted by its first parameter a, the action code. The second parameter l indicates
the level of recursion (at most four); the third parameter points to a nonempty tree or subtree. The result
is true if the complete tree or subtree has been deleted.

define vsplit init ≡ 0 { action code for vsplit initialization }
define fire up init ≡ 1 { action code for fire up initialization }
define fire up done ≡ 2 { action code for fire up completion }
define destroy marks ≡ 3 { action code for final cleanup }
define sa top mark (#) ≡ info(#+ 1) { \topmarksn }
define sa first mark (#) ≡ link (#+ 1) { \firstmarksn }
define sa bot mark (#) ≡ info(#+ 2) { \botmarksn }
define sa split first mark (#) ≡ link (#+ 2) { \splitfirstmarksn }
define sa split bot mark (#) ≡ info(#+ 3) { \splitbotmarksn }

⟨Declare the function called do marks 1636 ⟩ ≡
function do marks (a, l : small number ; q : pointer): boolean ;

var i: small number ; { a four bit index }
begin if l < 4 then { q is an index node }
begin for i← 0 to 15 do

begin get sa ptr ;
if cur ptr ̸= null then

if do marks (a, l + 1, cur ptr) then delete sa ptr ;
end;

if sa used (q) = 0 then
begin free node (q, index node size); q ← null ;
end;

end
else { q is the node for a mark class }
begin case a of
⟨Cases for do marks 1637 ⟩

end; { there are no other cases }
if sa bot mark (q) = null then
if sa split bot mark (q) = null then
begin free node (q,mark class node size); q ← null ;
end;

end; do marks ← (q = null);
end;

This code is used in section 1031.

1637. At the start of the vsplit routine the existing split fist mark and split bot mark are discarded.

⟨Cases for do marks 1637 ⟩ ≡
vsplit init : if sa split first mark (q) ̸= null then

begin delete token ref (sa split first mark (q)); sa split first mark (q)← null ;
delete token ref (sa split bot mark (q)); sa split bot mark (q)← null ;
end;

See also sections 1639, 1640, and 1642.

This code is used in section 1636.

656 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1638

1638. We use again the fact that split first mark = null if and only if split bot mark = null .

⟨Update the current marks for vsplit 1638 ⟩ ≡
begin find sa element (mark val ,mark class (p), true);
if sa split first mark (cur ptr) = null then
begin sa split first mark (cur ptr)← mark ptr (p); add token ref (mark ptr (p));
end

else delete token ref (sa split bot mark (cur ptr));
sa split bot mark (cur ptr)← mark ptr (p); add token ref (mark ptr (p));
end

This code is used in section 1033.

1639. At the start of the fire up routine the old top mark and first mark are discarded, whereas the old
bot mark becomes the new top mark . An empty new top mark token list is, however, discarded as well in
order that mark class nodes can eventually be released. We use again the fact that bot mark ̸= null implies
first mark ̸= null ; it also knows that bot mark = null implies top mark = first mark = null .

⟨Cases for do marks 1637 ⟩ +≡
fire up init : if sa bot mark (q) ̸= null then

begin if sa top mark (q) ̸= null then delete token ref (sa top mark (q));
delete token ref (sa first mark (q)); sa first mark (q)← null ;
if link (sa bot mark (q)) = null then { an empty token list }

begin delete token ref (sa bot mark (q)); sa bot mark (q)← null ;
end

else add token ref (sa bot mark (q));
sa top mark (q)← sa bot mark (q);
end;

1640. ⟨Cases for do marks 1637 ⟩ +≡
fire up done : if (sa top mark (q) ̸= null) ∧ (sa first mark (q) = null) then

begin sa first mark (q)← sa top mark (q); add token ref (sa top mark (q));
end;

1641. ⟨Update the current marks for fire up 1641 ⟩ ≡
begin find sa element (mark val ,mark class (p), true);
if sa first mark (cur ptr) = null then
begin sa first mark (cur ptr)← mark ptr (p); add token ref (mark ptr (p));
end;

if sa bot mark (cur ptr) ̸= null then delete token ref (sa bot mark (cur ptr));
sa bot mark (cur ptr)← mark ptr (p); add token ref (mark ptr (p));
end

This code is used in section 1068.

§1642 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 657

1642. Here we use the fact that the five current mark pointers in a mark class node occupy the same
locations as the the first five pointers of an index node. For systems using a run-time switch to distinguish
between VIRTEX and INITEX, the codewords ‘init . . . tini’ surrounding the following piece of code should be
removed.

⟨Cases for do marks 1637 ⟩ +≡
init destroy marks : for i← top mark code to split bot mark code do
begin get sa ptr ;
if cur ptr ̸= null then

begin delete token ref (cur ptr); put sa ptr (null);
end;

end;
tini

1643. The command code register is used for ‘\count’, ‘\dimen’, etc., as well as for references to sparse
array elements defined by ‘\countdef’, etc.

⟨Cases of register for print cmd chr 1643 ⟩ ≡
begin if (chr code < mem bot) ∨ (chr code > lo mem stat max) then cmd ← sa type (chr code)
else begin cmd ← chr code −mem bot ; chr code ← null ;
end;

if cmd = int val then print esc("count")
else if cmd = dimen val then print esc("dimen")
else if cmd = glue val then print esc("skip")

else print esc("muskip");
if chr code ̸= null then print sa num (chr code);
end

This code is used in section 446.

1644. Similarly the command code toks register is used for ‘\toks’ as well as for references to sparse array
elements defined by ‘\toksdef’.

⟨Cases of toks register for print cmd chr 1644 ⟩ ≡
begin print esc("toks");
if chr code ̸= mem bot then print sa num (chr code);
end

This code is used in section 296.

1645. When a shorthand definition for an element of one of the sparse arrays is destroyed, we must reduce
the reference count.

⟨Cases for eq destroy 1645 ⟩ ≡
toks register , register : if (equiv field (w) < mem bot) ∨ (equiv field (w) > lo mem stat max) then

delete sa ref (equiv field (w));

This code is used in section 305.

1646. The task to maintain (change, save, and restore) register values is essentially the same when the
register is realized as sparse array element or entry in eqtb . The global variable sa chain is the head of a
linked list of entries saved at the topmost level sa level ; the lists for lowel levels are kept in special save stack
entries.

⟨Global variables 13 ⟩ +≡
sa chain : pointer ; { chain of saved sparse array entries }
sa level : quarterword ; { group level for sa chain }

658 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1647

1647. ⟨ Set initial values of key variables 23 ⟩ +≡
sa chain ← null ; sa level ← level zero ;

1648. The individual saved items are kept in pointer or word nodes similar to those used for the array
elements: a word node with value zero is, however, saved as pointer node with the otherwise impossible
sa index value tok val limit .

define sa loc ≡ sa ref { location of saved item }
⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure sa save (p : pointer); { saves value of p }
var q: pointer ; { the new save node }
i: quarterword ; { index field of node }

begin if cur level ̸= sa level then
begin check full save stack ; save type (save ptr)← restore sa ; save level (save ptr)← sa level ;
save index (save ptr)← sa chain ; incr (save ptr); sa chain ← null ; sa level ← cur level ;
end;

i← sa index (p);
if i < dimen val limit then
begin if sa int (p) = 0 then
begin q ← get node (pointer node size); i← tok val limit ;
end

else begin q ← get node (word node size); sa int (q)← sa int (p);
end;

sa ptr (q)← null ;
end

else begin q ← get node (pointer node size); sa ptr (q)← sa ptr (p);
end;

sa loc(q)← p; sa index (q)← i; sa lev (q)← sa lev (p); link (q)← sa chain ; sa chain ← q; add sa ref (p);
end;

1649. ⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure sa destroy (p : pointer); { destroy value of p }

begin if sa index (p) < mu val limit then delete glue ref (sa ptr (p))
else if sa ptr (p) ̸= null then

if sa index (p) < box val limit then flush node list (sa ptr (p))
else delete token ref (sa ptr (p));

end;

§1650 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 659

1650. The procedure sa def assigns a new value to sparse array elements, and saves the former value if
appropriate. This procedure is used only for skip, muskip, box, and token list registers. The counterpart of
sa def for count and dimen registers is called sa w def .

define sa define (#) ≡
if e then
if global then gsa def (#) else sa def (#)

else define
define sa def box ≡ { assign cur box to box (cur val) }

begin find sa element (box val , cur val , true);
if global then gsa def (cur ptr , cur box) else sa def (cur ptr , cur box);
end

define sa word define (#) ≡
if e then
if global then gsa w def (#) else sa w def (#)

else word define (#)

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure sa def (p : pointer ; e : halfword); { new data for sparse array elements }

begin add sa ref (p);
if sa ptr (p) = e then
begin stat if tracing assigns > 0 then show sa (p, "reassigning");
tats
sa destroy (p);
end

else begin stat if tracing assigns > 0 then show sa (p, "changing");
tats
if sa lev (p) = cur level then sa destroy (p) else sa save (p);
sa lev (p)← cur level ; sa ptr (p)← e;
stat if tracing assigns > 0 then show sa (p, "into");
tats
end;

delete sa ref (p);
end;

procedure sa w def (p : pointer ; w : integer);
begin add sa ref (p);
if sa int (p) = w then
begin stat if tracing assigns > 0 then show sa (p, "reassigning");
tats
end

else begin stat if tracing assigns > 0 then show sa (p, "changing");
tats
if sa lev (p) ̸= cur level then sa save (p);
sa lev (p)← cur level ; sa int (p)← w;
stat if tracing assigns > 0 then show sa (p, "into");
tats
end;

delete sa ref (p);
end;

660 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1651

1651. The sa def and sa w def routines take care of local definitions. Global definitions are done in almost
the same way, but there is no need to save old values, and the new value is associated with level one .

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure gsa def (p : pointer ; e : halfword); { global sa def }
begin add sa ref (p);
stat if tracing assigns > 0 then show sa (p, "globally␣changing");
tats
sa destroy (p); sa lev (p)← level one ; sa ptr (p)← e;
stat if tracing assigns > 0 then show sa (p, "into");
tats
delete sa ref (p);
end;

procedure gsa w def (p : pointer ; w : integer); { global sa w def }
begin add sa ref (p);
stat if tracing assigns > 0 then show sa (p, "globally␣changing");
tats
sa lev (p)← level one ; sa int (p)← w;
stat if tracing assigns > 0 then show sa (p, "into");
tats
delete sa ref (p);
end;

1652. The sa restore procedure restores the sparse array entries pointed at by sa chain

⟨Declare ε-TEX procedures for tracing and input 314 ⟩ +≡
procedure sa restore ;
var p: pointer ; { sparse array element }
begin repeat p← sa loc(sa chain);
if sa lev (p) = level one then
begin if sa index (p) ≥ dimen val limit then sa destroy (sa chain);
stat if tracing restores > 0 then show sa (p, "retaining");
tats
end

else begin if sa index (p) < dimen val limit then
if sa index (sa chain) < dimen val limit then sa int (p)← sa int (sa chain)
else sa int (p)← 0

else begin sa destroy (p); sa ptr (p)← sa ptr (sa chain);
end;

sa lev (p)← sa lev (sa chain);
stat if tracing restores > 0 then show sa (p, "restoring");
tats
end;

delete sa ref (p); p← sa chain ; sa chain ← link (p);
if sa index (p) < dimen val limit then free node (p,word node size)
else free node (p, pointer node size);

until sa chain = null ;
end;

§1653 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 661

1653. When the value of last line fit is positive, the last line of a (partial) paragraph is treated in a special
way and we need additional fields in the active nodes.

define active node size extended = 5 { number of words in extended active nodes }
define active short (#) ≡ mem [#+ 3].sc { shortfall of this line }
define active glue (#) ≡ mem [#+ 4].sc { corresponding glue stretch or shrink }

⟨Global variables 13 ⟩ +≡
last line fill : pointer ; { the par fill skip glue node of the new paragraph }
do last line fit : boolean ; { special algorithm for last line of paragraph? }
active node size : small number ; { number of words in active nodes }
fill width : array [0 . . 2] of scaled ; { infinite stretch components of par fill skip }
best pl short : array [very loose fit . . tight fit] of scaled ; { shortfall corresponding to minimal demerits }
best pl glue : array [very loose fit . . tight fit] of scaled ; { corresponding glue stretch or shrink }

1654. The new algorithm for the last line requires that the stretchability of par fill skip is infinite and the
stretchability of left skip plus right skip is finite.

⟨Check for special treatment of last line of paragraph 1654 ⟩ ≡
do last line fit ← false ; active node size ← active node size normal ; { just in case }
if last line fit > 0 then
begin q ← glue ptr (last line fill);
if (stretch (q) > 0) ∧ (stretch order (q) > normal) then

if (background [3] = 0) ∧ (background [4] = 0) ∧ (background [5] = 0) then
begin do last line fit ← true ; active node size ← active node size extended ; fill width [0]← 0;
fill width [1]← 0; fill width [2]← 0; fill width [stretch order (q)− 1]← stretch (q);
end;

end

This code is used in section 875.

1655. ⟨Other local variables for try break 878 ⟩ +≡
g: scaled ; { glue stretch or shrink of test line, adjustment for last line }

1656. Here we initialize the additional fields of the first active node representing the beginning of the
paragraph.

⟨ Initialize additional fields of the first active node 1656 ⟩ ≡
begin active short (q)← 0; active glue (q)← 0;
end

This code is used in section 912.

662 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1657

1657. Here we compute the adjustment g and badness b for a line from r to the end of the paragraph.
When any of the criteria for adjustment is violated we fall through to the normal algorithm.
The last line must be too short, and have infinite stretch entirely due to par fill skip .

⟨Perform computations for last line and goto found 1657 ⟩ ≡
begin if (active short (r) = 0) ∨ (active glue (r) ≤ 0) then goto not found ;

{ previous line was neither stretched nor shrunk, or was infinitely bad }
if (cur active width [3] ̸= fill width [0]) ∨ (cur active width [4] ̸= fill width [1]) ∨

(cur active width [5] ̸= fill width [2]) then goto not found ;
{ infinite stretch of this line not entirely due to par fill skip }

if active short (r) > 0 then g ← cur active width [2]
else g ← cur active width [6];
if g ≤ 0 then goto not found ; { no finite stretch resp. no shrink }
arith error ← false ; g ← fract (g, active short (r), active glue (r),max dimen);
if last line fit < 1000 then g ← fract (g, last line fit , 1000,max dimen);
if arith error then
if active short (r) > 0 then g ← max dimen else g ← −max dimen ;

if g > 0 then ⟨ Set the value of b to the badness of the last line for stretching, compute the corresponding
fit class , and goto found 1658 ⟩

else if g < 0 then ⟨ Set the value of b to the badness of the last line for shrinking, compute the
corresponding fit class , and goto found 1659 ⟩;

not found : end

This code is used in section 900.

1658. These badness computations are rather similar to those of the standard algorithm, with the adjust-
ment amount g replacing the shortfall .

⟨ Set the value of b to the badness of the last line for stretching, compute the corresponding fit class , and
goto found 1658 ⟩ ≡

begin if g > shortfall then g ← shortfall ;
if g > 7230584 then
if cur active width [2] < 1663497 then
begin b← inf bad ; fit class ← very loose fit ; goto found ;
end;

b← badness (g, cur active width [2]);
if b > 12 then
if b > 99 then fit class ← very loose fit
else fit class ← loose fit

else fit class ← decent fit ;
goto found ;
end

This code is used in section 1657.

1659. ⟨ Set the value of b to the badness of the last line for shrinking, compute the corresponding fit class ,
and goto found 1659 ⟩ ≡

begin if −g > cur active width [6] then g ← −cur active width [6];
b← badness (−g, cur active width [6]);
if b > 12 then fit class ← tight fit else fit class ← decent fit ;
goto found ;
end

This code is used in section 1657.

§1660 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 663

1660. Vanishing values of shortfall and g indicate that the last line is not adjusted.

⟨Adjust the additional data for last line 1660 ⟩ ≡
begin if cur p = null then shortfall ← 0;
if shortfall > 0 then g ← cur active width [2]
else if shortfall < 0 then g ← cur active width [6]
else g ← 0;

end

This code is used in section 899.

1661. For each feasible break we record the shortfall and glue stretch or shrink (or adjustment).

⟨ Store additional data for this feasible break 1661 ⟩ ≡
begin best pl short [fit class]← shortfall ; best pl glue [fit class]← g;
end

This code is used in section 903.

1662. Here we save these data in the active node representing a potential line break.

⟨ Store additional data in the new active node 1662 ⟩ ≡
begin active short (q)← best pl short [fit class]; active glue (q)← best pl glue [fit class];
end

This code is used in section 893.

1663. ⟨Print additional data in the new active node 1663 ⟩ ≡
begin print ("␣s="); print scaled (active short (q));
if cur p = null then print ("␣a=") else print ("␣g=");
print scaled (active glue (q));
end

This code is used in section 894.

1664. Here we either reset do last line fit or adjust the par fill skip glue.

⟨Adjust the final line of the paragraph 1664 ⟩ ≡
if active short (best bet) = 0 then do last line fit ← false
else begin q ← new spec(glue ptr (last line fill)); delete glue ref (glue ptr (last line fill));
width (q)← width (q) + active short (best bet)− active glue (best bet); stretch (q)← 0;
glue ptr (last line fill)← q;
end

This code is used in section 911.

1665. When reading \patterns while \savinghyphcodes is positive the current lc code values are stored
together with the hyphenation patterns for the current language. They will later be used instead of the
lc code values for hyphenation purposes.
The lc code values are stored in the linked trie analogous to patterns p1 of length 1, with hyph root =

trie r [0] replacing trie root and lc code (p 1) replacing the trie op code. This allows to compress and pack
them together with the patterns with minimal changes to the existing code.

define hyph root ≡ trie r [0] { root of the linked trie for hyph codes }
⟨ Initialize table entries (done by INITEX only) 189 ⟩ +≡
XeTeX hyphenatable length ← 63; { for backward compatibility with standard TeX by default }

664 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1666

1666. ⟨ Store hyphenation codes for current language 1666 ⟩ ≡
begin c← cur lang ; first child ← false ; p← 0;
repeat q ← p; p← trie r [q];
until (p = 0) ∨ (c ≤ so(trie c [p]));
if (p = 0) ∨ (c < so(trie c [p])) then
⟨ Insert a new trie node between q and p, and make p point to it 1018 ⟩;

q ← p; { now node q represents cur lang }
⟨ Store all current lc code values 1667 ⟩;
end

This code is used in section 1014.

1667. We store all nonzero lc code values, overwriting any previously stored values (and possibly wasting
a few trie nodes that were used previously and are not needed now). We always store at least one lc code
value such that hyph index (defined below) will not be zero.

⟨ Store all current lc code values 1667 ⟩ ≡
p← trie l [q]; first child ← true ;
for c← 0 to 255 do
if (lc code (c) > 0) ∨ ((c = 255) ∧ first child) then

begin if p = 0 then ⟨ Insert a new trie node between q and p, and make p point to it 1018 ⟩
else trie c [p]← si (c);
trie o [p]← qi (lc code (c)); q ← p; p← trie r [q]; first child ← false ;
end;

if first child then trie l [q]← 0 else trie r [q]← 0

This code is used in section 1666.

1668. We must avoid to “take” location 1, in order to distinguish between lc code values and patterns.

⟨Pack all stored hyph codes 1668 ⟩ ≡
begin if trie root = 0 then
for p← 0 to 255 do trie min [p]← p+ 2;

first fit (hyph root); trie pack (hyph root); hyph start ← trie ref [hyph root];
end

This code is used in section 1020.

1669. The global variable hyph index will point to the hyphenation codes for the current language.

define set hyph index ≡ { set hyph index for current language }
if trie char (hyph start + cur lang) ̸= qi (cur lang) then hyph index ← 0

{ no hyphenation codes for cur lang }
else hyph index ← trie link (hyph start + cur lang)

define set lc code (#) ≡ { set hc [0] to hyphenation or lc code for # }
if (hyph index = 0) ∨ ((#) > 255) then hc [0]← lc code (#)
else if trie char (hyph index + #) ̸= qi (#) then hc [0]← 0
else hc [0]← qo(trie op(hyph index + #))

⟨Global variables 13 ⟩ +≡
hyph start : trie pointer ; { root of the packed trie for hyph codes }
hyph index : trie pointer ; { pointer to hyphenation codes for cur lang }

§1670 X ETEX PART 53A: THE EXTENDED FEATURES OF ε-TEX 665

1670. When saving vdiscards is positive then the glue, kern, and penalty nodes removed by the page
builder or by \vsplit from the top of a vertical list are saved in special lists instead of being discarded.

define tail page disc ≡ disc ptr [copy code] { last item removed by page builder }
define page disc ≡ disc ptr [last box code] { first item removed by page builder }
define split disc ≡ disc ptr [vsplit code] { first item removed by \vsplit }

⟨Global variables 13 ⟩ +≡
disc ptr : array [copy code . . vsplit code] of pointer ; { list pointers }

1671. ⟨ Set initial values of key variables 23 ⟩ +≡
page disc ← null ; split disc ← null ;

1672. The \pagediscards and \splitdiscards commands share the command code un vbox with
\unvbox and \unvcopy, they are distinguished by their chr code values last box code and vsplit code . These
chr code values are larger than box code and copy code .

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("pagediscards", un vbox , last box code);
primitive ("splitdiscards", un vbox , vsplit code);

1673. ⟨Cases of un vbox for print cmd chr 1673 ⟩ ≡
else if chr code = last box code then print esc("pagediscards")

else if chr code = vsplit code then print esc("splitdiscards")

This code is used in section 1162.

1674. ⟨Handle saved items and goto done 1674 ⟩ ≡
begin link (tail)← disc ptr [cur chr]; disc ptr [cur chr]← null ; goto done ;
end

This code is used in section 1164.

1675. The \interlinepenalties, \clubpenalties, \widowpenalties, and \displaywidowpenalties

commands allow to define arrays of penalty values to be used instead of the corresponding single values.

define inter line penalties ptr ≡ equiv (inter line penalties loc)
define club penalties ptr ≡ equiv (club penalties loc)
define widow penalties ptr ≡ equiv (widow penalties loc)
define display widow penalties ptr ≡ equiv (display widow penalties loc)

⟨Generate all ε-TEX primitives 1399 ⟩ +≡
primitive ("interlinepenalties", set shape , inter line penalties loc);
primitive ("clubpenalties", set shape , club penalties loc);
primitive ("widowpenalties", set shape ,widow penalties loc);
primitive ("displaywidowpenalties", set shape , display widow penalties loc);

1676. ⟨Cases of set shape for print cmd chr 1676 ⟩ ≡
inter line penalties loc : print esc("interlinepenalties");
club penalties loc : print esc("clubpenalties");
widow penalties loc : print esc("widowpenalties");
display widow penalties loc : print esc("displaywidowpenalties");

This code is used in section 296.

666 PART 53A: THE EXTENDED FEATURES OF ε-TEX X ETEX §1677

1677. ⟨Fetch a penalties array element 1677 ⟩ ≡
begin scan int ;
if (equiv (m) = null) ∨ (cur val < 0) then cur val ← 0
else begin if cur val > penalty (equiv (m)) then cur val ← penalty (equiv (m));
cur val ← penalty (equiv (m) + cur val);
end;

end

This code is used in section 457.

§1678 X ETEX PART 54: SYSTEM-DEPENDENT CHANGES 667

1678. System-dependent changes. This section should be replaced, if necessary, by any special
modifications of the program that are necessary to make TEX work at a particular installation. It is usually
best to design your change file so that all changes to previous sections preserve the section numbering; then
everybody’s version will be consistent with the published program. More extensive changes, which introduce
new sections, can be inserted here; then only the index itself will get a new section number.

668 PART 55: INDEX X ETEX §1679

1679. Index. Here is where you can find all uses of each identifier in the program, with underlined
entries pointing to where the identifier was defined. If the identifier is only one letter long, however, you get
to see only the underlined entries. All references are to section numbers instead of page numbers.
This index also lists error messages and other aspects of the program that you might want to look up

some day. For example, the entry for “system dependencies” lists all sections that should receive special
attention from people who are installing TEX in a new operating environment. A list of various things that
can’t happen appears under “this can’t happen”. Approximately 40 sections are listed under “inner loop”;
these account for about 60% of TEX’s running time, exclusive of input and output.

** : 37, 569.
* : 200, 202, 204, 343, 390, 904, 1060, 1415.
−> : 324.
=> : 393.
??? : 63.
? : 87.
@ : 904.
@@ : 894.
a: 47, 106, 126, 244, 311, 553, 554, 558, 595, 633,

733, 749, 765, 781, 796, 1129, 1177, 1248, 1265,
1290, 1311, 1489, 1593, 1604, 1608, 1610, 1636.

A <box> was supposed to... : 1138.
a close : 28, 51, 1387, 1437, 1441.
a leaders : 173, 215, 663, 665, 672, 674, 698, 713,

1125, 1126, 1127, 1132, 1202, 1491, 1509.
a make name string : 560, 569, 572.
a open in : 27, 51, 572, 1329.
a open out : 27, 569, 1437.
A token : 479.
aat font flag : 584, 744.
aat font get : 1454.
aat font get named : 1454.
aat font get named 1 : 1454.
aat font get 1 : 1454.
aat font get 2 : 1454.
aat get font metrics : 744.
aat print font name : 1461.
ab vs cd : 126, 131.
abort : 595, 599, 600, 603, 604, 605, 606, 608, 610.
above : 234, 1100, 1232, 1233, 1234.
\above primitive: 1232.
above code : 1232, 1233, 1236, 1237.
above display short skip : 250, 862.
\abovedisplayshortskip primitive: 252.
above display short skip code : 250, 251, 252, 1257.
above display skip : 250, 862.
\abovedisplayskip primitive: 252.
above display skip code : 250, 251, 252, 1257, 1260.
\abovewithdelims primitive: 1232.
abs : 70, 129, 130, 131, 212, 237, 244, 245, 452,

456, 482, 536, 646, 705, 717, 761, 780, 801,
802, 803, 879, 884, 897, 907, 998, 1002, 1083,
1084, 1110, 1130, 1132, 1134, 1137, 1147,

1164, 1174, 1181, 1203, 1297, 1298, 1440, 1442,
1443, 1444, 1491, 1601.

absorbing : 335, 336, 369, 508, 1493.
acc kern : 179, 217, 1179.
accent : 234, 295, 296, 1144, 1176, 1218, 1219.
\accent primitive: 295.
accent chr : 729, 738, 781, 1219.
accent noad : 729, 732, 738, 740, 776, 781, 809,

1219, 1240.
accent noad size : 729, 740, 809, 1219.
accentBaseHeight : 742, 781.
act width : 914, 915, 916, 917, 919, 1422.
action procedure: 1083.
active : 187, 867, 877, 891, 902, 908, 909, 911,

912, 913, 921, 922, 923.
active base : 246, 248, 278, 279, 281, 292, 293, 383,

476, 499, 541, 1206, 1311, 1343, 1369, 1371.
active char : 233, 374, 499, 506, 541.
active glue : 1653, 1656, 1657, 1662, 1663, 1664.
active height : 1024, 1029, 1030.
active math char : 258, 469, 1286.
active node size : 893, 908, 912, 913, 1653, 1654.
active node size extended : 1653, 1654.
active node size normal : 867, 1654.
active short : 1653, 1656, 1657, 1662, 1663, 1664.
active width : 871, 872, 877, 891, 909, 912, 914,

916, 1024.
actual looseness : 920, 921, 923.
actual size : 744.
add delims to : 377.
add glue ref : 229, 232, 464, 850, 929, 1050, 1154,

1283, 1544, 1593, 1631.
add or sub : 1603, 1604.
add sa ptr : 1630.
add sa ref : 1275, 1278, 1632, 1648, 1650, 1651.
add token ref : 229, 232, 353, 1033, 1066, 1070,

1275, 1281, 1417, 1638, 1639, 1640, 1641.
additional : 683, 684, 699, 714.
addressof : 744, 751, 783, 793, 1177, 1179, 1445,

1446, 1447.
adj demerits : 262, 884, 907.
\adjdemerits primitive: 264.
adj demerits code : 262, 263, 264.
adjust : 611.

§1679 X ETEX PART 55: INDEX 669

adjust head : 187, 936, 937, 1130, 1139, 1253, 1259.
adjust node : 164, 172, 201, 209, 228, 232, 656, 686,

691, 697, 773, 809, 877, 914, 945, 952, 1154.
adjust pre : 164, 223, 697, 1154.
adjust ptr : 164, 223, 228, 232, 697, 1154.
adjust space factor : 1088, 1092.
adjust tail : 686, 687, 689, 691, 697, 844, 936,

937, 1130, 1139, 1253.
adjusted hbox group : 299, 1116, 1137, 1139,

1471, 1489.
adv past linebreak : 1422.
adv past prehyph : 1423.
advance : 235, 295, 296, 1264, 1289, 1290, 1292.
\advance primitive: 295.
advance major tail : 968, 971.
aField : 1445.
after : 171, 218, 1250, 1539, 1550.
after assignment : 234, 295, 296, 1322.
\afterassignment primitive: 295.
after group : 234, 295, 296, 1325.
\aftergroup primitive: 295.
after math : 1247, 1248.
after token : 1320, 1321, 1322, 1323.
aire : 595, 596, 598, 611, 744.
align error : 1180, 1181.
align group : 299, 816, 822, 839, 848, 1185, 1186,

1471, 1489.
align head : 187, 818, 825.
align peek : 821, 822, 833, 847, 1102, 1187.
align ptr : 818, 819, 820.
align stack node size : 818, 820.
align state : 92, 339, 354, 355, 356, 361, 369, 372,

377, 387, 428, 429, 430, 437, 476, 510, 517, 518,
521, 818, 819, 820, 822, 825, 831, 832, 833,
836, 837, 839, 1123, 1148, 1180, 1181.

aligning : 335, 336, 369, 825, 837.
alignment of rules with characters: 625.
alpha : 595, 606, 607.
alpha file : 25, 27, 28, 31, 32, 50, 54, 334, 560, 1396.
alpha token : 472, 474.
alter aux : 1296, 1297.
alter box dimen : 1296, 1301.
alter integer : 1296, 1300.
alter page so far : 1296, 1299.
alter prev graf : 1296, 1298.
Ambiguous... : 1237.
Amble, Ole: 979.
AmSTeX : 1385.
any mode : 1099, 1102, 1111, 1117, 1121, 1127,

1151, 1156, 1158, 1180, 1188, 1264, 1322, 1325,
1328, 1330, 1339, 1344, 1402.

any state plus : 374, 375, 377.

app display : 1257, 1258, 1259, 1555.
app space : 1084, 1097.
append char : 42, 44, 52, 58, 206, 221, 287, 551,

560, 656, 734, 737, 744, 993.
append charnode to t : 962, 965.
append choices : 1225, 1226.
append discretionary : 1170, 1171.
append glue : 1111, 1114, 1132.
append italic correction : 1166, 1167.
append kern : 1111, 1115.
append list : 164, 847, 936, 1130.
append list end : 164.
append native : 60, 1088.
append normal space : 1084.
append penalty : 1156, 1157.
append str : 44, 1314.
append to name : 554, 558.
append to vlist : 721, 847, 936, 1130, 1555.
apply mapping : 744, 1088.
apply tfm font mapping : 658.
area delimiter : 548, 550, 551, 552.
Argument of \x has... : 429.
arg1 : 505, 1460, 1461.
arg2 : 505, 1460, 1461.
arith error : 108, 109, 110, 111, 116, 118, 198, 482,

488, 495, 1290, 1593, 1594, 1601, 1657.
Arithmetic overflow : 1290, 1593.
artificial demerits : 878, 899, 902, 903, 904.
ascent : 744.
ASCII code: 17, 538.
ASCII code : 18, 19, 20, 29, 30, 31, 38, 42, 54,

58, 59, 322, 423, 558, 734, 997, 1004, 1007,
1013, 1014, 1439.

assign dimen : 235, 274, 275, 447, 1264, 1278,
1282.

assign font dimen : 235, 295, 296, 447, 1264, 1307.
assign font int : 235, 447, 1264, 1307, 1308, 1309.
assign glue : 235, 252, 253, 447, 830, 1264,

1278, 1282.
assign int : 235, 264, 265, 447, 1264, 1276, 1278,

1282, 1291, 1467, 1511.
assign mu glue : 235, 252, 253, 447, 1264, 1276,

1278, 1282, 1291.
assign toks : 235, 256, 257, 259, 353, 447, 449,

1264, 1278, 1280, 1281, 1399, 1467.
assign trace : 307, 308, 309.
at : 1312.
\atop primitive: 1232.
atop code : 1232, 1233, 1236.
\atopwithdelims primitive: 1232.
attach fraction : 482, 488, 489, 491.
attach hkern to new hlist : 800, 806, 807.

670 PART 55: INDEX X ETEX §1679

attach sign : 482, 484, 490.
auto breaking : 910, 911, 914, 916.
aux : 238, 239, 242, 848, 860.
aux field : 238, 239, 244, 823.
aux save : 848, 860, 1260.
avail : 140, 142, 143, 144, 145, 189, 193, 1365, 1366.
AVAIL list clobbered... : 193.
awful bad : 881, 882, 883, 884, 902, 922, 1024,

1028, 1029, 1041, 1059, 1060, 1061.
axis height : 742, 749, 779, 790, 791, 793, 810.
axisHeight : 742.
b: 396, 499, 500, 505, 533, 558, 595, 633, 721,

748, 749, 752, 754, 758, 878, 1024, 1048, 1252,
1301, 1342, 1466, 1555, 1593.

b close : 28, 595, 680.
b make name string : 560, 567.
b open in : 27, 598.
b open out : 27.
back error : 357, 407, 430, 437, 449, 476, 480, 511,

514, 538, 612, 831, 1132, 1138, 1215, 1251,
1261, 1266, 1576, 1595.

back input : 311, 355, 356, 357, 400, 401, 402,
406, 409, 413, 429, 439, 441, 449, 477, 478,
482, 487, 490, 496, 561, 836, 1085, 1088, 1101,
1108, 1118, 1144, 1149, 1178, 1181, 1186,
1192, 1204, 1206, 1207, 1269, 1275, 1280, 1323,
1438, 1444, 1595, 1596.

back list : 353, 355, 367, 441, 1342.
backed up : 337, 341, 342, 344, 353, 354, 355, 1080.
backed up char : 337, 344, 1088.
background : 871, 872, 875, 885, 911, 912, 1654.
backup backup : 396.
backup head : 187, 396, 441.
BAD : 323, 324.
bad : 13, 14, 133, 320, 557, 1303, 1386.
Bad \patterns : 1015.
Bad \prevgraf : 1298.
Bad character code : 467, 468.
Bad delcode : 448.
Bad delimiter code : 471.
Bad dump length : 506.
Bad file offset : 506.
Bad flag... : 195.
Bad interaction mode : 1506.
Bad link... : 208.
Bad mathchar : 448, 470.
Bad number : 469.
Bad register code : 467, 1622.
Bad space factor : 1297.
bad fmt : 1357, 1360, 1362, 1366, 1371, 1381.
bad pool : 51, 52, 53.
bad tfm : 595.

bad utf8 warning : 744.
badness : 112, 702, 709, 716, 720, 876, 900, 901,

1029, 1061, 1658, 1659.
\badness primitive: 450.
badness code : 450, 458.
banner : 2, 65, 571, 1353.
base line : 655, 661, 662, 666, 1430.
base ptr : 88, 89, 340, 341, 342, 343, 1185, 1585,

1586, 1587.
baseline skip : 250, 273, 721.
\baselineskip primitive: 252.
baseline skip code : 173, 250, 251, 252, 721.
batch mode : 77, 79, 90, 94, 96, 97, 570, 1316,

1317, 1381, 1382, 1506.
\batchmode primitive: 1316.
bc : 575, 576, 578, 580, 595, 600, 601, 605, 611.
bch label : 595, 608, 611.
bchar : 595, 608, 611, 954, 956, 959, 960, 962, 965,

967, 970, 971, 1086, 1088, 1091, 1092, 1094.
bchar label : 584, 587, 611, 963, 970, 1088, 1094,

1376, 1377.
be careful : 116, 117, 118.
before : 171, 218, 1250, 1520, 1522, 1528, 1539,

1550.
begin: 7, 8.
begin box : 1127, 1133, 1138.
begin diagnostic : 80, 271, 314, 329, 353, 434, 435,

537, 544, 595, 616, 676, 679, 705, 717, 744,
874, 911, 1041, 1046, 1060, 1065, 1175, 1347,
1350, 1472, 1487, 1501, 1634.

begin file reading : 82, 91, 358, 518, 572, 1566.
begin group : 234, 295, 296, 1117.
\begingroup primitive: 295.
begin insert or adjust : 1151, 1153.
begin L code : 171, 1511, 1512, 1545.
begin LR type : 171, 1517.
begin M : 1134.
begin M code : 171, 1134, 1557.
begin name : 547, 550, 561, 562, 566.
begin pseudoprint : 346, 348, 349.
begin R code : 171, 1511, 1512.
begin reflect : 1510.
begin token list : 353, 389, 392, 420, 424, 822,

836, 837, 847, 1079, 1084, 1088, 1137, 1145,
1193, 1199, 1221, 1434.

\beginL primitive: 1511.
Beginning to dump... : 1382.
\beginR primitive: 1511.
below display short skip : 250.
\belowdisplayshortskip primitive: 252.
below display short skip code : 250, 251, 252, 1257.
below display skip : 250.

§1679 X ETEX PART 55: INDEX 671

\belowdisplayskip primitive: 252.
below display skip code : 250, 251, 252, 1257, 1260.
best bet : 920, 922, 923, 925, 926, 1664.
best height plus depth : 1025, 1028, 1064, 1065.
best ins ptr : 1035, 1059, 1063, 1072, 1074, 1075.
best line : 920, 922, 923, 925, 938.
best page break : 1034, 1059, 1067, 1068.
best pl glue : 1653, 1661, 1662.
best pl line : 881, 893, 903.
best pl short : 1653, 1661, 1662.
best place : 881, 893, 903, 1024, 1028, 1034.
best size : 1034, 1059, 1071.
beta : 595, 606, 607.
bField : 1445.
big op spacing1 : 743, 795.
big op spacing2 : 743, 795.
big op spacing3 : 743, 795.
big op spacing4 : 743, 795.
big op spacing5 : 743, 795.
big switch : 235, 262, 1048, 1083, 1084, 1085,

1088, 1090, 1092, 1095.
BigEndian order: 575.
biggest char : 12, 18, 19, 38, 63, 289, 468, 949,

1006, 1171.
biggest lang : 12, 940, 975, 988, 997, 999, 1378,

1379.
biggest reg : 12, 273, 281, 1048, 1066.
biggest usv : 12, 18, 67, 382, 385, 468, 469, 476,

541, 561, 1287.
billion : 663.
bin noad : 724, 732, 738, 740, 771, 772, 805,

809, 1210, 1211.
bin op penalty : 262, 809.
\binoppenalty primitive: 264.
bin op penalty code : 262, 263, 264.
blank line : 271.
boolean : 27, 31, 37, 45, 46, 47, 58, 61, 80, 83, 100,

108, 110, 111, 116, 118, 190, 192, 198, 271,
282, 311, 341, 391, 396, 397, 441, 447, 474,
482, 496, 505, 508, 533, 551, 559, 562, 567,
584, 595, 613, 628, 655, 667, 684, 721, 744,
749, 762, 769, 839, 863, 873, 876, 877, 878,
910, 925, 953, 961, 1004, 1014, 1022, 1043,
1066, 1086, 1105, 1108, 1133, 1145, 1159, 1214,
1248, 1265, 1290, 1335, 1357, 1396, 1445, 1466,
1470, 1471, 1472, 1567, 1585, 1587, 1593, 1604,
1608, 1610, 1630, 1636, 1653.

boolvar : 505, 506.
bop : 619, 621, 622, 624, 626, 628, 676, 678.
Bosshard, Hans Rudolf: 493.
bot : 581.
bot mark : 416, 417, 1066, 1070, 1620, 1639.

\botmark primitive: 418.
bot mark code : 416, 418, 419, 1620.
\botmarks primitive: 1620.
bottom acc : 729, 1219.
bottom level : 299, 302, 311, 1118, 1122, 1471,

1489.
bottom line : 341.
bounds : 1445.
bowels: 628.
box : 256, 258, 1046, 1047, 1063, 1069, 1071, 1072,

1075, 1077, 1082, 1631, 1632, 1650.
\box primitive: 1125.
box base : 256, 258, 259, 281, 1131.
box code : 1125, 1126, 1133, 1161, 1164, 1672.
box context : 1129, 1130, 1131, 1132, 1133, 1137,

1138.
box end : 1129, 1133, 1138, 1140.
box error : 1046, 1047, 1069, 1082.
box flag : 1125, 1129, 1131, 1137, 1295, 1491.
box lr : 157, 652, 1514, 1524, 1525, 1556.
box max depth : 273, 1140.
\boxmaxdepth primitive: 274.
box max depth code : 273, 274.
box node : 169, 170.
box node size : 157, 158, 228, 232, 689, 710,

758, 770, 795, 800, 1031, 1075, 1154, 1164,
1255, 1544, 1556.

box ref : 236, 258, 305, 1131.
box there : 1034, 1041, 1054, 1055.
box val : 1278, 1626, 1631, 1632, 1634, 1650.
box val limit : 1626, 1649.
\box255 is not void : 1069.
bp : 493.
brain: 1083.
breadth max : 207, 208, 224, 259, 262, 1393, 1634.
break : 34, 656.
break in : 34.
break node : 867, 877, 893, 903, 904, 911, 912,

925, 926.
break penalty : 234, 295, 296, 1156.
break type : 877, 885, 893, 894, 907.
break width : 871, 872, 885, 886, 888, 889, 890,

891, 892, 927.
breakpoint : 1392.
broken ins : 1035, 1040, 1064, 1075.
broken penalty : 262, 938.
\brokenpenalty primitive: 264.
broken penalty code : 262, 263, 264.
broken ptr : 1035, 1064, 1075.
buf size : 11, 30, 31, 35, 75, 133, 294, 345, 358,

361, 371, 393, 396, 408, 559, 565, 569, 1388,
1567, 1579.

672 PART 55: INDEX X ETEX §1679

buffer : 30, 31, 36, 37, 45, 75, 87, 91, 92, 286, 287,
288, 294, 332, 333, 345, 348, 361, 371, 373,
382, 384, 385, 386, 390, 392, 393, 396, 408,
518, 519, 558, 559, 565, 566, 569, 573, 1391,
1393, 1451, 1567, 1572, 1579.

Buffer size exceeded : 35.
build choices : 1227, 1228.
build discretionary : 1172, 1173.
build opentype assembly : 749, 783, 793.
build page : 848, 860, 1042, 1048, 1080, 1108, 1114,

1130, 1145, 1148, 1154, 1157, 1199, 1254.
by : 1290.
bypass eoln : 31.
byte file : 25, 27, 28, 560, 567, 574.
b0 : 132, 135, 136, 155, 169, 170, 247, 283, 298,

580, 581, 585, 589, 591, 599, 638, 725, 727, 744,
975, 1012, 1363, 1364, 1565, 1567.

b1 : 132, 135, 136, 155, 169, 170, 247, 283, 298,
580, 581, 589, 591, 599, 638, 725, 727, 744,
975, 1012, 1363, 1364, 1565, 1567.

b2 : 132, 135, 136, 169, 580, 581, 589, 591, 599,
638, 725, 727, 744, 1363, 1364, 1565, 1567.

b3 : 132, 135, 136, 169, 580, 581, 591, 599, 638,
725, 727, 744, 1363, 1364, 1565, 1567.

c: 47, 67, 86, 166, 294, 304, 322, 371, 500, 505,
551, 554, 558, 595, 616, 618, 628, 684, 733, 734,
736, 744, 749, 752, 754, 755, 781, 793, 942, 966,
1007, 1013, 1014, 1048, 1066, 1140, 1155, 1164,
1171, 1190, 1205, 1209, 1219, 1235, 1297, 1299,
1300, 1301, 1329, 1333, 1342, 1389, 1489, 1588.

c leaders : 173, 216, 665, 674, 1125, 1126.
\cleaders primitive: 1125.
c loc : 966, 970.
calc min and max : 1445.
call : 236, 249, 305, 326, 396, 414, 421, 429,

430, 513, 542, 1272, 1275, 1279, 1280, 1281,
1349, 1583.

call func : 1410.
cancel boundary : 1084, 1086, 1087, 1088.
cancel glue : 1557.
cancel glue cont : 1557.
cancel glue cont cont : 1557.
cancel glue end : 1557.
cancel glue end end : 1557.
cannot \read : 519.
cap height : 744.
cap ht : 744.
car ret : 233, 258, 372, 377, 825, 828, 829, 831,

832, 833, 836, 1180.
carriage return : 22, 49, 233, 258, 266, 393.
case shift : 234, 1339, 1340, 1341.
cast to ushort : 733, 765.

cat : 371, 384, 385, 386, 499, 505, 506.
cat code : 256, 258, 262, 292, 371, 373, 384,

385, 386, 1391.
\catcode primitive: 1284.
cat code base : 256, 258, 259, 261, 1284, 1285, 1287.
cc : 382, 1415.
cc : 493.
ccc : 382.
cccc : 382.
cField : 1445.
ch : 1209.
change box : 1031, 1133, 1164, 1632.
change if limit : 532, 533, 544.
char : 19, 26, 59, 169, 555, 569, 1445.
\char primitive: 295.
char base : 585, 587, 589, 601, 605, 611, 1376, 1377.
char box : 752, 753, 754, 781.
char class boundary : 447, 1088.
char class ignored : 447, 1088.
char class limit : 447, 449, 467, 1088, 1280, 1281.
\chardef primitive: 1276.
char def code : 1276, 1277, 1278.
char depth : 589, 694, 751, 752, 755, 1481.
char depth end : 589.
char exists : 589, 608, 611, 618, 751, 765, 781,

784, 793, 799, 1090, 1580.
char given : 234, 447, 989, 1084, 1088, 1092, 1144,

1178, 1205, 1208, 1276, 1277, 1278.
char height : 589, 694, 751, 752, 755, 1179, 1481.
char height end : 589.
char info : 578, 585, 589, 590, 592, 605, 608, 611,

618, 658, 694, 751, 752, 755, 757, 758, 765,
767, 781, 784, 793, 889, 890, 914, 915, 918,
919, 963, 1090, 1091, 1093, 1094, 1167, 1177,
1179, 1201, 1481, 1534, 1580.

char info end : 589.
char info word : 576, 578, 579.
char italic : 589, 752, 757, 793, 799, 1167, 1481.
char italic end : 589.
char kern : 592, 785, 797, 963, 1094.
char kern end : 592.
char node : 156, 165, 167, 187, 202, 583, 628, 658,

689, 796, 929, 961, 1083, 1167, 1192, 1420.
char num : 234, 295, 296, 989, 1084, 1088, 1092,

1144, 1178, 1205, 1208.
char pw : 688.
char tag : 589, 605, 751, 753, 784, 785, 793,

796, 963, 1093.
char warning : 616, 618, 744, 765, 1088, 1090.
char width : 589, 658, 694, 752, 757, 758, 784,

889, 890, 914, 915, 918, 919, 1177, 1179,
1201, 1481, 1534.

§1679 X ETEX PART 55: INDEX 673

char width end : 589.
character : 156, 165, 166, 200, 202, 232, 618, 658,

688, 694, 723, 724, 725, 729, 733, 752, 758, 765,
767, 793, 796, 797, 889, 890, 914, 915, 918, 919,
949, 950, 951, 956, 961, 962, 964, 965, 1086,
1088, 1089, 1090, 1091, 1092, 1094, 1167, 1177,
1179, 1201, 1205, 1209, 1219, 1534, 1544.

character set dependencies: 23, 49.
check sum: 53, 577, 624.
check byte range : 605, 608.
check dimensions : 769, 770, 776, 798.
check effective tail : 1134, 1159.
check existence : 608, 609.
check for inter char toks : 1088, 1092.
check for post char toks : 1084, 1088.
check for tfm font mapping : 598.
check full save stack : 303, 304, 306, 310, 1648.
check interrupt : 100, 354, 373, 797, 965, 1085,

1094.
check keywords : 1445.
check mem : 190, 192, 1085, 1393.
check next : 655, 656.
check outer validity : 366, 381, 383, 384, 387,

392, 409.
check shrinkage : 873, 875, 916.
Chinese characters: 156, 621.
choice node : 730, 731, 732, 740, 773, 805.
choose mlist : 774.
chr : 19, 20, 23, 1276.
chr cmd : 328, 829.
chr code : 253, 257, 265, 275, 296, 328, 411, 419,

445, 447, 451, 504, 523, 527, 829, 1038, 1107,
1113, 1125, 1126, 1143, 1162, 1169, 1197, 1211,
1224, 1233, 1243, 1263, 1274, 1277, 1285, 1305,
1309, 1315, 1317, 1327, 1332, 1341, 1343, 1346,
1349, 1401, 1497, 1503, 1508, 1512, 1559, 1582,
1643, 1644, 1672, 1673.

clang : 238, 239, 860, 1088, 1145, 1254, 1439, 1440.
clean box : 763, 777, 778, 780, 781, 786, 788, 793,

794, 801, 802, 803.
clear for error prompt : 82, 87, 360, 376.
clear terminal : 34, 360, 565, 1392.
clobbered : 192, 193, 194.
CLOBBERED : 323.
close : 28.
close files and terminate : 82, 85, 1386, 1387.
\closein primitive: 1326.
close noad : 724, 732, 738, 740, 771, 805, 809,

810, 1210, 1211.
close node : 1395, 1398, 1401, 1403, 1416, 1417,

1418, 1436, 1437, 1438.
\closeout primitive: 1398.

closed : 515, 516, 518, 520, 521, 536, 1329.
clr : 780, 787, 789, 790, 800, 801, 802, 803.
\clubpenalties primitive: 1675.
club penalties loc : 256, 1675, 1676.
club penalties ptr : 938, 1675.
club penalty : 262, 938.
\clubpenalty primitive: 264.
club penalty code : 262, 263, 264.
cm : 493.
cmd : 328, 1276, 1343, 1349, 1457, 1643.
co backup : 396.
collect native : 1084, 1088.
collected : 1084, 1088.
COLORED : 621.
combine two deltas : 908.
comment : 233, 258, 377.
common ending : 15, 533, 535, 544, 689, 702, 708,

709, 710, 716, 719, 720, 944, 956, 1311, 1314,
1347, 1348, 1351, 1522.

compare strings : 506, 1410.
Completed box... : 676.
compress trie : 1003, 1006.
compute ot math accent pos : 781.
cond math glue : 173, 215, 775, 1225.
cond ptr : 329, 358, 392, 524, 525, 530, 531,

532, 533, 535, 544, 1389, 1478, 1501, 1584,
1587, 1588.

conditional : 396, 399, 533.
confusion : 99, 116, 228, 232, 311, 532, 668, 697,

711, 771, 779, 798, 809, 814, 839, 846, 848,
889, 890, 914, 918, 919, 925, 1022, 1027, 1054,
1122, 1134, 1239, 1254, 1265, 1403, 1417, 1418,
1436, 1522, 1535, 1541, 1556.

continental point token : 472, 482.
continue : 15, 86, 87, 88, 92, 93, 423, 426, 427,

428, 429, 431, 508, 509, 511, 749, 751, 822,
832, 863, 877, 880, 899, 949, 960, 963, 964,
965, 1048, 1055, 1593, 1594.

contrib head : 187, 241, 244, 1042, 1048, 1049,
1052, 1053, 1055, 1071, 1077, 1080.

contrib tail : 1049, 1071, 1077, 1080.
contribute : 1048, 1051, 1054, 1056, 1062, 1424.
conv toks : 396, 399, 505.
conventions for representing stacks: 330.
convert : 236, 396, 399, 503, 504, 505, 1452, 1460.
convert to break width : 891.
\copy primitive: 1125.
copy code : 1125, 1126, 1133, 1161, 1162, 1164,

1670, 1672.
copy native glyph info : 169, 1417.
copy node list : 186, 229, 230, 232, 1133, 1164,

1556.

674 PART 55: INDEX X ETEX §1679

copy to cur active : 877, 909.
corners : 1445.
count : 262, 461, 676, 678, 1040, 1062, 1063, 1064.
\count primitive: 445.
count base : 262, 265, 268, 1278, 1291.
\countdef primitive: 1276.
count def code : 1276, 1277, 1278.
count pdf file pages : 1454.
cp skipable : 507, 877.
\cr primitive: 828.
cr code : 828, 829, 837, 839, 840.
\crcr primitive: 828.
cr cr code : 828, 833, 837.
cramped : 730, 745.
cramped style : 745, 777, 780, 781.
cs count : 282, 285, 287, 1372, 1373, 1388.
cs error : 1188, 1189.
cs name : 236, 295, 296, 396, 399.
\csname primitive: 295.
cs token flag : 319, 320, 323, 364, 366, 367, 369,

387, 388, 395, 401, 402, 403, 406, 409, 413, 414,
415, 474, 476, 499, 501, 541, 828, 1088, 1099,
1119, 1186, 1269, 1343, 1368, 1434.

cur active width : 871, 872, 877, 880, 885, 891,
892, 899, 900, 901, 908, 1657, 1658, 1659, 1660.

cur align : 818, 819, 820, 825, 826, 827, 831, 834,
836, 837, 839, 840, 843, 844, 846.

cur area : 547, 552, 564, 565, 572, 1311, 1314,
1406, 1437, 1445.

cur boundary : 300, 301, 302, 304, 312, 358, 392,
1489, 1584, 1585, 1588.

cur box : 1128, 1129, 1130, 1131, 1132, 1133, 1134,
1135, 1136, 1138, 1140, 1141, 1650.

cur break : 869, 877, 893, 927, 928, 929, 1517.
cur c : 765, 766, 767, 781, 793, 796, 797, 799, 805.
cur chr : 92, 326, 327, 329, 362, 367, 371, 373, 378,

379, 381, 382, 383, 384, 385, 386, 387, 388, 389,
390, 394, 395, 399, 402, 403, 412, 414, 415, 420,
421, 423, 437, 441, 447, 449, 458, 462, 476, 500,
505, 507, 509, 511, 513, 514, 518, 529, 530, 533,
535, 536, 541, 542, 543, 544, 545, 561, 612,
830, 833, 837, 989, 991, 1016, 1084, 1088, 1090,
1092, 1099, 1103, 1112, 1114, 1115, 1120, 1127,
1133, 1137, 1144, 1147, 1155, 1159, 1160, 1164,
1171, 1178, 1182, 1194, 1196, 1205, 1206, 1208,
1209, 1212, 1213, 1214, 1219, 1225, 1235, 1245,
1265, 1266, 1267, 1271, 1272, 1275, 1278, 1279,
1280, 1281, 1282, 1286, 1287, 1288, 1291, 1297,
1299, 1300, 1301, 1302, 1306, 1307, 1319, 1329,
1333, 1342, 1347, 1389, 1403, 1405, 1438, 1484,
1498, 1506, 1513, 1560, 1572, 1576, 1583, 1674.

cur cmd : 92, 237, 326, 327, 329, 362, 367, 371,

372, 373, 374, 378, 379, 381, 383, 384, 387, 388,
390, 394, 395, 396, 399, 400, 402, 403, 406, 414,
415, 420, 421, 437, 438, 440, 441, 447, 449,
462, 474, 476, 477, 478, 482, 487, 490, 496,
498, 509, 512, 513, 514, 518, 529, 536, 541,
542, 561, 612, 825, 830, 831, 832, 833, 836,
837, 839, 989, 1015, 1083, 1084, 1088, 1092,
1099, 1103, 1120, 1132, 1133, 1138, 1149, 1153,
1178, 1182, 1192, 1205, 1206, 1214, 1219, 1230,
1231, 1251, 1260, 1265, 1266, 1267, 1275, 1280,
1281, 1282, 1290, 1291, 1306, 1324, 1438, 1493,
1513, 1576, 1577, 1578, 1583, 1595.

cur cs : 327, 362, 363, 366, 367, 368, 371, 381,
383, 384, 386, 387, 388, 395, 402, 403, 406,
408, 413, 414, 415, 423, 425, 441, 507, 508,
536, 542, 822, 1088, 1099, 1206, 1269, 1272,
1275, 1278, 1279, 1280, 1311, 1348, 1407, 1410,
1434, 1493, 1578, 1579.

cur dir : 652, 661, 664, 666, 670, 671, 675, 1515,
1516, 1524, 1525, 1527, 1530, 1532, 1539, 1541,
1545, 1546, 1547, 1548, 1549, 1550.

cur ext : 547, 552, 564, 565, 572, 595, 596, 1314,
1329, 1406, 1437, 1445.

cur f : 765, 767, 781, 785, 789, 790, 793, 795, 796,
797, 799, 801, 802, 803, 805.

cur fam : 262, 1205, 1209, 1219.
cur fam code : 262, 263, 264, 1193, 1199.
cur file : 334, 359, 392, 572, 573, 1566.
cur font : 256, 258, 593, 594, 612, 1086, 1088, 1096,

1098, 1171, 1177, 1178, 1444, 1454, 1458, 1545.
cur font loc : 256, 258, 259, 260, 1271.
cur g : 655, 663, 667, 672, 1509, 1531, 1532, 1533.
cur glue : 655, 663, 667, 672, 1509, 1531, 1532,

1533.
cur group : 300, 301, 302, 304, 311, 312, 848,

1116, 1117, 1118, 1119, 1121, 1122, 1123, 1184,
1185, 1194, 1196, 1245, 1246, 1247, 1248, 1254,
1471, 1475, 1489, 1588.

cur h : 652, 653, 654, 655, 658, 660, 661, 664, 665,
666, 667, 670, 671, 675, 1426, 1427, 1430, 1524,
1526, 1529, 1530, 1531, 1532, 1534, 1535, 1540.

cur h offset : 1428, 1429.
cur head : 818, 819, 820, 834, 847.
cur height : 1024, 1026, 1027, 1028, 1029, 1030,

1425.
cur i : 765, 766, 767, 781, 785, 793, 796, 797, 799.
cur if : 329, 366, 524, 525, 530, 531, 1389, 1478,

1501, 1587, 1588.
cur indent : 925, 937.
cur input : 35, 36, 91, 331, 332, 341, 351, 352,

569, 1185, 1585, 1587.
cur l : 961, 962, 963, 964, 965, 1086, 1088, 1089,

§1679 X ETEX PART 55: INDEX 675

1090, 1091, 1093, 1094.
cur lang : 939, 940, 977, 978, 984, 988, 993, 998,

1017, 1145, 1254, 1422, 1423, 1666, 1669.
cur length : 41, 206, 208, 287, 289, 551, 560, 653,

656, 678, 734, 744, 1431, 1436.
cur level : 300, 301, 302, 304, 307, 308, 310, 311,

1358, 1389, 1471, 1475, 1489, 1588, 1648, 1650.
cur line : 925, 937, 938.
cur list : 239, 242, 243, 244, 456, 1298, 1489.
cur loop : 818, 819, 820, 825, 831, 840, 841, 842.
cur mark : 326, 416, 420, 1389, 1620.
cur mlist : 762, 763, 769, 798, 1248, 1250, 1253.
cur mu : 746, 762, 773, 775, 814.
cur name : 547, 552, 564, 565, 572, 1311, 1312,

1314, 1406, 1437, 1445, 1448.
cur order : 396, 473, 481, 482, 489, 497.
cur p : 871, 876, 877, 878, 881, 885, 887, 888, 893,

899, 900, 901, 903, 904, 905, 906, 907, 908, 910,
911, 913, 914, 915, 916, 917, 920, 925, 926, 927,
928, 929, 943, 956, 957, 1422, 1517, 1660, 1663.

cur page height : 1427, 1428, 1429.
cur page width : 1428, 1429.
cur pre head : 818, 819, 820, 834, 847.
cur pre tail : 818, 819, 820, 834, 844, 847.
cur ptr : 420, 449, 461, 1088, 1278, 1280, 1281,

1291, 1626, 1627, 1630, 1631, 1632, 1635, 1636,
1638, 1641, 1642, 1650.

cur q : 961, 962, 964, 965, 1088, 1089, 1090,
1091, 1094.

cur r : 961, 962, 963, 964, 965, 1086, 1088, 1091,
1092, 1093, 1094.

cur rh : 960, 962, 963, 964.
cur s : 629, 652, 655, 667, 678, 680.
cur size : 742, 743, 746, 762, 765, 766, 775, 779,

780, 788, 790, 791, 792, 793, 801, 802, 803, 810.
cur span : 818, 819, 820, 835, 844, 846.
cur style : 746, 762, 763, 769, 770, 773, 774, 777,

778, 780, 781, 786, 788, 789, 790, 792, 793,
794, 798, 800, 801, 802, 803, 805, 808, 810,
811, 814, 1248, 1250, 1253.

cur tail : 818, 819, 820, 834, 844, 847.
cur tok : 92, 311, 327, 355, 356, 357, 366, 394, 395,

396, 400, 401, 402, 403, 406, 409, 413, 414,
415, 426, 427, 428, 429, 431, 433, 437, 439,
441, 474, 475, 476, 478, 479, 482, 487, 509,
511, 512, 514, 518, 529, 538, 541, 831, 832,
1088, 1092, 1099, 1101, 1149, 1181, 1182, 1186,
1269, 1275, 1322, 1323, 1325, 1434, 1435, 1493,
1572, 1578, 1583, 1595, 1596.

cur v : 652, 654, 655, 661, 662, 666, 667, 669, 670,
671, 673, 674, 675, 678, 1426, 1427, 1430.

cur v offset : 1428, 1429.

cur val : 294, 295, 364, 396, 420, 444, 447, 448,
449, 453, 454, 455, 457, 458, 459, 460, 461, 463,
464, 465, 467, 468, 469, 470, 471, 472, 473, 474,
476, 478, 479, 481, 482, 483, 485, 486, 488,
490, 492, 493, 495, 496, 497, 498, 500, 501,
506, 507, 517, 526, 536, 538, 539, 544, 588,
612, 613, 614, 615, 684, 828, 830, 989, 1031,
1084, 1088, 1092, 1114, 1115, 1127, 1131, 1136,
1153, 1155, 1157, 1177, 1178, 1179, 1205, 1208,
1214, 1215, 1219, 1236, 1242, 1278, 1279, 1280,
1281, 1282, 1283, 1286, 1288, 1290, 1291, 1292,
1293, 1294, 1295, 1297, 1298, 1299, 1300, 1301,
1302, 1307, 1312, 1313, 1329, 1350, 1398, 1405,
1410, 1413, 1440, 1444, 1445, 1454, 1458, 1460,
1475, 1478, 1481, 1484, 1493, 1498, 1504, 1506,
1580, 1591, 1593, 1596, 1614, 1615, 1622, 1630,
1631, 1632, 1635, 1650, 1677.

cur val level : 396, 444, 447, 449, 453, 454, 455,
457, 458, 461, 463, 464, 473, 484, 486, 490,
496, 500, 501, 1410, 1484, 1591, 1593.

cur val1 : 444, 448, 1214.
cur width : 925, 937.
current page: 1034.
current character being worked on : 605.
\currentgrouplevel primitive: 1473.
current group level code : 1473, 1474, 1475.
\currentgrouptype primitive: 1473.
current group type code : 1473, 1474, 1475.
\currentifbranch primitive: 1476.
current if branch code : 1476, 1477, 1478.
\currentiflevel primitive: 1476.
current if level code : 1476, 1477, 1478.
\currentiftype primitive: 1476.
current if type code : 1476, 1477, 1478.
cv backup : 396.
cvl backup : 396.
d: 111, 198, 202, 203, 286, 371, 474, 595, 689, 710,

721, 749, 863, 878, 925, 998, 1024, 1122, 1140,
1192, 1252, 1493, 1555, 1608, 1610.

d fixed : 644, 645.
danger : 1248, 1249, 1253.
data : 236, 258, 1271, 1286, 1288.
data structure assumptions: 186, 189, 230, 652,

864, 1022, 1035, 1343, 1544.
day : 262, 267, 653, 1382.
\day primitive: 264.
day code : 262, 263, 264.
dd : 493.
deactivate : 877, 899, 902.
dead cycles : 453, 628, 629, 676, 1066, 1078, 1079,

1108, 1296, 1300.
\deadcycles primitive: 450.

676 PART 55: INDEX X ETEX §1679

debug: 7, 9, 82, 88, 97, 136, 190, 191, 192,
197, 1085, 1392.

debug # : 1392.

debug help : 82, 88, 97, 1392.

debugging: 7, 88, 100, 136, 190, 208, 1085, 1392.

decent fit : 865, 882, 900, 901, 912, 1658, 1659.

decr : 16, 42, 44, 68, 75, 90, 92, 93, 94, 96, 106,
128, 142, 143, 145, 201, 203, 226, 227, 231, 243,
271, 287, 290, 311, 312, 341, 352, 354, 355,
356, 359, 361, 377, 386, 387, 390, 392, 428,
433, 456, 463, 476, 505, 512, 518, 529, 544,
569, 573, 603, 611, 637, 655, 667, 676, 680,
681, 759, 760, 851, 856, 877, 888, 906, 917,
931, 969, 970, 984, 985, 994, 998, 1002, 1019,
1114, 1174, 1181, 1185, 1228, 1240, 1248, 1298,
1347, 1365, 1389, 1391, 1417, 1420, 1489, 1493,
1501, 1539, 1544, 1550, 1565, 1567, 1585, 1586,
1587, 1588, 1591, 1593, 1630, 1632.

def : 235, 1262, 1263, 1264, 1267, 1272.

\def primitive: 1262.

def code : 235, 447, 1264, 1284, 1285, 1286.

def family : 235, 447, 612, 1264, 1284, 1285, 1288.

def font : 235, 295, 296, 447, 612, 1264, 1310.

def ref : 335, 336, 506, 508, 517, 1014, 1155,
1272, 1280, 1333, 1342, 1407, 1409, 1410,
1431, 1433, 1493.

default code : 725, 739, 787, 1236.

default hyphen char : 262, 611, 744.

\defaulthyphenchar primitive: 264.

default hyphen char code : 262, 263, 264.

default rule : 498.

default rule thickness : 725, 743, 777, 778, 780,
787, 789, 803.

default skew char : 262, 611, 744.

\defaultskewchar primitive: 264.

default skew char code : 262, 263, 264.

defecation: 633.

define : 1131, 1268, 1271, 1272, 1275, 1278, 1279,
1282, 1286, 1288, 1302, 1311, 1650.

define mathex accessor : 743.

define mathex body : 743.

define mathex end : 743.

define mathsy accessor : 742.

define mathsy body : 742.

define mathsy end : 742.

define native font : 621, 622, 638.

defining : 335, 336, 369, 508, 517.

del code : 262, 266, 447, 448, 1214.

\delcode primitive: 1284.

del code base : 262, 266, 268, 447, 448, 1284,
1285, 1286, 1287.

delete glue ref : 227, 228, 305, 486, 500, 613, 775,
850, 864, 874, 929, 1030, 1050, 1058, 1071,
1076, 1154, 1283, 1290, 1293, 1389, 1591, 1593,
1601, 1602, 1605, 1614, 1615, 1632, 1649, 1664.

delete last : 1158, 1159.
delete q : 769, 808, 811.
delete sa ptr : 1630, 1632, 1636.
delete sa ref : 1632, 1645, 1650, 1651, 1652.
delete token ref : 226, 228, 305, 354, 506, 1031,

1033, 1066, 1070, 1389, 1410, 1418, 1637, 1638,
1639, 1641, 1642, 1649.

deletions allowed : 80, 81, 88, 89, 102, 366, 376.
delim num : 233, 295, 296, 1100, 1205, 1208, 1214.
delim ptr : 238, 239, 1239, 1245.
delimited code : 1232, 1233, 1236, 1237.
delimitedSubFormulaMinHeight : 742.
delimiter : 729, 738, 810, 1245.
\delimiter primitive: 295.
delimiter factor : 262, 810.
\delimiterfactor primitive: 264.
delimiter factor code : 262, 263, 264.
delimiter shortfall : 273, 810.
\delimitershortfall primitive: 274.
delimiter shortfall code : 273, 274.
delim1 : 742, 792.
delim2 : 742, 792.
delta : 107, 769, 771, 776, 778, 779, 780, 781, 786,

787, 789, 790, 791, 792, 793, 794, 798, 799, 800,
803, 810, 1048, 1062, 1064, 1177, 1179.

delta node : 870, 878, 880, 891, 892, 908, 909,
913, 922, 923.

delta node size : 870, 891, 892, 908, 909, 913.
delta1 : 787, 790, 810.
delta2 : 787, 790, 810.
den : 621, 623, 626.
denom : 485, 493.
denom style : 745, 788.
denominator : 725, 732, 739, 740, 788, 1235, 1239.
denom1 : 742, 788.
denom2 : 742, 788.
deplorable : 1028, 1059.
depth : 498.
depth : 157, 158, 160, 161, 162, 169, 170, 210, 213,

214, 498, 589, 660, 662, 664, 667, 669, 670, 673,
679, 689, 693, 698, 710, 712, 721, 730, 747, 749,
752, 756, 770, 773, 774, 778, 779, 780, 783,
789, 790, 791, 793, 794, 795, 800, 802, 803,
816, 817, 849, 854, 858, 877, 1023, 1027, 1055,
1056, 1063, 1064, 1075, 1141, 1154, 1419, 1420,
1424, 1425, 1426, 1428, 1445, 1529, 1556.

depth base : 585, 587, 589, 601, 606, 744, 1376,
1377.

§1679 X ETEX PART 55: INDEX 677

depth index : 578, 589.
depth offset : 157, 450, 817, 1301.
depth threshold : 207, 208, 224, 259, 262, 734,

1393, 1634.
descent : 744.
dest : 169.
destroy marks : 1389, 1636, 1642.
\detokenize primitive: 1496.
dField : 1445.
dig : 54, 68, 69, 71, 106, 487.
digit sensed : 1014, 1015, 1016.
\dimexpr primitive: 1589.
dimen : 273, 461, 1062, 1064.
\dimen primitive: 445.
dimen base : 246, 262, 273, 274, 275, 276, 277,

278, 1124, 1199.
\dimendef primitive: 1276.
dimen def code : 1276, 1277, 1278.
dimen par : 273.
dimen pars : 273.
dimen val : 444, 445, 447, 449, 450, 451, 452, 454,

455, 458, 459, 461, 462, 463, 484, 490, 500,
1291, 1484, 1589, 1590, 1596, 1601, 1603, 1606,
1609, 1626, 1631, 1634, 1643.

dimen val limit : 1626, 1632, 1633, 1648, 1652.
Dimension too large : 495.
dirty Pascal: 3, 136, 197, 208, 212, 315, 860, 1385.
disc break : 925, 928, 929, 930, 938.
disc group : 299, 1171, 1172, 1173, 1471, 1489.
disc node : 167, 172, 201, 209, 228, 232, 773,

809, 865, 867, 877, 904, 906, 914, 929, 957,
968, 1088, 1134, 1420.

disc ptr : 1389, 1670, 1674.
disc width : 887, 888, 917, 918.
discretionary : 234, 1144, 1168, 1169, 1170.
Discretionary list is too long : 1174.
\discretionary primitive: 1168.
Display math...with $$: 1251.
display indent : 273, 848, 1192, 1199, 1253, 1555.
\displayindent primitive: 274.
display indent code : 273, 274, 1199.
\displaylimits primitive: 1210.
display mlist : 731, 737, 740, 774, 805, 1228.
display style : 730, 736, 774, 1223, 1253.
\displaystyle primitive: 1223.
\displaywidowpenalties primitive: 1675.
display widow penalties loc : 256, 1675, 1676.
display widow penalties ptr : 938, 1675.
display widow penalty : 262, 862, 938.
\displaywidowpenalty primitive: 264.
display widow penalty code : 262, 263, 264.
display width : 273, 1192, 1199, 1253, 1555.

\displaywidth primitive: 274.
display width code : 273, 274, 1199.
displayOperatorMinHeight : 742, 793.
div: 104, 665, 674.
divide : 235, 295, 296, 1264, 1289, 1290.
\divide primitive: 295.
dlist : 652, 855, 1248, 1256, 1514, 1524, 1525, 1556.
do all six : 871, 877, 880, 885, 891, 892, 908,

909, 912, 1024, 1041.
do assignments : 848, 1177, 1260, 1324.
do endv : 1184, 1185.
do extension : 1402, 1403, 1438.
do last line fit : 893, 894, 899, 900, 903, 911, 912,

1653, 1654, 1664.
do locale linebreaks : 744, 1088.
do marks : 1031, 1066, 1389, 1636.
do nothing : 16, 34, 57, 58, 88, 201, 228, 305, 374,

387, 506, 573, 604, 645, 647, 648, 660, 669, 691,
711, 734, 771, 776, 805, 809, 885, 914, 945, 952,
1099, 1290, 1410, 1420, 1436, 1460.

do register command : 1289, 1290.
do size requests : 1445.
doing leaders : 628, 629, 666, 675, 1437.
doing special : 59, 61, 62, 1431.
done : 15, 47, 53, 228, 311, 312, 341, 414, 423, 431,

474, 479, 482, 488, 493, 508, 509, 511, 517,
518, 529, 561, 565, 566, 572, 595, 602, 611,
651, 676, 678, 679, 740, 744, 769, 781, 784,
808, 809, 822, 825, 863, 877, 885, 911, 921,
925, 929, 944, 960, 963, 965, 985, 1014, 1015,
1024, 1028, 1031, 1033, 1048, 1051, 1052, 1059,
1133, 1134, 1135, 1164, 1173, 1175, 1192, 1200,
1265, 1281, 1306, 1410, 1418, 1489, 1533, 1540,
1547, 1548, 1549, 1572, 1610, 1674.

done with noad : 769, 770, 771, 776, 798.
done with node : 769, 770, 773, 774, 798.
done1 : 15, 192, 193, 423, 433, 482, 487, 508,

509, 781, 785, 822, 831, 863, 877, 900, 925,
927, 943, 945, 949, 952, 1014, 1019, 1048,
1051, 1054, 1356, 1369.

done2 : 15, 192, 194, 482, 493, 494, 508, 513, 822,
832, 863, 949, 1356, 1370.

done3 : 15, 863, 946, 950, 951.
done4 : 15, 863, 952.
done5 : 15, 863, 914, 917.
done6 : 15, 863, 945.
dont expand : 236, 285, 387, 401.
double : 115, 117, 123.
Double subscript : 1231.
Double superscript : 1231.
double hyphen demerits : 262, 907.
\doublehyphendemerits primitive: 264.

678 PART 55: INDEX X ETEX §1679

double hyphen demerits code : 262, 263, 264.
Doubly free location... : 194.
down ptr : 641, 642, 643, 651.
downdate width : 908.
down1 : 621, 622, 643, 645, 646, 649, 650, 652.
down2 : 621, 630, 646.
down3 : 621, 646.
down4 : 621, 646.
\dp primitive: 450.
dry rot: 99.
\dump...only by INITEX : 1389.
\dump primitive: 1106.
dump four ASCII : 1363.
dump hh : 1359, 1372, 1378.
dump int : 1359, 1361, 1363, 1365, 1367, 1369,

1370, 1372, 1374, 1376, 1378, 1380, 1464.
dump qqqq : 1359, 1363, 1376.
dump wd : 1359, 1365, 1369, 1370, 1374.
Duplicate pattern : 1017.
dvi buf : 630, 631, 633, 634, 643, 649, 650.
dvi buf size : 11, 14, 630, 631, 632, 634, 635,

643, 649, 650, 680.
dvi f : 652, 653, 658, 659, 1426, 1430.
dvi file : 567, 628, 631, 633, 678, 680.
DVI files: 619.
dvi font def : 638, 659, 681.
dvi four : 636, 638, 646, 653, 662, 671, 678, 680,

1426, 1430, 1431, 1436.
dvi gone : 630, 631, 632, 634, 648.
dvi h : 652, 653, 655, 658, 661, 662, 666, 667,

670, 675, 1426, 1430.
dvi index : 630, 631, 633.
dvi limit : 630, 631, 632, 634, 635.
dvi native font def : 638.
dvi offset : 630, 631, 632, 634, 637, 641, 643, 649,

650, 655, 667, 678, 680.
dvi open out : 567.
dvi out : 634, 636, 637, 638, 639, 645, 646, 653,

655, 658, 659, 662, 667, 671, 678, 680, 1426,
1430, 1431, 1436.

dvi pop : 637, 655, 667.
dvi ptr : 630, 631, 632, 634, 635, 637, 643, 655,

667, 678, 680.
dvi swap : 634.
dvi two : 636, 1426, 1430.
dvi v : 652, 653, 655, 661, 666, 667, 670, 675,

1426, 1430.
dyn used : 139, 142, 143, 144, 145, 189, 677,

1365, 1366.
D2Fix : 1445.
e: 307, 309, 533, 553, 554, 565, 1252, 1265, 1290,

1471, 1472, 1555, 1593, 1650, 1651.

easy line : 867, 883, 895, 896, 898.
ec : 575, 576, 578, 580, 595, 600, 601, 605, 611.
\edef primitive: 1262.
edge : 655, 661, 664, 667, 673, 1430.
edge dist : 1529, 1530, 1532, 1540.
edge node : 652, 1529, 1530, 1535, 1547.
edge node size : 1529.
eight bit p : 59.
eight bits : 25, 68, 134, 327, 584, 595, 618, 631,

643, 689, 749, 752, 755, 1046, 1047.
eject penalty : 182, 877, 879, 899, 907, 921, 1024,

1026, 1028, 1059, 1064, 1065.
el gordo : 115, 116, 118.
\elapsedtime primitive: 450.
elapsed time code : 450, 451, 458.
else: 10.
\else primitive: 526.
else code : 524, 526, 533, 1478.
em : 490.
EMBOLDEN : 621.
embolden : 621.
Emergency stop : 97.
emergency stretch : 273, 876, 911.
\emergencystretch primitive: 274.
emergency stretch code : 273, 274.
empty : 16, 455, 723, 727, 729, 734, 765, 766, 781,

793, 795, 796, 798, 799, 800, 807, 1034, 1040,
1041, 1045, 1055, 1062, 1230, 1231, 1240.

empty line at end of file: 521, 573.
empty field : 726, 727, 728, 786, 1217, 1219, 1235.
empty flag : 146, 148, 152, 174, 189, 1366.
encoding : 1446, 1447.
end: 7, 8, 10.
End of file on the terminal : 37, 75.
(\end occurred...) : 1389.
\end primitive: 1106.
end cs name : 234, 295, 296, 406, 1188, 1578.
\endcsname primitive: 295.
end diagnostic : 271, 314, 329, 353, 434, 435, 537,

544, 595, 616, 676, 679, 705, 717, 744, 874, 911,
1041, 1046, 1060, 1065, 1175, 1352, 1472, 1634.

end file reading : 359, 360, 390, 392, 518, 572,
1389.

end graf : 1080, 1139, 1148, 1150, 1154, 1185,
1187, 1222.

end group : 234, 295, 296, 1117.
\endgroup primitive: 295.
\endinput primitive: 410.
end L code : 171, 1511, 1512, 1515, 1545.
end line char : 91, 262, 266, 333, 348, 362, 390,

392, 518, 569, 573, 1391.
\endlinechar primitive: 264.

§1679 X ETEX PART 55: INDEX 679

end line char code : 262, 263, 264.
end line char inactive : 390, 392, 518, 573, 1391.
end LR : 171, 218, 1518, 1521, 1527, 1539,

1548, 1550.
end LR type : 171, 1515, 1518, 1521, 1527, 1539,

1548, 1550.
end M : 1134.
end M code : 171, 458, 1515, 1557.
end match : 233, 319, 321, 324, 425, 426, 428.
end match token : 319, 423, 425, 426, 427, 428,

509, 511, 517.
end name : 547, 552, 561, 566.
end node run : 655, 656.
end of TEX : 6, 85, 1386.
end R code : 171, 1511, 1515.
end reflect : 1510.
end span : 187, 816, 827, 841, 845, 849, 851.
end template : 236, 396, 409, 414, 828, 1349, 1583.
end template token : 828, 832, 838.
end token list : 354, 355, 387, 424, 1080, 1389,

1434.
end write : 248, 1432, 1434.
\endwrite : 1432.
end write token : 1434, 1435.
endcases: 10.
\endL primitive: 1511.
\endR primitive: 1511.
endtemplate : 828.
endv : 233, 328, 409, 414, 816, 828, 830, 839,

1100, 1184, 1185.
ensure dvi open : 567, 653.
ensure vbox : 1047, 1063, 1072.
eof : 26, 31, 52, 599, 610, 1381.
eof seen : 358, 392, 1470.
eoln : 31, 52.
eop : 619, 621, 622, 624, 678, 680.
epochseconds : 682, 1391, 1411, 1412, 1414.
eq define : 307, 308, 309, 406, 830, 1124, 1268.
eq destroy : 305, 307, 309, 313.
eq level : 247, 248, 254, 258, 262, 279, 285, 294,

307, 309, 313, 828, 1031, 1369, 1432, 1631, 1632.
eq level field : 247.
eq no : 234, 1194, 1195, 1197, 1198, 1489.
\eqno primitive: 1195.
eq save : 306, 307, 308.
eq type : 236, 247, 248, 249, 254, 258, 279, 285,

294, 295, 297, 307, 309, 381, 383, 384, 387, 388,
406, 423, 425, 828, 1206, 1369, 1432, 1578.

eq type field : 247, 305.
eq word define : 308, 309, 1124, 1193, 1199, 1268.
eq word define1 : 1268.

eqtb : 2, 137, 188, 246, 247, 248, 249, 250, 254,
256, 258, 262, 266, 268, 273, 276, 277, 278, 279,
281, 283, 292, 294, 295, 296, 297, 298, 300, 302,
304, 305, 306, 307, 308, 309, 311, 312, 313, 314,
315, 316, 319, 321, 327, 328, 335, 337, 362, 363,
384, 423, 447, 448, 508, 526, 583, 588, 744, 828,
862, 1242, 1262, 1276, 1291, 1307, 1311, 1369,
1370, 1371, 1393, 1400, 1452, 1634, 1646.

eqtb size : 246, 273, 276, 278, 279, 280, 1361,
1362, 1370, 1371.

equiv : 247, 248, 249, 250, 254, 255, 256, 258, 259,
260, 261, 279, 281, 285, 294, 295, 297, 305, 307,
309, 381, 383, 384, 387, 388, 447, 448, 449,
543, 612, 828, 1206, 1281, 1286, 1291, 1343,
1369, 1432, 1468, 1675, 1677.

equiv field : 247, 305, 315, 1645.
err help : 83, 256, 1337, 1338.
\errhelp primitive: 256.
err help loc : 256.
\errmessage primitive: 1331.
error : 76, 79, 80, 82, 83, 86, 92, 95, 97, 102, 125,

357, 368, 376, 404, 432, 442, 447, 448, 452, 462,
479, 489, 491, 494, 495, 506, 510, 511, 521, 535,
545, 558, 570, 596, 602, 614, 679, 766, 824,
832, 840, 874, 990, 991, 1014, 1015, 1016, 1017,
1030, 1032, 1046, 1058, 1063, 1078, 1081, 1104,
1118, 1120, 1122, 1123, 1134, 1136, 1149, 1153,
1160, 1164, 1174, 1175, 1182, 1183, 1189, 1213,
1220, 1231, 1237, 1246, 1249, 1267, 1279, 1286,
1290, 1291, 1295, 1306, 1313, 1337, 1338, 1347,
1435, 1445, 1446, 1457, 1458, 1466, 1593.

error context lines : 262, 341.
\errorcontextlines primitive: 264.
error context lines code : 262, 263, 264.
error count : 80, 81, 86, 90, 1150, 1347.
error line : 11, 14, 54, 58, 336, 341, 345, 346, 347.
error message issued : 80, 86, 99.
error stop mode : 76, 77, 78, 86, 87, 97, 102, 1316,

1337, 1347, 1348, 1351, 1381, 1389, 1506.
\errorstopmode primitive: 1316.
erstat : 27.
escape : 233, 258, 374, 1391.
escape char : 262, 266, 269.
\escapechar primitive: 264.
escape char code : 262, 263, 264.
ETC : 322.
etc : 208.
eTeX aux : 238, 239, 241, 242.
eTeX aux field : 238, 239, 1489.
etex convert base : 503.
etex convert codes : 503.
eTeX dim : 450, 1479, 1482, 1612.

680 PART 55: INDEX X ETEX §1679

eTeX enabled : 1466, 1513.
eTeX ex : 210, 304, 307, 308, 312, 356, 571, 616,

663, 676, 1199, 1265, 1266, 1267, 1365, 1366,
1389, 1391, 1462, 1465, 1524, 1525, 1526, 1545.

eTeX expr : 450, 1589, 1590, 1591.
eTeX glue : 450, 458, 1616.
eTeX int : 450, 1452, 1473, 1476, 1612.
etex int base : 262.
etex int pars : 262.
eTeX mode : 1451, 1462, 1463, 1464, 1465.
eTeX mu : 450, 1591, 1616.
etex pen base : 256, 258, 259.
etex pens : 256, 258, 259.
eTeX revision : 2, 507.
\eTeXrevision primitive: 1452.
eTeX revision code : 503, 504, 506, 507, 1452.
eTeX state : 1452, 1510.
eTeX state base : 1452, 1511.
eTeX state code : 262, 1452, 1510.
eTeX states : 2, 262.
eTeX text offset : 337.
etex toks : 256.
etex toks base : 256.
eTeX version : 2, 1454.
\eTeXversion primitive: 1452.
eTeX version code : 450, 1452, 1453, 1454.
eTeX version string : 2.
every cr : 256, 822, 847.
\everycr primitive: 256.
every cr loc : 256, 257.
every cr text : 337, 344, 822, 847.
every display : 256, 1199.
\everydisplay primitive: 256.
every display loc : 256, 257.
every display text : 337, 344, 1199.
every eof : 392, 1468.
\everyeof primitive: 1467.
every eof loc : 256, 337, 1467, 1468.
every eof text : 337, 344, 392.
every hbox : 256, 1137.
\everyhbox primitive: 256.
every hbox loc : 256, 257.
every hbox text : 337, 344, 1137.
every job : 256, 1084.
\everyjob primitive: 256.
every job loc : 256, 257.
every job text : 337, 344, 1084.
every math : 256, 1193.
\everymath primitive: 256.
every math loc : 256, 257.
every math text : 337, 344, 1193.
every par : 256, 1145.

\everypar primitive: 256.
every par loc : 256, 257, 337, 1280.
every par text : 337, 344, 1145.
every vbox : 256, 1137, 1221.
\everyvbox primitive: 256.
every vbox loc : 256, 257.
every vbox text : 337, 344, 1137, 1221.
ex : 490.
ex hyphen penalty : 167, 262, 917.
\exhyphenpenalty primitive: 264.
ex hyphen penalty code : 262, 263, 264.
ex space : 234, 295, 296, 1084, 1144.
exactly : 683, 684, 758, 937, 1031, 1071, 1116,

1255, 1490.
exit : 15, 16, 37, 47, 58, 59, 63, 73, 86, 126, 147,

208, 307, 308, 322, 371, 423, 441, 447, 496,
500, 532, 533, 559, 618, 643, 651, 689, 710,
796, 839, 877, 944, 988, 998, 1002, 1031, 1048,
1066, 1084, 1108, 1133, 1159, 1164, 1167, 1173,
1205, 1213, 1228, 1265, 1290, 1324, 1357, 1389,
1392, 1471, 1583, 1630, 1632.

expand : 388, 396, 400, 402, 405, 414, 415, 473,
502, 513, 533, 545, 830, 1492, 1583.

expand after : 236, 295, 296, 396, 399, 1573.
\expandafter primitive: 295.
expand depth : 1593.
expand depth count : 1593.
\expanded primitive: 503.
expanded code : 503, 504, 506.
explicit : 179, 760, 885, 914, 916, 927, 1112,

1167, 1521.
expr a : 1603, 1605.
expr add : 1594, 1595.
expr add sub : 1603.
expr d : 1607.
expr div : 1594, 1595, 1606, 1607.
expr e field : 1599, 1600.
expr m : 1606.
expr mult : 1594, 1595, 1606.
expr n field : 1599, 1600.
expr node size : 1599, 1600.
expr none : 1594, 1595, 1602, 1603.
expr s : 1609.
expr scale : 1594, 1606, 1609.
expr sub : 1594, 1595, 1601, 1603.
expr t field : 1599, 1600.
ext bot : 581, 756, 757.
ext delimiter : 548, 550, 551, 552.
ext mid : 581, 756, 757.
ext rep : 581, 756, 757.
ext tag : 579, 604, 751, 753.
ext top : 581, 756, 757.

§1679 X ETEX PART 55: INDEX 681

exten : 579.
exten base : 585, 587, 601, 608, 609, 611, 756,

1376, 1377.
extend : 621.
EXTEND : 621.
extensible recipe : 576, 581.
extension : 234, 1398, 1399, 1401, 1402, 1438,

1444, 1511.
extensions to TEX: 2, 168, 1394.
Extra \else : 545.
Extra \endcsname : 1189.
Extra \fi : 545.
Extra \middle. : 1246.
Extra \or : 535, 545.
Extra \right. : 1246.
Extra }, or forgotten x : 1123.
Extra alignment tab... : 840.
Extra x : 1120.
extra info : 817, 836, 837, 839, 840.
extra right brace : 1122, 1123.
extra space : 582, 593, 744, 1098.
extra space code : 582, 593.
eyes and mouth: 362.
f : 27, 28, 31, 116, 118, 166, 482, 560, 595, 612,

613, 616, 618, 628, 638, 688, 689, 742, 743, 744,
749, 752, 754, 755, 758, 759, 760, 781, 878, 910,
1122, 1167, 1177, 1192, 1265, 1311, 1593, 1610.

false : 27, 31, 37, 45, 46, 47, 51, 58, 59, 62, 80, 84,
92, 93, 102, 110, 111, 116, 119, 191, 192, 193,
194, 198, 294, 304, 311, 314, 329, 341, 353, 357,
358, 361, 366, 376, 391, 392, 395, 398, 408, 434,
435, 441, 449, 459, 461, 474, 475, 479, 481, 482,
483, 484, 490, 495, 496, 497, 500, 520, 536, 537,
540, 542, 544, 547, 551, 559, 561, 563, 573, 586,
595, 616, 629, 744, 749, 763, 765, 798, 822, 839,
874, 876, 877, 885, 899, 902, 911, 929, 935, 956,
960, 964, 965, 1005, 1008, 1014, 1015, 1016,
1017, 1020, 1022, 1041, 1044, 1060, 1065, 1074,
1075, 1080, 1085, 1087, 1088, 1089, 1094, 1105,
1108, 1115, 1134, 1150, 1155, 1221, 1236, 1237,
1245, 1246, 1248, 1253, 1280, 1281, 1290, 1312,
1324, 1333, 1336, 1337, 1342, 1357, 1379, 1390,
1396, 1397, 1407, 1409, 1410, 1431, 1434, 1437,
1442, 1445, 1451, 1466, 1472, 1492, 1567, 1580,
1585, 1587, 1593, 1604, 1608, 1610, 1631, 1632,
1634, 1635, 1654, 1657, 1664, 1666, 1667.

false bchar : 1086, 1088, 1092.
fam : 723, 724, 725, 729, 733, 765, 766, 796,

797, 1205.
\fam primitive: 264.
fam fnt : 256, 742, 743, 750, 765, 780, 1249.
fam in range : 1205, 1209, 1219.

fast delete glue ref : 227, 228, 1509.
fast get avail : 144, 405, 1088, 1092.
fast store new token : 405, 433, 499, 501.
Fatal format file error : 1357.
fatal error : 75, 97, 354, 390, 519, 565, 570, 830,

837, 839, 1185.
fatal error stop : 80, 81, 86, 97, 1386.
fbyte : 599, 603, 606, 610.
featLen : 744.
featureNameP : 744.
Ferguson, Michael John: 2.
fetch : 765, 767, 781, 785, 793, 796, 799, 805.
fetch box : 454, 506, 540, 1031, 1133, 1164, 1301,

1350, 1631.
fetch effective tail : 1134, 1135, 1159.
fetch effective tail eTeX : 1134.
fewest demerits : 920, 922, 923.
fflush : 678.
fget : 599, 600, 603, 606, 610.
\fi primitive: 526.
fi code : 524, 526, 527, 529, 533, 535, 544, 545,

1478, 1501, 1588.
fi or else : 236, 329, 396, 399, 524, 526, 527,

529, 545, 1347.
fil : 489.
fil : 157, 174, 189, 203, 489, 690, 701, 707, 1255.
fil code : 1112, 1113, 1114.
fil glue : 187, 189, 1114.
fil neg code : 1112, 1114.
fil neg glue : 187, 189, 1114.
File ended while scanning... : 368.
File ended within \read : 521.
file name quote char : 548, 550, 596.
file name size : 11, 26, 554, 557, 558, 560.
file offset : 54, 55, 57, 58, 66, 572, 676, 1334, 1566.
file opened : 595, 596, 598.
file warning : 392, 1588.
fill : 157, 174, 189, 690, 701, 707, 1255.
fill code : 1112, 1113, 1114.
fill glue : 187, 189, 1108, 1114.
fill width : 1653, 1654, 1657.
filll : 157, 174, 203, 489, 690, 701, 707, 1255, 1509.
fin align : 821, 833, 848, 1185.
fin col : 821, 839, 1185.
fin mlist : 1228, 1238, 1240, 1245, 1248.
fin row : 821, 847, 1185.
fin rule : 655, 660, 664, 667, 669, 673.
final cleanup : 1386, 1387, 1389, 1636.
final end : 6, 35, 361, 1386, 1391.
final hyphen demerits : 262, 907.
\finalhyphendemerits primitive: 264.
final hyphen demerits code : 262, 263, 264.

682 PART 55: INDEX X ETEX §1679

final pass : 876, 902, 911, 921.
find effective tail : 458.
find effective tail eTeX : 458, 1134.
find font dimen : 459, 613, 1096, 1307.
find native font : 744.
find pic file : 1084, 1445.
find protchar left : 181, 877, 935.
find protchar right : 181, 877, 929.
find sa element : 449, 461, 1088, 1278, 1280,

1281, 1291, 1627, 1630, 1631, 1632, 1635,
1638, 1641, 1650.

fingers: 546.
finite shrink : 873, 874.
fire up : 1059, 1066, 1620, 1636, 1639.
fire up done : 1066, 1636, 1640.
fire up init : 1066, 1636, 1639.
firm up the line : 370, 392, 393, 573.
first : 30, 31, 35, 36, 37, 75, 87, 91, 92, 294,

358, 359, 361, 390, 392, 393, 408, 518, 566,
573, 1390, 1567, 1579.

first child : 1014, 1017, 1018, 1666, 1667.
first count : 54, 345, 346, 347.
first fit : 1007, 1011, 1020, 1668.
first indent : 895, 897, 937.
first mark : 416, 417, 1066, 1070, 1620, 1639.
\firstmark primitive: 418.
first mark code : 416, 418, 419, 1620.
\firstmarks primitive: 1620.
first math fontdimen : 744.
first p : 181, 877, 911.
first text char : 19.
first width : 895, 897, 898, 937.
firstMathValueRecord : 742.
fit class : 878, 884, 893, 894, 900, 901, 903, 907,

1658, 1659, 1661, 1662.
fitness : 867, 893, 907, 912.
fix date and time : 267, 1386, 1391.
fix language : 1088, 1439.
fix word : 576, 577, 582, 583, 606.
fixed acc : 729, 1219.
Fix2D : 1445.
flags : 621.
flattenedAccentBaseHeight : 742.
float : 113, 136, 212, 656, 663, 672, 749, 857, 1445.
float constant : 113, 212, 655, 663, 667, 1177, 1179.
float cost : 162, 214, 1062, 1154.
floating penalty : 162, 262, 1122, 1154.
\floatingpenalty primitive: 264.
floating penalty code : 262, 263, 264.
flush char : 42, 206, 221, 734, 737.
flush list : 145, 226, 354, 406, 430, 441, 849,

956, 1014, 1150, 1333, 1351, 1431, 1433,

1498, 1564, 1578.
flush math : 761, 824, 1249.
flush node list : 225, 228, 305, 656, 677, 740, 761,

774, 775, 786, 848, 864, 927, 931, 956, 957,
972, 1022, 1031, 1046, 1053, 1077, 1080, 1088,
1132, 1134, 1159, 1174, 1175, 1260, 1389, 1420,
1438, 1538, 1546, 1549, 1554, 1649.

flush str : 1410.
flush string : 44, 294, 506, 572, 744, 1314, 1333,

1382, 1410, 1564.
flushable : 506, 1410.
flushable string : 1311, 1314.
fm : 1133, 1134, 1159.
fmem ptr : 459, 584, 587, 601, 604, 605, 611, 613,

614, 615, 744, 1374, 1375, 1377, 1388.
fmt file : 559, 1359, 1360, 1362, 1381, 1382,

1383, 1391.
fnt : 505, 1460, 1461.
fnt def1 : 621, 622, 638.
fnt def2 : 621.
fnt def3 : 621.
fnt def4 : 621.
fnt num 0 : 621, 622, 659.
fnt1 : 621, 622, 659.
fnt2 : 621.
fnt3 : 621.
fnt4 : 621.
font : 156, 165, 166, 200, 202, 219, 232, 297, 583,

618, 658, 688, 694, 723, 752, 758, 767, 889, 890,
914, 915, 918, 919, 949, 950, 951, 956, 962, 965,
1088, 1092, 1167, 1201, 1534, 1544.

font metric files: 574.
font parameters: 742, 743.
Font x has only... : 614.
Font x=xx not loadable... : 596.
Font x=xx not loaded... : 602.
\font primitive: 295.
font area : 584, 587, 611, 638, 639, 744, 1314,

1376, 1377.
font base : 11, 12, 133, 156, 200, 202, 248, 258, 583,

586, 638, 659, 681, 744, 1314, 1374, 1375, 1388.
font bc : 584, 587, 611, 618, 744, 751, 765, 1090,

1376, 1377, 1454, 1481, 1580.
font bchar : 584, 587, 611, 950, 951, 969, 1086,

1088, 1376, 1377.
font biggest : 12.
\fontchardp primitive: 1479.
font char dp code : 1479, 1480, 1481.
\fontcharht primitive: 1479.
font char ht code : 1479, 1480, 1481.
\fontcharic primitive: 1479.
font char ic code : 1479, 1480, 1481.

§1679 X ETEX PART 55: INDEX 683

\fontcharwd primitive: 1479.
font char wd code : 1479, 1480, 1481.
font check : 584, 603, 638, 744, 1376, 1377.
font def length : 638.
\fontdimen primitive: 295.
font dsize : 507, 584, 587, 603, 638, 744, 1314,

1315, 1376, 1377.
font ec : 584, 587, 611, 618, 744, 751, 765, 1090,

1376, 1377, 1454, 1481, 1580.
font engine : 744.
font false bchar : 584, 587, 611, 1086, 1088,

1376, 1377.
font feature warning : 744.
font flags : 744.
font glue : 584, 587, 611, 613, 656, 744, 1088,

1096, 1376, 1377.
font id base : 248, 260, 282, 449, 583, 1311.
font id text : 201, 260, 282, 297, 614, 1311,

1376, 1416.
font in short display : 199, 200, 201, 219, 705,

912, 1393.
font index : 583, 584, 595, 960, 1086, 1265.
font info : 11, 459, 583, 584, 585, 587, 589, 592,

593, 595, 601, 604, 606, 608, 609, 610, 613, 615,
742, 743, 744, 756, 785, 796, 963, 1086, 1093,
1096, 1265, 1307, 1374, 1375, 1393.

font layout engine : 584, 744, 1454, 1461.
font letter space : 656, 744.
font mapping : 611, 658, 744, 1088.
font mapping warning : 744.
font max : 11, 133, 200, 202, 583, 586, 601,

744, 1375, 1388.
font mem size : 11, 583, 601, 615, 744, 1375, 1388.
font name : 507, 584, 587, 611, 616, 639, 744,

1314, 1315, 1376, 1377, 1457.
\fontname primitive: 503.
font name code : 503, 504, 506, 507.
font name str : 328, 505, 507, 1315.
font params : 584, 587, 611, 613, 614, 615, 744,

1249, 1376, 1377.
font ptr : 584, 587, 601, 611, 613, 681, 744, 1314,

1374, 1375, 1388.
font size : 507, 584, 587, 603, 638, 744, 1314,

1315, 1376, 1377.
font slant : 744.
font used : 584, 586, 659, 681, 744.
fontdimen : 742.
FONTx : 1311.
for accent : 217.
Forbidden control sequence... : 368.
force eof : 361, 391, 392, 412.
format area length : 555, 559.

format default length : 555, 557, 558, 559.
format ext length : 555, 558, 559.
format extension : 555, 564, 1382.
format ident : 35, 65, 571, 1353, 1354, 1355, 1380,

1381, 1382, 1391, 1451.
forward : 82, 244, 311, 370, 396, 443, 654, 734,

735, 763, 822, 848, 1455, 1492, 1505, 1563,
1592, 1597, 1621.

found : 15, 147, 150, 151, 286, 289, 371, 384, 386,
423, 426, 428, 482, 490, 508, 510, 512, 559,
643, 645, 648, 649, 650, 684, 749, 751, 763,
783, 793, 877, 899, 944, 977, 985, 988, 995,
1007, 1009, 1192, 1200, 1201, 1202, 1290, 1291,
1421, 1489, 1493, 1544, 1549, 1550, 1593, 1594,
1600, 1610, 1658, 1659.

found1 : 15, 944, 955, 1356, 1369, 1489, 1610, 1611.
found2 : 15, 944, 956, 1356, 1370, 1489.
four choices : 135.
four quarters : 135, 447, 583, 584, 589, 590, 595,

689, 725, 726, 749, 752, 755, 767, 781, 793, 960,
1086, 1177, 1356, 1357, 1564, 1567.

fract : 1609, 1610, 1657.
fraction : 114, 116.
fraction four : 114, 115, 120, 123, 124.
fraction half : 115, 120, 131.
fraction noad : 114, 725, 729, 732, 740, 776,

809, 1232, 1235.
fraction noad size : 725, 740, 809, 1235.
fraction one : 114, 115, 116, 117, 118, 128, 129.
fraction rule : 747, 748, 778, 791.
fractionDenomDisplayStyleGapMin : 742, 790.
fractionDenominatorDisplayStyleShiftDown : 742.
fractionDenominatorGapMin : 742, 790.
fractionDenominatorShiftDown : 742.
fractionNumDisplayStyleGapMin : 742, 790.
fractionNumeratorDisplayStyleShiftUp : 742.
fractionNumeratorGapMin : 742, 790.
fractionNumeratorShiftUp : 742.
fractionRuleThickness : 742.
free : 190, 192, 193, 194, 195, 196.
free avail : 143, 228, 230, 243, 434, 487, 506, 820,

969, 1090, 1280, 1342, 1493, 1515, 1568.
free native glyph info : 169, 1418.
free node : 152, 227, 228, 305, 531, 651, 697, 740,

744, 758, 764, 770, 781, 783, 793, 795, 797,
799, 800, 808, 820, 851, 908, 909, 913, 956,
964, 1031, 1073, 1075, 1076, 1088, 1091, 1154,
1164, 1240, 1241, 1255, 1389, 1418, 1532,
1535, 1538, 1540, 1549, 1556, 1567, 1568,
1600, 1632, 1636, 1652.

free ot assembly : 749, 781, 793.
freeze page specs : 1041, 1055, 1062.

684 PART 55: INDEX X ETEX §1679

frozen control sequence : 248, 285, 1269, 1368,
1372, 1373.

frozen cr : 248, 369, 828, 1186.
frozen dont expand : 248, 285, 401.
frozen end group : 248, 295, 1119.
frozen end template : 248, 409, 828.
frozen endv : 248, 409, 414, 828.
frozen fi : 248, 366, 526.
frozen null font : 248, 292, 293, 588.
frozen primitive : 248, 285, 402, 474.
frozen protection : 248, 1269, 1270.
frozen relax : 248, 295, 403, 413.
frozen right : 248, 1119, 1242.
Fuchs, David Raymond: 2, 619, 627.
full name : 744.
\futurelet primitive: 1273.
g: 47, 208, 595, 628, 689, 710, 749, 759, 781,

793, 1655.
g order : 655, 656, 663, 667, 672, 1509, 1533.
g sign : 655, 656, 663, 667, 672, 1509, 1533.
garbage : 187, 502, 505, 506, 1014, 1237, 1246,

1333.
\gdef primitive: 1262.
geq define : 309, 830, 1268.
geq word define : 309, 318, 1067, 1268.
geq word define1 : 1268.
get : 26, 29, 31, 33, 520, 573, 599, 1360.
get avail : 142, 144, 230, 231, 242, 355, 356, 367,

369, 401, 402, 405, 406, 487, 508, 517, 618,
752, 820, 831, 832, 842, 962, 965, 992, 1118,
1119, 1272, 1280, 1434, 1493, 1498, 1515,
1538, 1544, 1565, 1578.

get cp code : 460, 688.
get encoding mode and info : 1446, 1447.
get font char range : 1454.
get glyph bounds : 1458.
get input normalization state : 744.
get microinterval : 458, 1411.
get native char : 656, 947, 957, 1088, 1415,

1420, 1430.
get native char height depth : 1179.
get native char sidebearings : 1177.
get native glyph : 781, 799, 805.
get native glyph italic correction : 1167.
get native italic correction : 1167.
get native mathex param : 743.
get native mathsy param : 742.
get native usv : 946, 949.
get native word cp : 688.
get next : 80, 327, 362, 366, 370, 371, 387, 390,

394, 395, 396, 401, 414, 415, 421, 423, 513, 529,
536, 542, 683, 1088, 1092, 1099, 1180, 1577.

get node : 147, 153, 158, 161, 166, 167, 171, 175,
176, 177, 180, 183, 232, 530, 643, 688, 689, 710,
728, 730, 731, 744, 749, 759, 781, 799, 820,
846, 891, 892, 893, 912, 968, 1063, 1154, 1155,
1217, 1219, 1235, 1302, 1303, 1404, 1417, 1509,
1529, 1544, 1565, 1599, 1626, 1631, 1648.

get ot assembly ptr : 751, 783, 793.

get ot math accent pos : 781.

get ot math constant : 744, 780, 781, 789, 790,
793, 801, 802, 803.

get ot math ital corr : 793, 799.

get ot math kern : 804, 806, 807.

get ot math variant : 751, 783, 793.

get preamble token : 830, 831, 832.

get r token : 1269, 1272, 1275, 1278, 1279, 1311.

get sa ptr : 1630, 1636, 1642.

get strings started : 47, 51, 1386.

get token : 80, 82, 92, 394, 395, 400, 401, 402, 403,
426, 433, 476, 487, 506, 508, 509, 511, 512, 514,
518, 830, 1081, 1192, 1269, 1275, 1306, 1322,
1325, 1348, 1434, 1435, 1493, 1576, 1583.

get tracing fonts state : 744.

get x or protected : 833, 839, 1583.

get x token : 394, 396, 406, 414, 415, 436, 438,
440, 441, 477, 478, 479, 487, 500, 514, 541,
561, 828, 989, 1015, 1083, 1084, 1192, 1251,
1291, 1438, 1578, 1583.

get x token or active char : 541.

getcreationdate : 506.

getfiledump : 506.

getfilemoddate : 506.

getfilesize : 506.

getmd5sum : 506.

getnativechardp : 1481.

getnativecharht : 1481.

getnativecharic : 1481.

getnativecharwd : 1481.

give err help : 82, 93, 94, 1338.

global : 1268, 1272, 1295, 1650.

global definitions: 247, 309, 313, 1651.

\global primitive: 1262.

global box flag : 1125, 1131, 1295, 1491.

global defs : 262, 830, 1268, 1272.

\globaldefs primitive: 264.

global defs code : 262, 263, 264.

global prev p : 181, 877, 911.

glue base : 246, 248, 250, 252, 253, 254, 255,
278, 830.

glue break : 925, 929.

glue error : 1601.

\glueexpr primitive: 1589.

§1679 X ETEX PART 55: INDEX 685

glue node : 173, 176, 177, 201, 209, 228, 232, 458,
507, 656, 660, 669, 691, 711, 749, 773, 775,
805, 809, 864, 865, 877, 885, 904, 910, 914,
927, 929, 945, 952, 956, 957, 1022, 1026, 1027,
1042, 1050, 1051, 1054, 1088, 1160, 1161, 1162,
1201, 1256, 1537, 1544, 1557.

glue offset : 157, 184, 212.
glue ord : 174, 481, 655, 667, 685, 689, 710,

839, 1533.
glue order : 157, 158, 184, 211, 212, 655, 667, 699,

700, 706, 714, 715, 718, 749, 817, 844, 849,
855, 857, 858, 859, 1202, 1533, 1551.

glue par : 250, 814.
glue pars : 250.
glue ptr : 173, 176, 177, 201, 215, 216, 228, 232,

458, 656, 663, 672, 698, 713, 721, 749, 775,
834, 841, 843, 850, 851, 857, 864, 877, 886,
916, 929, 1023, 1030, 1050, 1055, 1058, 1202,
1509, 1544, 1557, 1654, 1664.

glue ratio : 113, 132, 135, 157, 212.
glue ref : 236, 254, 305, 830, 1282, 1290.
glue ref count : 174, 175, 176, 177, 178, 189, 227,

229, 254, 814, 1097, 1114.
glue set : 157, 158, 184, 212, 656, 663, 672, 699,

700, 706, 714, 715, 718, 749, 855, 857, 858,
859, 1202, 1509, 1551.

glue shrink : 184, 211, 844, 847, 849, 858, 859.
\glueshrink primitive: 1612.
glue shrink code : 1612, 1613, 1615.
\glueshrinkorder primitive: 1612.
glue shrink order code : 1612, 1613, 1614.
glue sign : 157, 158, 184, 211, 212, 655, 667, 699,

700, 706, 714, 715, 718, 749, 817, 844, 849,
855, 857, 858, 859, 1202, 1533, 1551.

glue spec size : 174, 175, 187, 189, 227, 759, 1509.
glue stretch : 184, 211, 844, 847, 849, 858, 859.
\gluestretch primitive: 1612.
glue stretch code : 1612, 1613, 1615.
\gluestretchorder primitive: 1612.
glue stretch order code : 1612, 1613, 1614.
glue temp : 655, 663, 667, 672, 1533.
\gluetomu primitive: 1616.
glue to mu code : 1616, 1617, 1619.
glue val : 444, 445, 447, 450, 451, 458, 461, 463,

464, 486, 496, 500, 830, 1114, 1282, 1290, 1291,
1292, 1294, 1589, 1590, 1591, 1593, 1596, 1598,
1602, 1607, 1626, 1634, 1643.

glyph code : 1398, 1399, 1401, 1403, 1444.
glyph count : 169.
glyph node : 169, 656, 749, 781, 799, 889, 890, 918,

919, 1167, 1175, 1416, 1417, 1418, 1420, 1421,
1422, 1426, 1430, 1444, 1536.

glyph node size : 169, 749, 781, 783, 793, 799,
1417, 1418, 1444.

goal height : 1040, 1041.
goto: 35, 85.
gr : 132, 135, 136, 157.
gr font get named : 1454.
gr font get named 1 : 1454.
gr print font name : 1461.
graphite warning : 744.
group code : 299, 301, 304, 684, 1190, 1489.
group trace : 304, 312, 1472.
group warning : 312, 1585.
grp stack : 312, 358, 361, 392, 1584, 1585, 1588.
gsa def : 1650, 1651.
gsa w def : 1650, 1651.
gubed: 7.
Guibas, Leonidas Ioannis: 2.
gzFile : 135.
g1 : 1252, 1257.
g2 : 1252, 1257, 1259.
h: 230, 286, 289, 689, 710, 781, 983, 988, 998,

1002, 1007, 1020, 1024, 1031, 1048, 1140, 1145,
1177, 1431, 1544, 1610.

h offset : 273, 653, 679, 1428.
\hoffset primitive: 274.
h offset code : 273, 274.
ha : 940, 943, 945, 946, 947, 949, 953, 956, 957, 966.
half : 104, 749, 779, 780, 781, 789, 790, 793,

794, 1256.
half buf : 630, 631, 632, 634, 635.
half error line : 11, 14, 341, 345, 346, 347.
halfp : 115, 120, 124, 129.
halfword : 112, 132, 135, 137, 152, 294, 307, 309,

310, 311, 327, 328, 330, 363, 371, 396, 423,
447, 499, 508, 517, 584, 595, 612, 723, 839,
848, 869, 877, 878, 881, 895, 920, 925, 940,
954, 960, 961, 1031, 1086, 1133, 1155, 1265,
1297, 1320, 1342, 1431, 1466, 1493, 1533, 1549,
1625, 1630, 1633, 1650, 1651.

halign : 234, 295, 296, 1148, 1184.
\halign primitive: 295.
handle right brace : 1121, 1122.
hang after : 262, 266, 895, 897, 1124, 1203.
\hangafter primitive: 264.
hang after code : 262, 263, 264, 1124.
hang indent : 273, 895, 896, 897, 1124, 1203.
\hangindent primitive: 274.
hang indent code : 273, 274, 1124.
hanging indentation: 895.
hash : 260, 282, 284, 286, 287, 289, 1372, 1373.
hash base : 246, 248, 282, 284, 286, 292, 293, 402,

403, 536, 1099, 1311, 1368, 1372, 1373.

686 PART 55: INDEX X ETEX §1679

hash brace : 508, 511.
hash is full : 282, 287.
hash prime : 12, 14, 286, 288, 1361, 1362.
hash size : 12, 14, 248, 287, 288, 1388.
hash used : 282, 285, 287, 1372, 1373.
hb : 940, 950, 951, 953, 956.
hbadness : 262, 702, 708, 709.
\hbadness primitive: 264.
hbadness code : 262, 263, 264.
\hbox primitive: 1125.
hbox group : 299, 304, 1137, 1139, 1471, 1489.
hc : 940, 942, 946, 949, 950, 951, 953, 954, 973,

974, 977, 984, 985, 988, 991, 993, 1014, 1016,
1017, 1019, 1669.

hchar : 959, 960, 962, 963.
hd : 689, 694, 749, 751, 752, 755.
head : 238, 239, 241, 242, 243, 458, 761, 824, 844,

847, 853, 860, 862, 864, 1080, 1088, 1108,
1134, 1140, 1145, 1150, 1154, 1159, 1167,
1173, 1175, 1199, 1213, 1222, 1230, 1235,
1238, 1239, 1241, 1245.

head field : 238, 239, 244.
head for vmode : 1148, 1149.
header : 577.
Hedrick, Charles Locke: 3.
height : 157, 158, 160, 161, 162, 169, 170, 210, 213,

214, 498, 589, 660, 662, 664, 667, 669, 670, 673,
675, 678, 679, 689, 693, 698, 712, 714, 721, 747,
749, 752, 754, 756, 770, 773, 778, 779, 780, 781,
782, 783, 786, 789, 790, 791, 793, 794, 795, 800,
801, 803, 816, 817, 844, 849, 852, 854, 855, 857,
858, 859, 877, 1023, 1027, 1035, 1040, 1055,
1056, 1062, 1063, 1064, 1075, 1141, 1154, 1419,
1420, 1424, 1425, 1426, 1428, 1445, 1556.

height : 498.
height base : 585, 587, 589, 601, 606, 744, 1376,

1377.
height depth : 589, 694, 751, 752, 755, 1179, 1481.
height index : 578, 589.
height offset : 157, 450, 451, 817, 1301.
height plus depth : 755, 757.
held over for next output : 1040.
help line : 83, 93, 94, 366, 1160, 1266, 1267.
help ptr : 83, 84, 93, 94.
help0 : 83, 1306, 1347.
help1 : 83, 97, 99, 318, 442, 462, 489, 506, 521,

535, 538, 545, 1014, 1015, 1016, 1017, 1120,
1134, 1153, 1175, 1186, 1189, 1213, 1231, 1246,
1266, 1267, 1286, 1291, 1297, 1298, 1312, 1337,
1358, 1466, 1576, 1595.

help2 : 76, 83, 92, 93, 98, 99, 125, 318, 376, 407,
447, 448, 467, 468, 469, 470, 471, 476, 479, 495,

506, 510, 511, 612, 614, 679, 990, 991, 1032,
1069, 1081, 1101, 1122, 1134, 1136, 1149, 1160,
1174, 1183, 1220, 1251, 1261, 1279, 1290, 1295,
1313, 1435, 1444, 1445, 1446, 1506, 1593, 1622.

help3 : 76, 83, 102, 366, 430, 449, 480, 514, 824,
831, 832, 840, 1047, 1063, 1078, 1082, 1132,
1138, 1164, 1181, 1237, 1249, 1347.

help4 : 83, 93, 368, 432, 437, 452, 491, 602, 766,
1030, 1058, 1104, 1337.

help5 : 83, 404, 596, 874, 1118, 1123, 1182,
1269, 1347.

help6 : 83, 429, 494, 1182, 1215.
Here is how much... : 1388.
hex dig : 1630.
hex dig1 : 1630.
hex dig2 : 1630.
hex dig3 : 1630.
hex dig4 : 1630, 1632, 1633.
hex to cur chr : 382.
hex token : 472, 478.
hf : 940, 947, 949, 950, 951, 956, 957, 962, 963,

964, 965, 969, 970.
\hfil primitive: 1112.
\hfilneg primitive: 1112.
\hfill primitive: 1112.
hfuzz : 273, 708.
\hfuzz primitive: 274.
hfuzz code : 273, 274.
hh : 132, 135, 136, 140, 155, 170, 208, 239, 245,

247, 283, 298, 728, 786, 1217, 1219, 1235,
1240, 1359, 1360, 1628.

hi : 134, 258, 1286, 1565.
hi mem min : 138, 140, 142, 147, 148, 156, 189,

190, 192, 193, 196, 197, 202, 323, 677, 1365,
1366, 1388.

hi mem stat min : 187, 189, 1366.
hi mem stat usage : 187, 189.
history : 80, 81, 86, 97, 99, 271, 1386, 1389,

1585, 1587, 1588.
hlist node : 157, 158, 159, 160, 172, 184, 201,

209, 210, 228, 232, 506, 540, 652, 654, 655,
660, 669, 683, 689, 691, 711, 723, 749, 855,
858, 862, 877, 889, 890, 914, 918, 919, 1022,
1027, 1047, 1054, 1128, 1134, 1141, 1164, 1201,
1257, 1514, 1535, 1544.

hlist out : 628, 651, 652, 654, 655, 658, 661, 666,
667, 670, 675, 676, 678, 735, 1436, 1509, 1537.

hlist stack : 179, 181, 877.
hlist stack level : 181, 877.
hlp1 : 83.
hlp2 : 83.
hlp3 : 83.

§1679 X ETEX PART 55: INDEX 687

hlp4 : 83.
hlp5 : 83.
hlp6 : 83.
hmode : 237, 244, 450, 536, 834, 835, 844, 847,

1084, 1088, 1099, 1100, 1102, 1110, 1111, 1125,
1127, 1130, 1133, 1137, 1140, 1145, 1146, 1147,
1148, 1150, 1151, 1163, 1164, 1166, 1170, 1171,
1173, 1176, 1184, 1191, 1254, 1297, 1440, 1489.

hmove : 234, 1102, 1125, 1126, 1127, 1491.
hn : 940, 946, 950, 951, 952, 955, 957, 966, 967,

969, 970, 971, 973, 977, 984, 985.
ho : 134, 261, 447, 448, 1205, 1208, 1567, 1568.
hold head : 187, 336, 827, 831, 832, 842, 856, 959,

960, 967, 968, 969, 970, 971, 1068, 1071.
holding inserts : 262, 1068.
\holdinginserts primitive: 264.
holding inserts code : 262, 263, 264.
horiz : 749.
hpack : 187, 262, 683, 684, 685, 686, 689, 703, 752,

758, 763, 770, 780, 792, 798, 800, 844, 847,
852, 854, 937, 1116, 1140, 1179, 1248, 1253,
1255, 1258, 1515, 1547, 1557.

hrule : 234, 295, 296, 498, 1100, 1110, 1138,
1148, 1149.

\hrule primitive: 295.
hsize : 273, 895, 896, 897, 1108, 1203.
\hsize primitive: 274.
hsize code : 273, 274.
hskip : 234, 1111, 1112, 1113, 1132, 1144.
\hskip primitive: 1112.
\hss primitive: 1112.
\ht primitive: 450.
htField : 1445.
hu : 940, 942, 946, 950, 951, 954, 956, 959, 961,

962, 964, 965, 966, 969, 970.
Huge page... : 679.
hyf : 953, 955, 957, 959, 962, 963, 967, 968, 973,

974, 977, 978, 986, 1014, 1015, 1016, 1017, 1019.
hyf bchar : 940, 946, 950, 951, 956.
hyf char : 940, 949, 957, 967, 969.
hyf distance : 974, 975, 976, 978, 997, 998, 999,

1378, 1379.
hyf next : 974, 975, 978, 997, 998, 999, 1378, 1379.
hyf node : 966, 969.
hyf num : 974, 975, 978, 997, 998, 999, 1378, 1379.
hyph codes : 1665, 1669.
hyph count : 980, 982, 994, 1378, 1379, 1388.
hyph data : 235, 1264, 1304, 1305, 1306.
hyph index : 988, 1667, 1669.
hyph list : 980, 982, 983, 986, 987, 988, 994,

995, 1378, 1379.
hyph pointer : 979, 980, 981, 983, 988.

hyph root : 1006, 1012, 1020, 1665, 1668.
hyph size : 12, 979, 982, 984, 987, 993, 994, 1361,

1362, 1378, 1379, 1388.
hyph start : 1378, 1379, 1668, 1669.
hyph word : 980, 982, 983, 985, 988, 994, 995,

1378, 1379.
hyphen char : 179, 460, 584, 587, 611, 744, 939,

949, 1088, 1089, 1171, 1307, 1376, 1377.
\hyphenchar primitive: 1308.
hyphen passed : 957, 959, 960, 963, 967, 968.
hyphen penalty : 167, 262, 917.
\hyphenpenalty primitive: 264.
hyphen penalty code : 262, 263, 264.
hyphenatable length limit : 12, 105, 940, 944, 953,

954, 966, 988, 1014.
hyphenate : 943, 944.
hyphenated : 867, 868, 877, 894, 907, 917, 921.
Hyphenation trie... : 1378.
\hyphenation primitive: 1304.
h1 : 793.
h2 : 793.
i: 19, 44, 129, 345, 447, 505, 623, 689, 744, 781,

793, 954, 1177, 1403, 1415, 1489, 1585, 1587,
1588, 1626, 1630, 1632, 1636, 1648.

I can’t find file x : 565.
I can’t find PLAIN... : 559.
I can’t go on... : 99.
I can’t read TEX.POOL : 51.
I can’t write on file x : 565.
id byte : 623, 653, 680.
id lookup : 286, 294, 384, 386, 408, 1579.
ident val : 444, 449, 500, 501.
\ifcase primitive: 522.
if case code : 522, 523, 536, 1576.
if cat code : 522, 523, 536.
\ifcat primitive: 522.
\if primitive: 522.
if char code : 522, 536, 541.
if code : 524, 530, 545.
if cs code : 1573, 1575, 1578.
\ifcsname primitive: 1573.
if cur ptr is null then return or goto : 1630.
if def code : 1573, 1575, 1577.
\ifdefined primitive: 1573.
\ifdim primitive: 522.
if dim code : 522, 523, 536.
\ifeof primitive: 522.
if eof code : 522, 523, 536.
\iffalse primitive: 522.
if false code : 522, 523, 536.
\iffontchar primitive: 1573.
if font char code : 1573, 1575, 1580.

688 PART 55: INDEX X ETEX §1679

\ifhbox primitive: 522.
if hbox code : 522, 523, 536, 540.
\ifhmode primitive: 522.
if hmode code : 522, 523, 536.
\ifincsname primitive: 1573.
if in csname code : 1573, 1575, 1580.
\ifinner primitive: 522.
if inner code : 522, 523, 536.
\ifnum primitive: 522.
if int code : 522, 523, 536, 538.
if limit : 524, 525, 530, 531, 532, 533, 545, 1478,

1501, 1588.
if line : 329, 524, 525, 530, 531, 1389, 1501,

1587, 1588.
if line field : 524, 530, 531, 1389, 1501, 1588.
\ifmmode primitive: 522.
if mmode code : 522, 523, 536.
if node size : 524, 530, 531, 1389.
\ifodd primitive: 522.
if odd code : 522, 523, 536.
\ifprimitive primitive: 522.
if primitive code : 522, 523, 536.
if stack : 358, 361, 392, 531, 1584, 1587, 1588.
if test : 236, 329, 366, 396, 399, 522, 523, 529, 533,

538, 1389, 1501, 1573, 1576, 1587, 1588.
\iftrue primitive: 522.
if true code : 522, 523, 536.
\ifvbox primitive: 522.
if vbox code : 522, 523, 536.
\ifvmode primitive: 522.
if vmode code : 522, 523, 536.
\ifvoid primitive: 522.
if void code : 522, 523, 536, 540.
if warning : 531, 1587.
\ifx primitive: 522.
ifx code : 522, 523, 536.
ignore : 233, 258, 362, 375, 506.
ignore depth : 238, 241, 245, 721, 835, 1079, 1110,

1137, 1153, 1221.
ignore spaces : 234, 285, 295, 296, 402, 447, 1099.
\ignorespaces primitive: 295.
Illegal magnification... : 318, 1312.
Illegal math \disc... : 1174.
Illegal parameter number... : 514.
Illegal unit of measure : 489, 491, 494.
illegal Ucharcat catcode : 506.
\immediate primitive: 1398.
immediate code : 1398, 1401, 1403.
IMPOSSIBLE : 292.
Improper \beginL : 1513.
Improper \beginR : 1513.
Improper \endL : 1513.

Improper \endR : 1513.
Improper \halign... : 824.
Improper \hyphenation... : 990.
Improper \prevdepth : 452.
Improper \setbox : 1295.
Improper \spacefactor : 452.
Improper ‘at’ size... : 1313.
Improper alphabetic constant : 476.
Improper discretionary list : 1175.
in : 493.
in open : 312, 334, 343, 358, 359, 361, 392, 531,

1446, 1585, 1587, 1588.
in state record : 330, 331.
in stream : 234, 1326, 1327, 1328.
inaccessible : 1270.
Incompatible glue units : 442.
Incompatible list... : 1164.
Incompatible magnification : 318.
incompleat noad : 238, 239, 761, 824, 1190, 1232,

1235, 1236, 1238, 1239.
Incomplete \if... : 366.
incr : 16, 31, 37, 42, 43, 44, 45, 46, 53, 58, 60, 63,

69, 71, 74, 75, 86, 94, 102, 117, 142, 144, 176,
177, 195, 198, 208, 229, 242, 286, 287, 304, 306,
310, 324, 329, 341, 342, 351, 355, 356, 358, 373,
377, 382, 384, 385, 386, 387, 390, 392, 408, 426,
429, 431, 433, 434, 437, 441, 476, 487, 489, 499,
510, 511, 512, 529, 552, 554, 559, 566, 572, 615,
634, 639, 655, 667, 678, 680, 684, 744, 757, 783,
793, 846, 893, 925, 946, 949, 950, 951, 964, 965,
968, 969, 977, 984, 985, 991, 993, 994, 995, 998,
1008, 1010, 1016, 1017, 1018, 1020, 1040, 1076,
1079, 1088, 1089, 1093, 1123, 1171, 1173, 1175,
1181, 1196, 1207, 1226, 1228, 1369, 1370, 1372,
1391, 1410, 1415, 1420, 1451, 1478, 1489, 1493,
1501, 1521, 1527, 1539, 1550, 1565, 1566, 1572,
1579, 1593, 1608, 1611, 1630, 1632, 1648.

incr offset : 58.
\indent primitive: 1142.
indent in hmode : 1146, 1147.
indented : 1145.
index : 330, 332, 333, 334, 337, 343, 358, 359,

361, 392.
index field : 330, 332, 1185, 1586.
index node size : 1626, 1632, 1636.
inf : 481, 482, 488.
inf bad : 112, 182, 899, 900, 901, 904, 911, 1028,

1059, 1071, 1658.
inf penalty : 182, 809, 815, 864, 877, 879, 1028,

1059, 1067, 1257, 1259.
Infinite glue shrinkage... : 874, 1030, 1058,

1063.

§1679 X ETEX PART 55: INDEX 689

infinity : 479, 1601, 1603, 1609.
info : 140, 146, 148, 162, 163, 179, 189, 197, 226,

259, 305, 321, 323, 355, 356, 367, 369, 387, 388,
401, 402, 405, 408, 423, 425, 426, 427, 428, 431,
434, 457, 487, 501, 513, 543, 641, 644, 645, 646,
647, 648, 649, 650, 651, 723, 731, 734, 735, 740,
763, 777, 778, 779, 780, 781, 786, 793, 798, 805,
816, 817, 820, 827, 831, 832, 838, 841, 842, 845,
846, 849, 851, 869, 895, 896, 979, 986, 992,
1035, 1119, 1130, 1147, 1203, 1205, 1222, 1235,
1239, 1240, 1245, 1272, 1280, 1302, 1303, 1343,
1349, 1366, 1393, 1395, 1434, 1484, 1515, 1517,
1518, 1519, 1521, 1522, 1527, 1528, 1533, 1539,
1542, 1548, 1550, 1561, 1565, 1567, 1568, 1579,
1583, 1626, 1630, 1631, 1635, 1636.

init: 8, 47, 50, 153, 294, 939, 988, 996, 997,
1001, 1004, 1306, 1356, 1379, 1386, 1389,
1390, 1451, 1642.

init align : 821, 822, 1184.
init col : 821, 833, 836, 839.
init cur lang : 864, 939, 940.
init l hyf : 864, 939, 940.
init lft : 953, 956, 959, 962.
init lig : 953, 956, 959, 962.
init list : 953, 956, 959, 962.
init math : 1191, 1192, 1515.
init pool ptr : 39, 42, 1364, 1386, 1388.
init prim : 1386, 1390.
init r hyf : 864, 939, 940.
init randoms : 129, 1391, 1413.
init row : 821, 833, 834.
init span : 821, 834, 835, 839.
init start time : 1412.
init str ptr : 39, 43, 552, 1364, 1386, 1388.
init terminal : 37, 361.
init trie : 939, 1020, 1378.
INITEX : 8, 11, 12, 47, 50, 138, 1353, 1385,

1636, 1642.
initialize : 4, 1386, 1391.
inner loop: 31, 116, 117, 120, 134, 142, 143, 144,

145, 147, 149, 150, 152, 228, 354, 355, 371, 372,
373, 387, 395, 414, 433, 441, 589, 633, 647, 658,
691, 694, 695, 880, 883, 899, 900, 915, 1084,
1088, 1089, 1090, 1093, 1095.

inner noad : 724, 725, 732, 738, 740, 776, 809,
812, 1210, 1211, 1245.

input : 236, 396, 399, 410, 411, 1558.
\input primitive: 410.
input file : 334, 1446.
\inputlineno primitive: 450.
input line no code : 450, 451, 458.
input ln : 30, 31, 37, 58, 75, 392, 520, 521, 573.

input ptr : 331, 341, 342, 351, 352, 360, 361, 390,
569, 1185, 1389, 1585, 1587.

input stack : 88, 89, 331, 341, 351, 352, 569, 1185,
1585, 1586, 1587.

ins disc : 1086, 1087, 1089.
ins error : 357, 366, 429, 1101, 1181, 1186, 1269.
ins list : 353, 369, 502, 505, 506, 1118, 1434.
ins node : 162, 172, 201, 209, 228, 232, 656, 686,

691, 773, 809, 877, 914, 945, 952, 1022, 1027,
1035, 1040, 1054, 1068, 1154.

ins node size : 162, 228, 232, 1076, 1154.
ins ptr : 162, 214, 228, 232, 1064, 1074, 1075, 1154.
ins the toks : 396, 399, 502.
insert : 234, 295, 296, 1151.
insert> : 91.
\insert primitive: 295.
insert dollar sign : 1099, 1101.
insert group : 299, 1122, 1153, 1154, 1471, 1489.
insert penalties : 453, 1036, 1044, 1059, 1062,

1064, 1068, 1076, 1080, 1296, 1300.
\insertpenalties primitive: 450.
insert relax : 412, 413, 545.
insert token : 298, 310, 312.
inserted : 337, 344, 353, 354, 357, 413, 1149.
inserting : 1035, 1063.
Insertions can only... : 1047.
inserts only : 1034, 1041, 1062.
int : 132, 135, 136, 162, 164, 182, 212, 239, 245,

262, 266, 268, 304, 308, 309, 447, 448, 524,
641, 744, 768, 817, 820, 867, 1291, 1302, 1359,
1360, 1362, 1370, 1452, 1599, 1631.

int base : 246, 256, 258, 262, 264, 265, 266, 268,
278, 279, 280, 298, 313, 318, 1067, 1124, 1193,
1199, 1369, 1452, 1467, 1511.

int error : 95, 318, 448, 467, 468, 469, 470, 471,
506, 1297, 1298, 1312, 1444, 1506, 1622.

int par : 262.
int pars : 262.
int val : 444, 445, 447, 448, 450, 451, 452, 453, 456,

457, 458, 460, 461, 462, 463, 467, 473, 474, 484,
496, 500, 1278, 1290, 1291, 1292, 1294, 1365,
1366, 1410, 1589, 1590, 1591, 1594, 1596, 1601,
1603, 1606, 1609, 1626, 1627, 1629, 1634, 1643.

integer : 3, 13, 19, 40, 44, 45, 47, 54, 59, 61, 63,
67, 69, 70, 71, 73, 86, 95, 98, 100, 104, 105,
106, 109, 110, 111, 112, 113, 114, 116, 118, 121,
123, 126, 128, 129, 130, 131, 132, 135, 139, 147,
169, 183, 188, 197, 198, 199, 200, 202, 203, 204,
207, 208, 224, 237, 238, 244, 251, 263, 272, 273,
282, 286, 289, 292, 294, 308, 309, 316, 322, 328,
329, 334, 338, 339, 341, 345, 396, 444, 447, 474,
482, 485, 505, 517, 524, 528, 529, 533, 553, 554,

690 PART 55: INDEX X ETEX §1679

558, 584, 585, 595, 613, 616, 628, 631, 636, 637,
638, 643, 651, 652, 655, 667, 676, 682, 684, 685,
688, 689, 703, 733, 736, 741, 742, 743, 744, 749,
752, 759, 760, 762, 767, 769, 781, 793, 796, 800,
812, 876, 877, 878, 881, 920, 925, 940, 944,
948, 966, 976, 1020, 1024, 1034, 1036, 1048,
1066, 1084, 1086, 1122, 1129, 1133, 1138, 1140,
1145, 1171, 1173, 1192, 1205, 1209, 1219, 1248,
1265, 1290, 1342, 1347, 1356, 1357, 1385, 1387,
1392, 1403, 1411, 1415, 1431, 1433, 1436, 1445,
1449, 1457, 1489, 1515, 1555, 1564, 1567, 1588,
1593, 1604, 1608, 1610, 1650, 1651.

inter char text : 337, 344, 1088.
inter char val : 444, 449, 1088, 1280, 1281, 1365,

1366, 1626, 1629.
\interlinepenalties primitive: 1675.
inter line penalties loc : 256, 1124, 1675, 1676.
inter line penalties ptr : 938, 1124, 1675.
inter line penalty : 262, 938.
\interlinepenalty primitive: 264.
inter line penalty code : 262, 263, 264.
interaction : 75, 76, 77, 78, 79, 86, 87, 88, 90, 94,

96, 97, 102, 390, 393, 519, 565, 1319, 1337,
1347, 1348, 1351, 1380, 1381, 1382, 1389, 1504.

\interactionmode primitive: 1502.
internal font number : 467, 583, 584, 585, 595,

612, 613, 616, 618, 638, 652, 688, 689, 744, 749,
752, 754, 755, 758, 767, 780, 781, 793, 800, 878,
910, 940, 1086, 1167, 1177, 1192, 1265, 1311.

interrupt : 100, 101, 102, 1085.
Interruption : 102.
interwoven alignment preambles... : 354,

830, 837, 839, 1185.
Invalid code : 506, 1286.
invalid char : 233, 258, 374.
invalid code : 22, 258.
is aat font : 584, 1454, 1460, 1461.
is active math char : 258, 448, 469, 1205, 1209.
is bottom acc : 729, 781, 783.
is char node : 156, 200, 209, 228, 231, 458, 507,

656, 658, 668, 688, 691, 711, 758, 763, 764, 800,
853, 864, 877, 885, 889, 890, 914, 915, 916, 918,
919, 927, 929, 945, 949, 950, 952, 956, 1088,
1090, 1094, 1134, 1159, 1164, 1167, 1175, 1201,
1256, 1420, 1517, 1534, 1544, 1549.

is empty : 146, 149, 194, 195.
is glyph node : 656, 688, 781, 793, 800, 806, 807.
is gr font : 584, 1454, 1460, 1461.
is hex : 382, 385.
is hyph : 1086, 1088.
is in csname : 397, 398, 406, 1578, 1580.
is native font : 460, 507, 584, 638, 752, 765, 781,

799, 1088, 1177, 1179, 1307, 1314, 1315, 1444,
1454, 1458, 1460, 1461, 1481, 1580.

is native word node : 656, 688, 943, 956, 1088,
1420.

is native word subtype : 169, 656, 889, 890, 918,
919, 949, 1167, 1175, 1420, 1421, 1422, 1536.

is new mathfont : 584, 742, 743, 780, 781, 789,
790, 793, 799, 801, 802, 803, 805, 1249.

is ot font : 584, 749, 751, 793, 1454.
is otgr font : 584, 1454.
is pdf : 1445.
is running : 160, 202, 662, 671, 854.
is unless : 533.
is valid pointer : 804, 805.
is var family : 258, 1205, 1209, 1219.
isOpenTypeMathFont : 584, 744.
issue message : 1330, 1333.
ital corr : 234, 295, 296, 1165, 1166.
italic correction: 578.
italic base : 585, 587, 589, 601, 606, 1376, 1377.
italic index : 578.
its all over : 1099, 1108, 1389.
i1 : 1410.
i2 : 1410.
j: 45, 46, 63, 73, 74, 129, 286, 289, 294, 345, 396,

505, 517, 554, 558, 559, 655, 676, 942, 954,
960, 988, 1020, 1192, 1265, 1356, 1357, 1403,
1433, 1436, 1466, 1489, 1552, 1555.

j random : 114, 128, 130, 131.
Japanese characters: 156, 621.
Jensen, Kathleen: 10.
jj : 129.
job aborted : 390.
job aborted, file error... : 565.
job name : 96, 506, 507, 562, 563, 564, 567, 569,

572, 676, 1311, 1382, 1389.
\jobname primitive: 503.
job name code : 503, 506, 507.
jump out : 85, 86, 88, 97.
just box : 862, 936, 937, 1202, 1545, 1551.
just copy : 1544, 1545, 1549.
just open : 515, 518, 1329.
just reverse : 1548, 1549.
j1 : 1410.
j2 : 1410.
k: 45, 46, 68, 69, 71, 73, 75, 106, 123, 128, 129,

188, 286, 289, 294, 371, 393, 441, 485, 499,
554, 558, 560, 565, 569, 595, 623, 633, 638,
643, 655, 676, 688, 689, 744, 748, 960, 983,
988, 1014, 1020, 1133, 1265, 1356, 1357, 1387,
1392, 1403, 1431, 1433, 1466, 1626.

kern : 234, 580, 1111, 1112, 1113.

§1679 X ETEX PART 55: INDEX 691

\kern primitive: 1112.
kern base : 585, 587, 592, 601, 608, 611, 1376, 1377.
kern base offset : 592, 601, 608.
kern break : 914.
kern flag : 580, 785, 797, 963, 1094.
kern node : 179, 180, 209, 228, 232, 458, 656, 660,

669, 691, 711, 764, 773, 775, 805, 809, 877, 885,
889, 890, 904, 914, 916, 918, 919, 927, 929, 945,
949, 950, 952, 1022, 1026, 1027, 1030, 1050,
1051, 1054, 1058, 1160, 1161, 1162, 1175, 1201,
1509, 1521, 1527, 1535, 1539, 1544, 1550.

kk : 447, 485, 487, 1454.
Knuth, Donald Ervin: 2, 90, 735, 861, 939, 979,

1051, 1208, 1434, 1489, 1510.
l: 59, 131, 286, 289, 294, 306, 311, 322, 329,

345, 529, 532, 569, 637, 651, 710, 744, 877,
878, 954, 998, 1007, 1014, 1192, 1248, 1290,
1347, 1356, 1392, 1439, 1489, 1533, 1549,
1564, 1588, 1593, 1636.

L code : 171, 201, 218, 914, 949, 952, 1527,
1528, 1547, 1548.

l hyf : 939, 940, 943, 952, 955, 957, 977, 1422, 1423.
language : 262, 988, 1088, 1439.
\language primitive: 264.
language code : 262, 263, 264.
language node : 1395, 1416, 1417, 1418, 1422,

1423, 1436, 1439, 1440.
large attempt : 749.
large char : 725, 733, 739, 749.
large char field : 725, 1214.
large fam : 725, 733, 739, 749.
large plane and fam field : 725, 1214.
last : 30, 31, 35, 36, 37, 75, 87, 91, 92, 361, 390,

393, 518, 559, 566, 1567.
last active : 867, 868, 880, 883, 892, 902, 908, 909,

911, 912, 913, 921, 922, 923.
last badness : 458, 685, 687, 689, 702, 706, 709,

710, 716, 718, 720.
last bop : 628, 629, 678, 680.
\lastbox primitive: 1125.
last box code : 1125, 1126, 1133, 1389, 1670,

1672, 1673.
last glue : 458, 1036, 1045, 1050, 1071, 1160, 1389.
last ins ptr : 1035, 1059, 1062, 1072, 1074.
last item : 234, 447, 450, 451, 1102, 1452, 1454,

1458, 1473, 1476, 1479, 1482, 1589, 1612, 1616.
last kern : 458, 1036, 1045, 1050.
\lastkern primitive: 450.
last leftmost char : 181, 688, 935.
last line fill : 864, 1653, 1654, 1664.
last line fit : 262, 1653, 1654, 1657.
\lastlinefit primitive: 1467.

last line fit code : 262, 1467, 1469.
last node type : 458, 1036, 1045, 1050.
\lastnodetype primitive: 1452.
last node type code : 450, 458, 1452, 1453.
last nonblank : 31.
last penalty : 458, 1036, 1045, 1050.
\lastpenalty primitive: 450.
last rightmost char : 181, 688, 929.
\lastskip primitive: 450.
last special line : 895, 896, 897, 898, 937.
last text char : 19.
lastMathConstant : 742, 744.
lastMathValueRecord : 742.
latespecial node : 1395, 1409, 1416, 1417, 1418,

1431, 1436.
lc code : 256, 258, 939, 949, 1016, 1665, 1667,

1668, 1669.
\lccode primitive: 1284.
lc code base : 256, 261, 1284, 1285, 1340, 1341,

1342.
lccode : 946.
leader box : 655, 664, 666, 667, 673, 675.
leader flag : 1125, 1127, 1132, 1138, 1491.
leader ht : 667, 673, 674, 675.
leader ptr : 173, 176, 177, 216, 228, 232, 664, 673,

698, 713, 864, 1132, 1544.
leader ship : 234, 1125, 1126, 1127, 1491.
leader wd : 655, 664, 665, 666.
leaders: 1437.
Leaders not followed by... : 1132.
\leaders primitive: 1125.
least cost : 1024, 1028, 1034.
least page cost : 1034, 1041, 1059, 1060.
\left primitive: 1242.
left brace : 233, 319, 324, 328, 377, 387, 437, 506,

508, 825, 1117, 1204, 1280.
left brace limit : 319, 355, 356, 426, 428, 433, 511.
left brace token : 319, 437, 1181, 1280, 1434.
left delimiter : 725, 738, 739, 780, 792, 1217,

1235, 1236.
left edge : 655, 665, 667, 670, 671, 675, 1426,

1529, 1530, 1532.
left hyphen min : 262, 1145, 1254, 1439, 1440.
\lefthyphenmin primitive: 264.
left hyphen min code : 262, 263, 264.
\leftmarginkern primitive: 503.
left margin kern code : 503, 504, 506, 507.
left noad : 238, 729, 732, 738, 740, 768, 770, 771,

776, 808, 809, 810, 1239, 1242, 1243, 1245, 1489.
left pw : 688, 877, 935.
left right : 234, 1100, 1242, 1243, 1244, 1507.
left side : 179, 209, 460, 507, 688, 935, 1307.

692 PART 55: INDEX X ETEX §1679

left skip : 250, 875, 928, 935, 1551, 1654.
\leftskip primitive: 252.
left skip code : 250, 251, 252, 507, 935, 1551, 1557.
left to right : 652, 1516, 1524, 1541, 1546.
len : 655, 744, 1430.
length : 40, 44, 46, 169, 286, 289, 507, 572, 638,

639, 985, 995, 1315, 1334, 1448.
length of lines: 895.
\leqno primitive: 1195.
let : 235, 1264, 1273, 1274, 1275.
\let primitive: 1273.
letter : 233, 258, 292, 319, 321, 324, 328, 377, 384,

386, 989, 1015, 1083, 1084, 1088, 1092, 1144,
1178, 1205, 1208, 1214.

letter token : 319, 479.
level : 444, 447, 449, 452, 462, 496, 1591.
level boundary : 298, 300, 304, 312.
level one : 247, 254, 258, 280, 285, 294, 302, 307,

308, 309, 310, 311, 313, 828, 1358, 1389, 1432,
1475, 1631, 1651, 1652.

level zero : 247, 248, 302, 306, 310, 1647.
lf : 575, 595, 600, 601, 610, 611.
lft hit : 960, 961, 962, 964, 965, 1087, 1089, 1094.
lh : 132, 135, 136, 140, 170, 239, 245, 282, 283,

575, 576, 595, 600, 601, 603, 727, 1004, 1628.
Liang, Franklin Mark: 2, 973.
libc free : 169, 1445.
lig char : 165, 166, 219, 232, 688, 692, 889, 890,

914, 918, 919, 951, 956, 1167, 1538, 1544.
lig kern : 579, 580, 584.
lig kern base : 585, 587, 592, 601, 606, 608, 611,

1376, 1377.
lig kern command : 576, 580.
lig kern restart : 592, 785, 796, 963, 1093.
lig kern restart end : 592.
lig kern start : 592, 785, 796, 963, 1093.
lig ptr : 165, 166, 201, 219, 228, 232, 949, 951, 956,

961, 964, 965, 1091, 1094, 1538.
lig stack : 961, 962, 964, 965, 1086, 1088, 1089,

1090, 1091, 1092, 1094.
lig tag : 579, 604, 785, 796, 963, 1093.
lig trick : 187, 658, 692.
ligature node : 165, 166, 172, 201, 209, 228, 232,

660, 688, 691, 796, 889, 890, 914, 918, 919, 945,
949, 950, 952, 956, 1167, 1175, 1201, 1538, 1544.

ligature present : 960, 961, 962, 964, 965, 1087,
1089, 1091, 1094.

limit : 330, 332, 333, 337, 348, 358, 360, 361, 373,
378, 380, 381, 382, 384, 385, 386, 390, 392, 393,
518, 521, 572, 573, 1391, 1566, 1572.

Limit controls must follow... : 1213.
limit field : 35, 91, 330, 332, 569.

limit switch : 234, 1100, 1210, 1211, 1212.
limits : 724, 738, 776, 793, 1210, 1211.
\limits primitive: 1210.
line : 88, 242, 304, 329, 334, 343, 358, 359, 361, 392,

458, 529, 530, 573, 705, 717, 744, 1079, 1566.
line break : 181, 187, 862, 863, 876, 887, 896,

910, 911, 914, 924, 943, 988, 1021, 1024,
1036, 1150, 1199.

line diff : 920, 923.
line number : 867, 868, 881, 883, 893, 894, 898,

912, 920, 922, 923.
line penalty : 262, 907.
\linepenalty primitive: 264.
line penalty code : 262, 263, 264.
line skip : 250, 273.
\lineskip primitive: 252.
line skip code : 173, 176, 250, 251, 252, 721.
line skip limit : 273, 721.
\lineskiplimit primitive: 274.
line skip limit code : 273, 274.
line stack : 334, 343, 358, 359.
line width : 878, 898, 899.
linebreak next : 744.
linebreak start : 744.
link : 140, 142, 143, 144, 145, 146, 147, 148, 152,

155, 156, 157, 162, 163, 164, 165, 174, 189, 193,
197, 198, 200, 201, 202, 208, 228, 230, 238, 240,
244, 249, 259, 322, 325, 329, 336, 349, 353, 356,
369, 387, 388, 396, 401, 402, 405, 408, 423, 424,
425, 428, 430, 431, 434, 441, 458, 487, 499, 501,
502, 505, 506, 507, 513, 524, 530, 531, 532, 543,
641, 643, 645, 647, 651, 656, 657, 658, 660, 668,
689, 691, 692, 694, 697, 708, 711, 721, 723, 731,
744, 748, 749, 754, 758, 761, 762, 763, 764, 770,
774, 775, 778, 780, 781, 782, 791, 792, 795, 796,
797, 798, 799, 800, 803, 805, 808, 809, 814, 815,
818, 820, 826, 827, 831, 832, 834, 838, 839, 841,
842, 843, 844, 845, 846, 847, 849, 850, 851, 852,
853, 854, 855, 856, 857, 860, 862, 864, 867, 869,
870, 877, 878, 885, 888, 891, 892, 893, 902, 905,
906, 908, 909, 910, 911, 912, 913, 914, 915, 917,
921, 922, 923, 925, 927, 928, 929, 930, 931,
932, 933, 934, 935, 938, 943, 945, 946, 947,
949, 950, 951, 952, 956, 957, 959, 960, 961,
962, 964, 965, 967, 968, 969, 970, 971, 972,
986, 992, 1014, 1022, 1023, 1024, 1027, 1033,
1034, 1035, 1040, 1042, 1045, 1048, 1052, 1053,
1054, 1055, 1059, 1062, 1063, 1068, 1071, 1072,
1073, 1074, 1075, 1076, 1077, 1080, 1088, 1089,
1090, 1091, 1094, 1095, 1097, 1118, 1119, 1130,
1134, 1140, 1145, 1154, 1155, 1164, 1173, 1174,
1175, 1177, 1179, 1200, 1209, 1222, 1235, 1238,

§1679 X ETEX PART 55: INDEX 693

1239, 1240, 1241, 1245, 1248, 1250, 1253, 1258,
1259, 1260, 1272, 1280, 1333, 1342, 1349, 1351,
1365, 1366, 1389, 1393, 1395, 1404, 1410, 1420,
1431, 1434, 1438, 1478, 1493, 1498, 1501, 1515,
1517, 1519, 1522, 1531, 1532, 1534, 1535, 1538,
1540, 1544, 1545, 1546, 1549, 1551, 1556, 1557,
1564, 1565, 1567, 1568, 1579, 1583, 1587, 1588,
1599, 1600, 1626, 1630, 1631, 1632, 1633, 1634,
1635, 1636, 1639, 1648, 1652, 1674.

list offset : 157, 655, 656, 689, 817, 1072, 1420.
list ptr : 157, 158, 210, 228, 232, 507, 655, 656,

661, 667, 670, 700, 705, 706, 710, 715, 718, 749,
752, 754, 758, 764, 781, 782, 783, 791, 793, 795,
855, 877, 1031, 1033, 1075, 1141, 1154, 1164,
1253, 1544, 1545, 1551, 1556, 1557.

list state record : 238, 239.
list tag : 579, 604, 605, 751, 784, 793.
ll : 286, 287, 1007, 1010.
llink : 146, 148, 149, 151, 152, 153, 167, 173, 189,

194, 820, 867, 869, 1366.
lo mem max : 138, 142, 147, 148, 189, 190, 192,

194, 195, 196, 197, 204, 677, 1365, 1366,
1377, 1388.

lo mem stat max : 187, 189, 461, 1275, 1291,
1366, 1643, 1645.

load fmt file : 1357, 1391.
load native font : 595, 744.
load picture : 1442, 1443, 1445.
load tfm font mapping : 611.
loaded font design size : 744.
loaded font flags : 744.
loaded font letter space : 744.
loaded font mapping : 744.
loc : 36, 37, 91, 330, 332, 333, 337, 342, 344, 348,

349, 353, 355, 356, 358, 360, 361, 373, 378,
380, 381, 382, 384, 386, 387, 388, 390, 392,
401, 402, 424, 518, 559, 572, 573, 1080, 1081,
1391, 1451, 1566, 1572.

loc field : 35, 36, 330, 332, 1185.
local base : 246, 250, 254, 256, 278.
location : 641, 643, 648, 649, 650, 651.
log file : 54, 56, 79, 569, 1387.
log name : 567, 569, 1387.
log only : 54, 57, 58, 66, 79, 102, 390, 569,

1382, 1433.
log opened : 96, 97, 562, 563, 569, 570, 1319,

1387, 1388.
Logarithm...replaced by 0 : 125.
\long primitive: 1262.
long call : 236, 305, 396, 421, 423, 426, 433, 1349.
long help seen : 1335, 1336, 1337.
long hex to cur chr : 382.

long outer call : 236, 305, 396, 421, 423, 1349.
long state : 369, 421, 425, 426, 429, 430, 433.
loop: 15, 16.
Loose \hbox... : 702.
Loose \vbox... : 716.
loose fit : 865, 882, 900, 1658.
looseness : 262, 896, 921, 923, 1124.
\looseness primitive: 264.
looseness code : 262, 263, 264, 1124.
lower : 371, 373.
\lower primitive: 1125.
\lowercase primitive: 1340.
lowerLimitBaselineDropMin : 742.
lowerLimitGapMin : 742.
\lpcode primitive: 1308.
lp code base : 179, 460, 1307, 1308, 1309.
lq : 628, 665, 674.
lr : 628, 665, 674.
LR box : 238, 239, 1199, 1260, 1553.
LR dir : 1527, 1539, 1548, 1550.
LR problems : 1515, 1516, 1521, 1522, 1523, 1527,

1528, 1533, 1539, 1541, 1546, 1550.
LR ptr : 925, 1515, 1516, 1517, 1518, 1519, 1521,

1522, 1527, 1528, 1533, 1539, 1541, 1546,
1548, 1550.

LR save : 238, 239, 925, 1150, 1542.
lsb : 1177, 1179.
lx : 655, 664, 665, 666, 667, 673, 674, 675.
m: 47, 69, 183, 237, 244, 322, 345, 423, 447,

474, 517, 533, 612, 689, 710, 749, 759, 760,
1133, 1159, 1248, 1347, 1392, 1411, 1489,
1533, 1549, 1564.

M code : 171.
m exp : 114.
m log : 114, 123, 125, 131.
mac param : 233, 321, 324, 328, 377, 509, 512,

514, 831, 832, 1099.
MacKay, Pierre: 1510.
macro : 337, 344, 349, 353, 354, 424.
macro call : 321, 396, 414, 416, 421, 422, 423, 425.
macro def : 508, 512.
mag : 262, 266, 318, 492, 621, 623, 624, 626,

653, 680.
\mag primitive: 264.
mag code : 262, 263, 264, 318.
mag set : 316, 317, 318.
magic offset : 812, 813, 814.
main control : 1083, 1084, 1086, 1094, 1095, 1106,

1108, 1109, 1110, 1111, 1180, 1188, 1262, 1344,
1386, 1391, 1398, 1402.

main f : 744, 1086, 1088, 1089, 1090, 1091, 1092,
1093, 1094.

694 PART 55: INDEX X ETEX §1679

main h : 1086, 1088.
main i : 1086, 1090, 1091, 1093, 1094.
main j : 1086, 1093, 1094.
main k : 1086, 1088, 1093, 1094, 1096.
main lig loop : 1084, 1088, 1091, 1092, 1093, 1094.
main loop : 1084.
main loop lookahead : 1084, 1088, 1090, 1091,

1092.
main loop move : 1084, 1088, 1090, 1094.
main loop move lig : 1084, 1088, 1090, 1091.
main loop wrapup : 1084, 1088, 1093, 1094.
main p : 1086, 1088, 1089, 1091, 1094, 1095,

1096, 1097, 1098.
main pp : 1086, 1088.
main ppp : 1086, 1088.
main s : 1086, 1088.
major tail : 966, 968, 971, 972.
make accent : 1176, 1177.
make box : 234, 1125, 1126, 1127, 1133, 1138.
make font def : 638.
make frac : 114, 116, 131.
make fraction : 114, 776, 777, 787, 1610.
make identity : 1445.
make left right : 809, 810.
make mark : 1151, 1155.
make math accent : 776, 781.
make name string : 560.
make op : 776, 793.
make ord : 776, 796.
make over : 776, 777.
make radical : 776, 777, 780.
make rotation : 1445.
make scale : 1445.
make scripts : 798, 800.
make string : 43, 52, 287, 505, 506, 552, 560, 744,

993, 1311, 1314, 1333, 1382, 1387, 1410, 1564.
make translation : 1445.
make under : 776, 778.
make utf16 name : 560.
make vcenter : 776, 779.
make xdv glyph array data : 1430.
map char to glyph : 467, 744, 751, 1088, 1454,

1580.
map glyph to index : 467, 1454.
mapped text : 744, 1088.
mappingNameLen : 744.
mappingNameP : 744.
margin char : 179.
margin kern node : 179, 209, 228, 232, 507, 660,

688, 691, 1164, 1201.
margin kern node size : 179, 228, 232, 688, 1164.
mark : 234, 295, 296, 1151, 1620.

\mark primitive: 295.
mark class : 163, 222, 1033, 1068, 1155, 1638, 1641.
mark class node size : 1631, 1636.
mark node : 163, 172, 201, 209, 228, 232, 656,

686, 691, 773, 809, 877, 914, 945, 952, 1022,
1027, 1033, 1054, 1068, 1155.

mark ptr : 163, 222, 228, 232, 1033, 1070, 1155,
1638, 1641.

mark text : 337, 344, 353, 420.
mark val : 1626, 1627, 1631, 1635, 1638, 1641.
\marks primitive: 1620.
marks code : 326, 416, 419, 420, 1620.
mastication: 371.
match : 233, 319, 321, 322, 324, 425, 426.
match chr : 322, 324, 423, 425, 434.
match token : 319, 425, 426, 427, 428, 511.
matching : 335, 336, 369, 425.
Math formula deleted... : 1249.
math ac : 1218, 1219.
math accent : 234, 295, 296, 1100, 1218.
\mathaccent primitive: 295.
\mathbin primitive: 1210.
math char : 723, 734, 763, 765, 767, 781, 785, 793,

796, 797, 798, 805, 1205, 1209, 1219.
\mathchar primitive: 295.
\mathchardef primitive: 1276.
math char def code : 1276, 1277, 1278.
math char field : 258, 448, 469, 1205, 1209,

1219, 1277.
math char num : 234, 295, 296, 1100, 1205, 1208.
math choice : 234, 295, 296, 1100, 1225.
\mathchoice primitive: 295.
math choice group : 299, 1226, 1227, 1228, 1471,

1489.
math class field : 258, 448, 1209, 1277.
\mathclose primitive: 1210.
math code : 256, 258, 262, 447, 448, 1205, 1208.
\mathcode primitive: 1284.
math code base : 256, 261, 447, 448, 1284, 1285,

1286, 1287.
math comp : 234, 1100, 1210, 1211, 1212.
math fam field : 448, 1205, 1209, 1219, 1277.
math font base : 256, 258, 260, 1284, 1285.
math font biggest : 12.
math fraction : 1234, 1235.
math given : 234, 447, 1100, 1205, 1208, 1276,

1277, 1278.
math glue : 759, 775, 814.
math group : 299, 1190, 1204, 1207, 1240, 1471,

1489.
\mathinner primitive: 1210.
math kern : 760, 773.

§1679 X ETEX PART 55: INDEX 695

math left group : 238, 299, 1119, 1122, 1123, 1204,
1245, 1471, 1489.

math left right : 1244, 1245.
math limit switch : 1212, 1213.
math node : 171, 172, 201, 209, 228, 232, 458, 660,

691, 865, 877, 885, 914, 927, 929, 949, 952,
1134, 1510, 1517, 1539, 1544, 1547, 1549.

\mathop primitive: 1210.
\mathopen primitive: 1210.
\mathord primitive: 1210.
\mathpunct primitive: 1210.
math quad : 742, 746, 1253.
math radical : 1216, 1217.
\mathrel primitive: 1210.
math shift : 233, 319, 324, 328, 377, 1144, 1191,

1192, 1247, 1251, 1260.
math shift group : 299, 1119, 1122, 1123, 1184,

1193, 1194, 1196, 1199, 1246, 1247, 1248,
1254, 1471, 1489.

math shift token : 319, 1101, 1119.
math spacing : 812, 813.
math style : 234, 1100, 1223, 1224, 1225.
math surround : 273, 1250.
\mathsurround primitive: 274.
math surround code : 273, 274.
math text char : 723, 796, 797, 798, 799.
math type : 723, 725, 729, 734, 740, 763, 765, 766,

777, 778, 780, 781, 785, 786, 793, 795, 796, 797,
798, 799, 800, 805, 807, 1130, 1147, 1205, 1209,
1219, 1222, 1230, 1235, 1239, 1240, 1245.

math x height : 742, 780, 801, 802, 803.
mathex : 743.
mathLeading : 742.
mathsy : 742.
max : 749.
max answer : 109, 1604, 1610.
max buf stack : 30, 31, 361, 408, 1388, 1567, 1579.
max char code : 233, 333, 371, 374, 1287.
max char val : 319, 323, 387, 395, 402, 408, 414,

415, 499, 1088, 1343, 1579.
max command : 235, 236, 237, 245, 388, 396, 400,

402, 414, 415, 513, 830, 1583.
max d : 769, 770, 773, 808, 809, 810.
max dead cycles : 262, 266, 1066.
\maxdeadcycles primitive: 264.
max dead cycles code : 262, 263, 264.
max depth : 273, 1034, 1041.
\maxdepth primitive: 274.
max depth code : 273, 274.
max dimen : 455, 495, 679, 710, 1064, 1071,

1199, 1200, 1202, 1546, 1547, 1548, 1601,
1603, 1609, 1657.

max group code : 299.
max h : 628, 629, 679, 680, 769, 770, 773, 808,

809, 810.
max halfword : 11, 14, 132, 133, 135, 146, 147, 148,

153, 154, 319, 320, 458, 868, 896, 898, 1036,
1045, 1050, 1071, 1160, 1303, 1377, 1379, 1389.

max hlist stack : 179, 181, 877.
max hyph char : 940, 941, 950, 951, 956, 970, 977,

1008, 1010, 1016, 1020, 1378, 1379.
max hyphenatable length : 12, 939, 943, 944, 946,

950, 951, 972, 991, 992, 1016.
max in open : 11, 14, 334, 358, 1470, 1584,

1585, 1587.
max in stack : 331, 351, 361, 1388.
max integer : 1410, 1411.
max internal : 235, 447, 474, 482, 490, 496.
max nest stack : 239, 241, 242, 1388.
max non prefixed command : 234, 1265, 1324.
max param stack : 338, 361, 424, 1388.
max print line : 11, 14, 54, 58, 76, 202, 572,

676, 1334, 1566.
max push : 628, 629, 655, 667, 680.
max quarterword : 11, 12, 132, 133, 135, 179, 304,

845, 846, 998, 1174, 1379.
max reg help line : 1622, 1623, 1624, 1625.
max reg num : 1622, 1623, 1624, 1625.
max save stack : 301, 302, 303, 1388.
max selector : 54, 272, 341, 500, 505, 569, 676,

1311, 1333, 1431, 1433, 1436, 1564.
max strings : 11, 38, 43, 133, 552, 560, 1364, 1388.
max v : 628, 629, 679, 680.
maxdimen : 114.
\meaning primitive: 503.
meaning code : 503, 504, 506, 507.
med mu skip : 250.
\medmuskip primitive: 252.
med mu skip code : 250, 251, 252, 814.
mem : 11, 12, 137, 138, 140, 146, 148, 153, 155,

156, 157, 162, 164, 169, 170, 174, 175, 182, 184,
187, 188, 189, 190, 192, 197, 208, 212, 229, 231,
232, 247, 250, 305, 321, 421, 454, 524, 641, 692,
722, 723, 725, 728, 729, 763, 768, 786, 797, 817,
818, 820, 845, 864, 866, 867, 870, 871, 880, 891,
892, 895, 896, 898, 908, 909, 937, 979, 1203,
1205, 1214, 1217, 1219, 1235, 1240, 1301, 1302,
1365, 1366, 1393, 1417, 1445, 1484, 1538, 1544,
1565, 1567, 1599, 1626, 1631, 1653.

mem bot : 11, 12, 14, 133, 138, 147, 148, 187, 189,
295, 445, 449, 461, 1275, 1280, 1281, 1291,
1361, 1362, 1365, 1366, 1643, 1644, 1645.

mem end : 138, 140, 142, 189, 190, 192, 193, 196,
197, 200, 202, 208, 323, 804, 1365, 1366, 1388.

696 PART 55: INDEX X ETEX §1679

mem max : 11, 12, 14, 132, 133, 138, 142, 146,
147, 190, 191.

mem min : 11, 12, 133, 138, 142, 147, 190, 191,
192, 194, 195, 196, 197, 200, 204, 208, 804,
1303, 1366, 1388.

mem top : 11, 12, 14, 133, 138, 187, 189, 1303,
1361, 1362, 1366.

memcpy : 169, 1445.
Memory usage... : 677.
memory word : 132, 135, 136, 138, 208, 238, 244,

247, 279, 298, 301, 305, 583, 584, 744, 848,
1359, 1417, 1445, 1627.

message : 234, 1330, 1331, 1332.
\message primitive: 1331.
METAFONT: 625.
microseconds : 682, 1391, 1411, 1412, 1414.
mid : 581.
mid line : 91, 333, 358, 374, 377, 382, 383, 384.
middle : 1507.
\middle primitive: 1507.
middle noad : 238, 729, 1245, 1246, 1507, 1508.
min : 749.
min halfword : 11, 132, 133, 134, 135, 137, 256,

1081, 1377, 1379, 1533, 1539, 1549, 1550.
min internal : 234, 447, 474, 482, 490, 496.
min o : 749.
min quarterword : 12, 132, 133, 134, 135, 156,

158, 162, 211, 247, 304, 584, 585, 589, 591,
592, 601, 611, 667, 689, 710, 727, 739, 750,
756, 757, 844, 849, 851, 856, 974, 977, 978,
997, 998, 999, 1000, 1012, 1017, 1018, 1019,
1048, 1066, 1377, 1378, 1379.

minimal demerits : 881, 882, 884, 893, 903, 1653.
minimum demerits : 881, 882, 883, 884, 902, 903.
minor tail : 966, 969, 970.
minus : 497.
Misplaced & : 1182.
Misplaced \cr : 1182.
Misplaced \noalign : 1183.
Misplaced \omit : 1183.
Misplaced \span : 1182.
Missing) inserted : 1595.
Missing = inserted : 538.
Missing # inserted... : 831.
Missing $ inserted : 1101, 1119.
Missing \cr inserted : 1186.
Missing \endcsname... : 407.
Missing \endgroup inserted : 1119.
Missing \right. inserted : 1119.
Missing { inserted : 437, 510, 1181.
Missing } inserted : 1119, 1181.
Missing ‘to’ inserted : 1136.

Missing ‘to’... : 1279.
Missing $$ inserted : 1261.
Missing character : 616.
Missing control... : 1269.
Missing delimiter... : 1215.
Missing font identifier : 612.
Missing number... : 449, 480.
mkern : 234, 1100, 1111, 1112, 1113.
\mkern primitive: 1112.
ml field : 238, 239, 244.
mlist : 769, 808.
mlist penalties : 762, 763, 769, 798, 1248, 1250,

1253.
mlist to hlist : 735, 762, 763, 768, 769, 777, 798,

808, 1248, 1250, 1253.
mm : 493.
mmode : 237, 238, 239, 244, 536, 761, 823, 824,

848, 855, 860, 1084, 1099, 1100, 1102, 1110,
1111, 1127, 1134, 1146, 1151, 1163, 1164, 1166,
1170, 1174, 1184, 1190, 1194, 1199, 1204, 1208,
1212, 1216, 1218, 1221, 1225, 1229, 1234, 1244,
1247, 1248, 1442, 1443, 1444, 1489, 1553.

mode : 2, 237, 238, 239, 241, 242, 329, 452, 456,
458, 536, 761, 823, 824, 833, 834, 835, 844, 847,
852, 855, 856, 857, 860, 1079, 1083, 1084, 1088,
1089, 1103, 1105, 1110, 1130, 1132, 1134, 1137,
1140, 1145, 1147, 1148, 1149, 1150, 1153, 1157,
1159, 1164, 1171, 1173, 1174, 1190, 1192, 1199,
1221, 1248, 1250, 1254, 1297, 1431, 1433, 1434,
1440, 1442, 1443, 1444, 1446, 1447, 1553.

mode field : 238, 239, 244, 456, 848, 855, 1298,
1489, 1491.

mode line : 238, 239, 241, 242, 334, 852, 863, 1079.
month : 262, 267, 653, 1382.
\month primitive: 264.
month code : 262, 263, 264.
months : 569, 571.
more name : 547, 551, 561, 566.
\moveleft primitive: 1125.
move past : 655, 660, 663, 667, 669, 672.
\moveright primitive: 1125.
movement : 643, 645, 652.
movement node size : 641, 643, 651.
mskip : 234, 1100, 1111, 1112, 1113.
\mskip primitive: 1112.
mskip code : 1112, 1114.
mstate : 643, 647, 648.
mtype: 4.
mu : 481, 482, 484, 488, 490, 496, 497.
mu : 491.
mu error : 442, 463, 484, 490, 496, 1591.
\muexpr primitive: 1589.

§1679 X ETEX PART 55: INDEX 697

mu glue : 173, 179, 217, 458, 760, 775, 1112,
1114, 1115.

mu mult : 759, 760.
mu skip : 250, 461.
\muskip primitive: 445.
mu skip base : 250, 253, 255, 1278, 1291.
\muskipdef primitive: 1276.
mu skip def code : 1276, 1277, 1278.
\mutoglue primitive: 1616.
mu to glue code : 1616, 1617, 1618.
mu val : 444, 445, 447, 458, 461, 463, 464, 484,

486, 490, 496, 500, 1114, 1278, 1282, 1290,
1291, 1589, 1590, 1591, 1598, 1626, 1631, 1634.

mu val limit : 1626, 1632, 1649.
mult and add : 109.
mult integers : 109, 1294, 1606.
multiply : 235, 295, 296, 1264, 1289, 1290, 1294.
\multiply primitive: 295.
Must increase the x : 1357.
n: 47, 69, 70, 71, 73, 95, 98, 109, 110, 111, 116,

118, 176, 178, 198, 200, 208, 251, 263, 273, 278,
322, 328, 329, 345, 423, 517, 533, 553, 554,
558, 613, 744, 749, 759, 760, 793, 839, 848,
960, 988, 998, 1031, 1046, 1047, 1048, 1066,
1133, 1173, 1192, 1265, 1329, 1347, 1392, 1533,
1549, 1593, 1608, 1610, 1630, 1633.

name : 330, 332, 333, 334, 337, 341, 343, 344, 353,
358, 359, 361, 367, 390, 392, 424, 518, 572, 1566.

NAME : 742.
name field : 88, 89, 330, 332, 1585, 1586.
name in progress : 412, 561, 562, 563, 1312.
name length : 26, 51, 554, 558, 560, 744.
name length16 : 26, 560.
name of file : 26, 27, 51, 554, 558, 560, 565,

595, 744, 1445.
name of file16 : 26, 560.
nameoffile : 467.
nat : 749.
native char : 744.
native font : 169, 201, 656, 688, 744, 749, 781,

799, 806, 807, 949, 1088, 1416, 1420, 1426,
1430, 1444.

native font type flag : 744.
native glyph : 169, 688, 749, 781, 783, 793, 799,

806, 807, 1416, 1426, 1430, 1444.
native glyph count : 169, 744, 1417.
native glyph info ptr : 169, 688, 744, 1417, 1430.
native glyph info size : 169.
native len : 60, 61, 1088.
native length : 169, 656, 744, 946, 947, 949, 957,

1088, 1415, 1420, 1430.
native node size : 169, 744.

native room : 60, 1088.

native size : 169, 744, 781, 799, 1088, 1417, 1418.

native text : 60, 61, 62, 744, 1088.

native text size : 60, 61, 62.

native word : 169, 656, 781, 946, 1088, 1420, 1536.

native word node : 169, 201, 656, 744, 957, 1416,
1417, 1418, 1420, 1430.

native word node AT : 169, 201, 744, 1416, 1417,
1418, 1420, 1430.

natural : 683, 748, 758, 763, 770, 778, 780, 781,
792, 798, 800, 803, 844, 847, 854, 1031, 1075,
1154, 1179, 1248, 1253, 1258, 1557.

nd : 575, 576, 595, 600, 601, 604.

ne : 575, 576, 595, 600, 601, 604.

negate : 16, 69, 107, 109, 110, 111, 116, 119,
127, 198, 464, 465, 474, 482, 496, 823, 1413,
1591, 1604, 1608, 1610.

negative : 110, 116, 118, 119, 447, 464, 474, 475,
482, 496, 1591, 1604, 1608, 1610.

nest : 238, 239, 242, 243, 244, 245, 447, 456, 823,
848, 855, 1049, 1298, 1489, 1491.

nest ptr : 239, 241, 242, 243, 244, 456, 823, 848,
855, 1049, 1071, 1077, 1145, 1154, 1199,
1254, 1298, 1489.

nest size : 11, 239, 242, 244, 447, 1298, 1388, 1489.

new character : 617, 618, 799, 969, 1171, 1177,
1178.

new choice : 731, 1226.

new delta from break width : 892.

new delta to break width : 891.

new disc : 167, 957, 1088, 1089, 1171.

new edge : 1529, 1532, 1549.

new font : 1310, 1311.

new glue : 177, 178, 749, 758, 814, 834, 841, 843,
857, 1095, 1097, 1108, 1114, 1225.

new graf : 1144, 1145, 1444.

new hlist : 768, 770, 787, 792, 793, 794, 798,
800, 810, 815.

new hyph exceptions : 988, 1306.

new index : 1626, 1627, 1630.

new interaction : 1318, 1319, 1505, 1506.

new kern : 180, 748, 758, 778, 781, 782, 791, 795,
797, 799, 800, 803, 964, 1088, 1094, 1115, 1166,
1167, 1179, 1258, 1531, 1551, 1557.

new lig item : 166, 965, 1094.

new ligature : 166, 964, 1089.

new line : 333, 361, 373, 374, 375, 377, 518, 572.

new line char : 63, 262, 270, 1387, 1389, 1565.

\newlinechar primitive: 264.

new line char code : 262, 263, 264.

new margin kern : 688, 929, 935.

698 PART 55: INDEX X ETEX §1679

new math : 171, 1250, 1513, 1517, 1519, 1522,
1533, 1545, 1557.

new native character : 744, 752, 781, 799, 805, 957.
new native word node : 656, 744, 947, 957, 1088,

1420.
new noad : 728, 763, 786, 797, 1130, 1147, 1204,

1209, 1212, 1222, 1231, 1245.
new null box : 158, 749, 752, 756, 763, 791, 794,

827, 841, 857, 1072, 1108, 1145, 1147, 1551.
new param glue : 176, 178, 721, 744, 826, 864, 934,

935, 1095, 1097, 1145, 1257, 1259, 1260, 1551.
new patterns : 1014, 1306.
new penalty : 183, 744, 815, 864, 938, 1108, 1157,

1257, 1259, 1260.
new randoms : 114, 128, 129.
new rule : 161, 498, 708, 747.
new save level : 304, 684, 822, 833, 839, 1079,

1117, 1153, 1171, 1173, 1190.
new skip param : 178, 721, 1023, 1055, 1557.
new spec : 175, 178, 464, 497, 749, 874, 1030, 1058,

1096, 1097, 1293, 1294, 1591, 1601, 1602, 1664.
new string : 54, 57, 58, 500, 505, 506, 653, 678,

1311, 1333, 1382, 1410, 1431, 1436, 1498, 1564.
new style : 730, 1225.
new trie op : 997, 998, 999, 1019.
new whatsit : 1404, 1405, 1409, 1439, 1440, 1444,

1445, 1450.
new write whatsit : 1405, 1406, 1407, 1408.
next : 282, 284, 286, 287.
next break : 925, 926.
next char : 580, 785, 797, 963, 1093.
next p : 655, 660, 664, 667, 668, 669, 671, 673,

1533, 1535, 1536.
next random : 128, 130, 131.
nh : 575, 576, 595, 600, 601, 604.
ni : 575, 576, 595, 600, 601, 604.
nil: 16.
nk : 575, 576, 595, 600, 601, 608.
nl : 63, 575, 576, 580, 595, 600, 601, 604, 608,

611, 1564, 1565.
nn : 341, 342.
No pages of output : 680.
no align : 234, 295, 296, 833, 1180.
\noalign primitive: 295.
no align error : 1180, 1183.
no align group : 299, 816, 833, 1187, 1471, 1489.
no boundary : 234, 295, 296, 1084, 1092, 1099,

1144.
\noboundary primitive: 295.
no break yet : 877, 884, 885.
no expand : 236, 295, 296, 396, 399.
\noexpand primitive: 295.

no expand flag : 388, 513, 541.
no extenders : 749.
\noindent primitive: 1142.
no limits : 724, 1210, 1211.
\nolimits primitive: 1210.
no new control sequence : 282, 284, 286, 289, 294,

395, 408, 1390, 1451, 1579.
no pdf output : 567, 568, 678.
no print : 54, 57, 58, 79, 102.
no shrink error yet : 873, 874, 875.
no tag : 579, 604.
noad size : 723, 728, 740, 797, 809, 1240, 1241.
node : 744.
node is invisible to interword space : 656, 657,

1088.
node list display : 206, 210, 214, 216, 221, 223.
node r stays active : 878, 899, 902.
node size : 146, 148, 149, 150, 152, 189, 194,

1365, 1366.
nom : 595, 596, 598, 611, 744.
non address : 584, 587, 611, 963, 970, 1088.
non char : 584, 587, 611, 946, 950, 951, 954, 962,

963, 964, 965, 969, 970, 971, 1086, 1088, 1089,
1092, 1093, 1094, 1377.

non discardable : 172, 877, 927.
non math : 1100, 1117, 1198.
non script : 234, 295, 296, 1100, 1225.
\nonscript primitive: 295, 775.
none seen : 647, 648.
NONEXISTENT : 292.
Nonletter : 1016.
nonnegative integer : 73, 105, 111, 198.
nonstop mode : 77, 90, 390, 393, 519, 1316, 1317.
\nonstopmode primitive: 1316.
nop : 619, 621, 622, 624, 626.
norm min : 1145, 1254, 1439, 1440.
norm rand : 114, 131, 507.
normal : 157, 158, 173, 174, 177, 179, 180, 189,

203, 212, 215, 217, 335, 361, 366, 401, 402, 473,
482, 506, 508, 515, 517, 520, 524, 525, 536, 542,
655, 656, 663, 667, 672, 690, 699, 700, 701, 702,
706, 707, 708, 709, 714, 715, 716, 718, 719,
720, 724, 728, 738, 749, 759, 775, 793, 825,
849, 858, 859, 873, 874, 877, 945, 949, 950,
952, 1030, 1042, 1058, 1063, 1099, 1210, 1217,
1219, 1235, 1255, 1273, 1274, 1275, 1293, 1347,
1493, 1533, 1577, 1602, 1605, 1654.

\normaldeviate primitive: 503.
normal deviate code : 503, 504, 506, 507.
normal paragraph : 822, 833, 835, 1079, 1124,

1137, 1148, 1150, 1153, 1221.
normalize glue : 1602, 1605.

§1679 X ETEX PART 55: INDEX 699

normalize selector : 82, 96, 97, 98, 99, 198, 911.
Not a letter : 991.
not aat font error : 1454, 1457, 1460.
not aat gr font error : 1454, 1457, 1460.
not exp : 371, 382.
not found : 15, 45, 46, 482, 490, 595, 605, 643,

647, 648, 877, 944, 984, 985, 988, 995, 1007,
1009, 1024, 1026, 1027, 1192, 1200, 1425,
1544, 1630, 1657.

not found1 : 15, 988, 1630.
not found2 : 15, 1630.
not found3 : 15, 1630.
not found4 : 15, 1630.
not native font error : 1444, 1454, 1457, 1458,

1460.
not ot font error : 1454, 1457.
notexpanded: : 285.
np : 575, 576, 595, 600, 601, 610, 611.
nucleus : 723, 724, 725, 728, 729, 732, 738, 740,

763, 768, 777, 778, 779, 780, 781, 785, 786, 793,
794, 796, 797, 798, 799, 805, 1130, 1147, 1204,
1205, 1209, 1212, 1217, 1219, 1222, 1240, 1245.

null : 137, 138, 140, 142, 144, 145, 147, 148, 157,
158, 166, 167, 173, 174, 175, 176, 177, 178, 189,
193, 194, 198, 201, 202, 208, 226, 227, 228, 230,
236, 238, 241, 242, 244, 245, 248, 249, 258, 259,
305, 322, 325, 329, 336, 337, 342, 344, 355, 361,
387, 388, 392, 405, 408, 416, 417, 420, 424, 425,
426, 431, 434, 441, 444, 449, 454, 457, 461, 487,
499, 501, 506, 507, 508, 513, 517, 524, 525, 532,
540, 543, 584, 587, 611, 613, 618, 642, 647, 651,
655, 656, 657, 661, 667, 670, 687, 688, 689, 691,
696, 697, 700, 706, 708, 710, 715, 718, 723, 727,
731, 734, 744, 749, 758, 761, 762, 763, 764, 769,
774, 775, 781, 796, 798, 799, 800, 805, 808, 809,
814, 815, 819, 822, 824, 825, 831, 832, 837, 838,
839, 840, 842, 844, 845, 847, 849, 852, 853, 854,
855, 860, 869, 877, 885, 888, 894, 895, 896, 898,
900, 904, 905, 906, 907, 911, 912, 913, 915, 917,
920, 925, 926, 927, 929, 930, 931, 932, 933, 935,
936, 937, 938, 943, 949, 951, 956, 957, 960, 961,
962, 964, 965, 967, 968, 969, 970, 971, 972, 982,
986, 989, 1022, 1023, 1024, 1026, 1027, 1031,
1032, 1033, 1035, 1045, 1046, 1047, 1048, 1052,
1053, 1054, 1063, 1064, 1065, 1066, 1068, 1069,
1070, 1071, 1072, 1074, 1075, 1076, 1077, 1080,
1081, 1082, 1084, 1086, 1088, 1089, 1090, 1091,
1092, 1094, 1096, 1097, 1124, 1128, 1129, 1130,
1133, 1134, 1137, 1141, 1145, 1150, 1164, 1175,
1177, 1178, 1185, 1190, 1193, 1199, 1200, 1203,
1221, 1228, 1230, 1235, 1238, 1239, 1240, 1248,
1250, 1253, 1256, 1259, 1260, 1280, 1281, 1301,

1302, 1337, 1342, 1350, 1365, 1366, 1389, 1393,
1408, 1409, 1410, 1420, 1431, 1432, 1438, 1478,
1484, 1493, 1501, 1516, 1517, 1518, 1519, 1522,
1531, 1533, 1535, 1541, 1542, 1544, 1545, 1546,
1549, 1556, 1557, 1562, 1567, 1568, 1569, 1579,
1593, 1594, 1595, 1620, 1626, 1627, 1628, 1629,
1630, 1631, 1632, 1634, 1635, 1636, 1637, 1638,
1639, 1640, 1641, 1642, 1643, 1647, 1648, 1649,
1652, 1660, 1663, 1671, 1674, 1677.

null delimiter: 266, 1119.
null character : 590, 591, 765, 766.
null code : 22, 258.
null cs : 248, 292, 293, 384, 408, 1311, 1579.
null delimiter : 726, 727, 1235.
null delimiter space : 273, 749.
\nulldelimiterspace primitive: 274.
null delimiter space code : 273, 274.
null flag : 160, 161, 498, 693, 827, 841, 849.
null font : 258, 587, 588, 595, 612, 653, 705, 744,

749, 750, 765, 805, 912, 1311, 1374, 1375, 1393.
\nullfont primitive: 588.
null list : 14, 187, 414, 828.
null ptr : 169, 688, 744, 1417, 1430.
num : 485, 493, 621, 623, 626.
num error : 1601, 1604, 1608, 1610.
\numexpr primitive: 1589.
num font dimens : 744.
num style : 745, 788.
number : 742.
Number too big : 479.
\number primitive: 503.
number code : 503, 504, 506, 507.
number fonts : 12.
number math families : 12, 469, 1205.
number math fonts : 12, 256, 258.
number regs : 12, 250, 256, 258, 262, 273.
number usvs : 12, 248, 256, 258, 262, 266, 940.
numerator : 725, 732, 739, 740, 788, 1235, 1239.
num1 : 742, 788.
num2 : 742, 788.
num3 : 742, 788.
nw : 575, 576, 595, 600, 601, 604.
nx plus y : 109, 490, 759, 1294, 1606.
o: 294, 643, 689, 710, 839, 848, 1593.
octal token : 472, 478.
odd : 66, 104, 120, 171, 219, 539, 783, 802, 914,

951, 955, 957, 962, 963, 967, 968, 1265, 1272,
1302, 1349, 1498, 1611, 1630, 1635.

off save : 1117, 1118, 1148, 1149, 1184, 1185,
1194, 1246, 1247.

offs : 744.
OK : 1352.

700 PART 55: INDEX X ETEX §1679

OK so far : 474, 479.
OK to interrupt : 92, 100, 101, 102, 357, 1085.
old l : 877, 883, 898.
old mode : 1431, 1433, 1434.
old rover : 153.
old setting : 271, 272, 341, 342, 500, 505, 506, 569,

616, 653, 676, 678, 1311, 1333, 1410, 1431,
1433, 1436, 1498, 1564.

omit : 234, 295, 296, 836, 837, 1180.
\omit primitive: 295.
omit error : 1180, 1183.
omit template : 187, 837, 838.
Only one # is allowed... : 832.
oo : 749.
op byte : 580, 592, 785, 797, 963, 965, 1094.
op noad : 724, 732, 738, 740, 769, 771, 776, 793,

805, 809, 1210, 1211, 1213.
op start : 974, 975, 978, 999, 1379.
open area : 1395, 1406, 1416, 1437.
open ext : 1395, 1406, 1416, 1437.
open fmt file : 559, 1391.
\openin primitive: 1326.
open log file : 82, 96, 390, 506, 567, 569, 570,

572, 676, 1311, 1389.
open name : 1395, 1406, 1416, 1437.
open noad : 724, 732, 738, 740, 771, 776, 805,

808, 809, 810, 1210, 1211.
open node : 1395, 1398, 1401, 1403, 1416, 1417,

1418, 1436.
open node size : 1395, 1406, 1417, 1418.
open or close in : 1328, 1329.
\openout primitive: 1398.
open parens : 334, 361, 392, 572, 1389, 1566.
\or primitive: 526.
or code : 524, 526, 527, 535, 544, 1347, 1478.
ord : 20, 744.
ord noad : 723, 724, 728, 729, 732, 738, 740, 771,

772, 776, 796, 797, 805, 809, 812, 813, 1129,
1209, 1210, 1211, 1240.

order : 203.
oriental characters: 156, 621.
ot assembly ptr : 749, 751, 781, 783, 793.
ot font flag : 744.
ot font get : 1454.
ot font get 1 : 1454.
ot font get 2 : 1454.
ot font get 3 : 1454.
ot get font metrics : 744.
ot min connector overlap : 749.
ot part count : 749.
ot part end connector : 749.
ot part full advance : 749.

ot part glyph : 749.
ot part is extender : 749.
ot part start connector : 749.
otgr font flag : 584, 744.
other A token : 479.
other char : 233, 258, 319, 321, 324, 328, 377, 479,

499, 505, 561, 989, 1015, 1084, 1088, 1092,
1144, 1178, 1205, 1208, 1214.

other token : 319, 439, 472, 475, 479, 499, 538,
1119, 1275, 1572, 1595, 1596.

othercases: 10.
others : 10, 1436.
Ouch...clobbered : 1386.
out param : 233, 319, 321, 324, 387, 506.
out param token : 319, 514.
out what : 1426, 1430, 1436, 1438.
\outer primitive: 1262.
outer call : 236, 305, 369, 381, 383, 384, 387, 396,

421, 425, 430, 828, 1206, 1349, 1432.
outer doing leaders : 655, 666, 667, 675.
output : 4.
Output loop... : 1078.
Output routine didn’t use... : 1082.
Output written on x : 680.
\output primitive: 256.
output active : 455, 705, 717, 1040, 1043, 1044,

1048, 1059, 1079, 1080.
output file extension : 564, 567, 568.
output file name : 567, 568, 680.
output group : 299, 1079, 1154, 1471, 1489.
output penalty : 262.
\outputpenalty primitive: 264.
output penalty code : 262, 263, 264, 1067.
output routine : 256, 1066, 1079.
output routine loc : 256, 257, 258, 337, 353, 1280.
output text : 337, 344, 353, 1079, 1080.
\over primitive: 1232.
over code : 1232, 1233, 1236.
over noad : 729, 732, 738, 740, 776, 809, 1210.
\overwithdelims primitive: 1232.
overbar : 748, 777, 780.
overbarExtraAscender : 742.
overbarRuleThickness : 742.
overbarVerticalGap : 742.
overflow : 35, 42, 43, 98, 142, 147, 242, 287, 290,

294, 303, 304, 351, 358, 408, 424, 552, 615, 994,
998, 1008, 1018, 1387, 1579, 1593.

overflow in arithmetic: 9, 108.
Overfull \hbox... : 708.
Overfull \vbox... : 719.
overfull boxes: 902.
overfull rule : 273, 708, 848, 852.

§1679 X ETEX PART 55: INDEX 701

\overfullrule primitive: 274.
overfull rule code : 273, 274.
\overline primitive: 1210.
p: 116, 118, 142, 145, 147, 152, 153, 158, 161, 166,

167, 171, 175, 176, 177, 178, 180, 183, 192, 197,
198, 200, 202, 204, 208, 224, 226, 227, 228, 230,
244, 286, 289, 292, 293, 306, 307, 308, 309, 311,
314, 322, 325, 329, 336, 345, 353, 355, 366,
396, 423, 441, 447, 485, 499, 500, 508, 517,
532, 533, 618, 643, 651, 655, 667, 676, 689,
710, 721, 728, 730, 731, 733, 734, 744, 747,
748, 749, 752, 754, 758, 759, 760, 763, 769,
778, 781, 787, 793, 796, 800, 820, 822, 835,
839, 847, 848, 874, 960, 988, 1002, 1003, 1007,
1011, 1013, 1014, 1020, 1022, 1024, 1047, 1048,
1066, 1118, 1122, 1129, 1133, 1140, 1147, 1155,
1159, 1164, 1167, 1173, 1177, 1192, 1205, 1209,
1214, 1228, 1230, 1238, 1245, 1248, 1265, 1290,
1298, 1342, 1347, 1356, 1357, 1403, 1404, 1415,
1431, 1433, 1436, 1489, 1493, 1529, 1533, 1544,
1549, 1555, 1564, 1567, 1568, 1588, 1593, 1632,
1634, 1648, 1649, 1650, 1651, 1652.

p 1 : 1665.
pack begin line : 703, 704, 705, 717, 852, 863.
pack buffered name : 558, 559.
pack cur name : 564, 565, 572, 1329, 1437,

1445, 1456.
pack file name : 554, 564, 572, 595, 598.
pack job name : 564, 567, 569, 1382.
pack lig : 1089.
package : 1139, 1140.
packed ASCII code : 18, 38, 39, 1001.
packed UTF16 code : 18.
page : 334, 1445.
page contents : 455, 1034, 1040, 1041, 1045, 1054,

1055, 1062.
page depth : 1036, 1041, 1045, 1056, 1057, 1058,

1062, 1064, 1424.
\pagedepth primitive: 1037.
page disc : 1053, 1077, 1080, 1670, 1671.
\pagediscards primitive: 1672.
\pagefilstretch primitive: 1037.
\pagefillstretch primitive: 1037.
\pagefilllstretch primitive: 1037.
page goal : 1034, 1036, 1040, 1041, 1059, 1060,

1061, 1062, 1063, 1064.
\pagegoal primitive: 1037.
page head : 187, 241, 1034, 1040, 1042, 1045, 1068,

1071, 1077, 1080, 1108.
page ins head : 187, 1035, 1040, 1059, 1062, 1072,

1073, 1074.
page ins node size : 1035, 1063, 1073.

page loc : 676, 678.
page max depth : 1034, 1036, 1041, 1045, 1057,

1071.
page shrink : 1036, 1039, 1058, 1061, 1062, 1063.
\pageshrink primitive: 1037.
page so far : 455, 1036, 1039, 1041, 1058, 1061,

1063, 1299.
page stack : 334.
\pagestretch primitive: 1037.
page tail : 241, 1034, 1040, 1045, 1052, 1054,

1071, 1077, 1080, 1108.
page total : 1036, 1039, 1056, 1057, 1058, 1061,

1062, 1064, 1424.
\pagetotal primitive: 1037.
panicking : 190, 191, 1085, 1393.
\par primitive: 364.
par end : 233, 364, 365, 1100, 1148.
par fill skip : 250, 864, 1653, 1654, 1657, 1664.
\parfillskip primitive: 252.
par fill skip code : 250, 251, 252, 864.
par indent : 273, 1145, 1147.
\parindent primitive: 274.
par indent code : 273, 274.
par loc : 363, 364, 381, 1367, 1368.
\parshape primitive: 295.
\parshapedimen primitive: 1482.
par shape dimen code : 1482, 1483, 1484.
\parshapeindent primitive: 1482.
par shape indent code : 1482, 1483, 1484.
\parshapelength primitive: 1482.
par shape length code : 1482, 1483, 1484.
par shape loc : 256, 258, 259, 295, 296, 457,

1124, 1302.
par shape ptr : 256, 258, 259, 457, 862, 895, 896,

898, 937, 1124, 1203, 1303, 1484.
par skip : 250, 1145.
\parskip primitive: 252.
par skip code : 250, 251, 252, 1145.
par token : 363, 364, 369, 426, 429, 433, 1149, 1368.
Paragraph ended before... : 430.
param : 577, 582, 593.
param base : 585, 587, 593, 601, 609, 610, 611,

613, 615, 742, 743, 744, 1096, 1376, 1377.
param end : 593.
param ptr : 338, 353, 354, 361, 424.
param size : 11, 338, 424, 1388.
param stack : 337, 338, 354, 389, 422, 423, 424.
param start : 337, 353, 354, 389.
parameter : 337, 344, 389.
parameters for symbols: 742, 743.
Parameters...consecutively : 511.
Pascal-H: 3, 4, 9, 10, 27, 28, 33, 34.

702 PART 55: INDEX X ETEX §1679

Pascal: 1, 10, 735, 812.
pass number : 869, 893, 912.
pass text : 396, 529, 535, 544, 545.
passive : 869, 893, 894, 912, 913.
passive node size : 869, 893, 913.
Patterns can be... : 1306.
\patterns primitive: 1304.
pause for instructions : 100, 102.
pausing : 262, 393.
\pausing primitive: 264.
pausing code : 262, 263, 264.
pc : 493.
pdf box type : 1084, 1445.
\creationdate primitive: 503.
pdf creation date code : 503, 504, 506.
pdf error : 198, 506, 877, 1410.
pdf file code : 1398, 1399, 1401, 1403.
\filedump primitive: 503.
pdf file dump code : 503, 504, 506.
\filemoddate primitive: 503.
pdf file mod date code : 503, 504, 506.
\filesize primitive: 503.
pdf file size code : 503, 504, 506.
pdf last x pos : 1427, 1449, 1454.
\pdflastxpos primitive: 450.
pdf last x pos code : 450, 451, 1454.
pdf last y pos : 1427, 1449, 1454.
\pdflastypos primitive: 450.
pdf last y pos code : 450, 451, 1454.
\mdfivesum primitive: 503.
pdf mdfive sum code : 503, 504, 506.
pdf node : 170, 889, 890, 918, 919, 1416, 1417,

1418, 1419, 1420, 1421, 1422, 1424, 1425,
1426, 1430, 1445, 1536.

pdf page height : 273, 678, 1428.
\pdfpageheight primitive: 274.
pdf page height code : 273, 274.
pdf page width : 273, 678, 1428.
\pdfpagewidth primitive: 274.
pdf page width code : 273, 274.
\pdfsavepos primitive: 1399.
pdf save pos node : 1398, 1399, 1401, 1403, 1416,

1417, 1418, 1426, 1430, 1450.
pdf scan ext toks : 505.
\shellescape primitive: 450.
pdf shell escape code : 450, 451, 458.
\strcmp primitive: 503.
pdf strcmp code : 503, 504, 506, 507.
pdfbox art : 1084, 1436, 1445.
pdfbox bleed : 1084, 1436, 1445.
pdfbox crop : 1084, 1436, 1445.
pdfbox media : 1084, 1436, 1445.

pdfbox none : 1084, 1445.
pdfbox trim : 1084, 1436, 1445.
pdftex convert codes : 503.
pdftex first expand code : 503.
pdftex first extension code : 1398.
pdftex first rint code : 450.
pdftex last item codes : 450.
pen : 769, 809, 815, 925, 938.
penalties: 1156.
penalties : 769, 815.
penalty : 182, 183, 220, 259, 458, 864, 914, 938,

1027, 1050, 1054, 1064, 1065, 1067, 1677.
\penalty primitive: 295.
penalty node : 182, 183, 209, 228, 232, 458, 656,

773, 809, 815, 864, 865, 877, 885, 904, 914,
927, 945, 952, 1022, 1027, 1050, 1054, 1064,
1065, 1067, 1161.

pg field : 238, 239, 244, 245, 456, 1298.
pi : 877, 879, 899, 904, 907, 1024, 1026, 1027,

1028, 1048, 1054, 1059, 1060.
pic file code : 1398, 1399, 1401, 1403.
pic node : 170, 889, 890, 918, 919, 1416, 1417,

1418, 1419, 1420, 1421, 1422, 1424, 1425,
1426, 1430, 1445, 1536.

pic node size : 170, 1417, 1445.
pic out : 1426, 1430, 1436.
pic page : 170, 1436, 1445.
pic path : 1445.
pic path byte : 1416, 1436.
pic path length : 170, 1416, 1417, 1436, 1445.
pic pdf box : 170, 1436, 1445.
pic transform1 : 170, 1436, 1445.
pic transform2 : 170, 1436, 1445.
pic transform3 : 170, 1436, 1445.
pic transform4 : 170, 1436, 1445.
pic transform5 : 170, 1436, 1445.
pic transform6 : 170, 1436, 1445.
plain : 556, 559, 1385.
plane and fam field : 723, 733, 765, 797, 1205,

1209, 1219.
Plass, Michael Frederick: 2, 861.
Please type... : 390, 565.
Please use \mathaccent... : 1220.
PLtoTF : 596.
plus : 497.
point token : 472, 474, 482, 487.
pointer : 137, 138, 140, 142, 145, 146, 147, 152,

153, 158, 161, 166, 167, 169, 171, 175, 176, 177,
178, 180, 181, 183, 190, 192, 197, 198, 224, 226,
227, 228, 230, 238, 244, 278, 282, 283, 286, 289,
293, 305, 306, 307, 308, 309, 311, 314, 325, 327,
329, 335, 336, 338, 353, 355, 363, 366, 396, 416,

§1679 X ETEX PART 55: INDEX 703

422, 423, 441, 447, 485, 496, 498, 499, 500, 505,
508, 517, 524, 532, 533, 584, 595, 618, 628, 641,
643, 651, 655, 667, 676, 686, 688, 689, 695, 710,
721, 728, 730, 731, 733, 734, 744, 747, 748, 749,
752, 754, 758, 759, 760, 762, 763, 765, 769,
777, 778, 779, 780, 781, 787, 793, 796, 800,
810, 818, 820, 822, 835, 839, 847, 848, 862,
869, 874, 876, 877, 878, 881, 910, 920, 925,
940, 953, 954, 960, 961, 966, 980, 988, 1022,
1024, 1031, 1034, 1036, 1047, 1048, 1066, 1086,
1097, 1118, 1122, 1128, 1129, 1133, 1140, 1147,
1155, 1159, 1164, 1167, 1173, 1177, 1192, 1205,
1209, 1214, 1228, 1230, 1238, 1245, 1248, 1252,
1265, 1290, 1301, 1311, 1342, 1347, 1356, 1357,
1400, 1403, 1404, 1410, 1415, 1431, 1433, 1436,
1493, 1515, 1529, 1533, 1544, 1549, 1552, 1555,
1561, 1564, 1567, 1568, 1584, 1588, 1593, 1626,
1627, 1630, 1632, 1633, 1634, 1636, 1646, 1648,
1649, 1650, 1651, 1652, 1653, 1670.

pointer node size : 1631, 1632, 1648, 1652.
Poirot, Hercule: 1337.
pool file : 47, 50, 51, 52, 53.
pool name : 11, 51.
pool pointer : 38, 39, 44, 45, 46, 63, 73, 74, 294,

441, 499, 500, 505, 548, 554, 638, 676, 983,
988, 1410, 1431, 1436, 1564.

pool ptr : 38, 39, 41, 42, 43, 44, 47, 48, 52, 58, 74,
224, 287, 499, 500, 505, 506, 551, 560, 653,
656, 678, 744, 1363, 1364, 1386, 1388, 1393,
1410, 1431, 1436, 1498, 1565.

pool size : 11, 38, 42, 52, 58, 224, 506, 560, 1364,
1388, 1393, 1410, 1431.

pop : 620, 621, 622, 626, 637, 644, 680.
pop alignment : 820, 848.
pop input : 352, 354, 359.
pop lig stack : 964, 965.
pop LR : 1515, 1518, 1521, 1522, 1527, 1528,

1539, 1546, 1548, 1550.
pop nest : 243, 844, 847, 860, 864, 1080, 1140,

1150, 1154, 1173, 1222, 1238, 1260, 1543.
pop node : 877.
positive : 111, 198.
post : 619, 621, 622, 626, 627, 680.
post break : 167, 201, 221, 228, 232, 877, 888,

906, 930, 932, 970, 1173.
post disc break : 925, 929, 932.
post display penalty : 262, 1259, 1260.
\postdisplaypenalty primitive: 264.
post display penalty code : 262, 263, 264.
post line break : 924, 925, 1515.
post post : 621, 622, 626, 627, 680.
pp : 689, 1420.

ppp : 689, 1420.
pre : 619, 621, 622, 653.
pre adjust head : 187, 936, 937, 1130, 1139,

1253, 1259.
pre adjust tail : 689, 691, 695, 696, 697, 844, 936,

937, 1130, 1139, 1253.
pre break : 167, 201, 221, 228, 232, 877, 906, 917,

929, 930, 933, 957, 969, 1171, 1173.
pre display direction : 262, 1192, 1253, 1555.
\predisplaydirection primitive: 1467.
pre display direction code : 262, 1199, 1467, 1469.
pre display penalty : 262, 1257, 1260.
\predisplaypenalty primitive: 264.
pre display penalty code : 262, 263, 264.
pre display size : 273, 1192, 1199, 1202, 1257, 1544.
\predisplaysize primitive: 274.
pre display size code : 273, 274, 1199.
pre t : 1252, 1253, 1259.
preamble: 816, 822.
preamble : 818, 819, 820, 825, 834, 849, 852.
preamble of DVI file: 653.
precedes break : 172, 916, 1027, 1054.
prefix : 235, 1262, 1263, 1264, 1265, 1581.
prefixed command : 1264, 1265, 1324.
prepare mag : 318, 492, 653, 680, 1387.
pretolerance : 262, 876, 911.
\pretolerance primitive: 264.
pretolerance code : 262, 263, 264.
prev break : 869, 893, 894, 925, 926.
prev class : 1086, 1088.
prev depth : 238, 239, 241, 452, 721, 823, 834, 835,

1079, 1110, 1137, 1153, 1221, 1260, 1296, 1297.
\prevdepth primitive: 450.
prev dp : 1024, 1026, 1027, 1028, 1030, 1425.
prev graf : 238, 239, 241, 242, 456, 862, 864, 912,

925, 938, 1145, 1203, 1254, 1296.
\prevgraf primitive: 295.
prev o : 749.
prev p : 181, 655, 656, 658, 660, 910, 911, 916,

1022, 1023, 1024, 1027, 1066, 1068, 1071,
1076, 1531, 1532.

prev prev r : 878, 880, 891, 892, 908.
prev r : 877, 878, 880, 891, 892, 893, 899, 902, 908.
prev rightmost : 198, 507, 877, 929.
prev s : 910, 943, 949.
prevOffs : 744.
prim : 283, 284, 290, 1372, 1373.
prim base : 283, 289.
prim eq level : 283, 294.
prim eq level field : 283.
prim eq type : 283, 294, 402, 403, 536, 1099.
prim eq type field : 283.

704 PART 55: INDEX X ETEX §1679

prim eqtb : 294.
prim eqtb base : 248, 283, 292, 293, 403, 1099.
prim equiv : 283, 294, 402, 403, 536, 1099.
prim equiv field : 283.
prim is full : 283, 290.
prim lookup : 289, 294, 402, 403, 536, 1099.
prim next : 283, 284, 289, 290.
prim prime : 283, 289, 291.
prim size : 248, 283, 284, 285, 290, 291, 1372, 1373.
prim text : 283, 284, 289, 290, 292, 293.
prim used : 283, 285, 290.
prim val : 294.
primitive : 252, 256, 264, 274, 294, 295, 296, 328,

364, 410, 418, 445, 450, 503, 522, 526, 588,
828, 1037, 1106, 1112, 1125, 1142, 1161, 1168,
1195, 1210, 1223, 1232, 1242, 1262, 1273,
1276, 1284, 1304, 1308, 1316, 1326, 1331, 1340,
1345, 1385, 1386, 1398, 1399, 1452, 1467, 1473,
1476, 1479, 1482, 1485, 1494, 1496, 1499, 1502,
1507, 1511, 1558, 1570, 1573, 1581, 1589, 1612,
1616, 1620, 1672, 1675.

\primitive primitive: 295.
\primitive primitive (internalized): 402.
primitive size : 283.
print : 54, 63, 64, 66, 72, 74, 75, 77, 88, 89, 90, 93,

95, 98, 99, 125, 198, 201, 203, 204, 208, 209,
210, 211, 212, 213, 214, 216, 217, 218, 219, 221,
223, 237, 244, 245, 251, 259, 260, 263, 273, 277,
292, 314, 318, 324, 328, 329, 336, 347, 353, 366,
368, 369, 393, 407, 429, 430, 432, 434, 462, 489,
491, 494, 500, 506, 507, 537, 544, 565, 569,
571, 595, 596, 602, 614, 616, 653, 676, 677,
678, 680, 702, 705, 708, 716, 717, 719, 734,
736, 739, 744, 766, 824, 894, 904, 990, 1032,
1039, 1040, 1041, 1060, 1065, 1069, 1078, 1103,
1118, 1149, 1186, 1220, 1267, 1286, 1291, 1311,
1313, 1315, 1349, 1350, 1352, 1363, 1365, 1372,
1374, 1376, 1378, 1382, 1388, 1389, 1392, 1393,
1401, 1415, 1416, 1436, 1445, 1457, 1461, 1471,
1472, 1489, 1490, 1491, 1501, 1514, 1523, 1566,
1576, 1585, 1587, 1588, 1634, 1663.

print ASCII : 72, 200, 202, 328, 616, 733, 766.
print c string : 595.
print char : 58, 59, 63, 64, 67, 68, 69, 70, 71, 73,

74, 86, 95, 98, 99, 107, 136, 196, 197, 200, 201,
202, 203, 204, 210, 212, 213, 214, 215, 216, 217,
218, 219, 222, 244, 245, 249, 255, 259, 260,
261, 268, 277, 278, 281, 292, 293, 296, 314,
315, 324, 326, 328, 329, 336, 343, 347, 348,
392, 419, 507, 544, 571, 572, 596, 616, 653,
676, 677, 680, 733, 766, 894, 904, 987, 1060,
1065, 1119, 1123, 1266, 1267, 1315, 1334, 1348,

1349, 1350, 1365, 1374, 1376, 1378, 1382, 1387,
1389, 1394, 1415, 1416, 1471, 1472, 1489, 1490,
1491, 1541, 1566, 1576, 1634.

print cmd chr : 249, 259, 296, 326, 328, 329, 353,
366, 452, 462, 538, 545, 1103, 1120, 1182, 1266,
1267, 1291, 1389, 1393, 1457, 1466, 1489, 1491,
1501, 1576, 1587, 1588, 1634.

print cs : 292, 323, 344, 435.
print current string : 74, 208, 734.
print delimiter : 733, 738, 739.
print err : 76, 77, 97, 98, 99, 102, 125, 198, 318,

366, 368, 376, 404, 407, 429, 430, 432, 437, 442,
447, 448, 449, 452, 462, 467, 468, 469, 470, 471,
476, 479, 480, 489, 491, 494, 495, 506, 510,
511, 514, 521, 535, 538, 545, 565, 596, 612,
614, 679, 766, 824, 831, 832, 840, 874, 990,
991, 1014, 1015, 1016, 1017, 1030, 1032, 1047,
1058, 1063, 1069, 1078, 1081, 1082, 1101, 1103,
1118, 1120, 1122, 1123, 1132, 1136, 1138, 1149,
1153, 1164, 1174, 1175, 1181, 1182, 1183, 1186,
1189, 1213, 1215, 1220, 1231, 1237, 1246, 1249,
1251, 1261, 1266, 1267, 1269, 1279, 1286, 1290,
1291, 1295, 1297, 1298, 1306, 1312, 1313, 1337,
1352, 1358, 1435, 1444, 1445, 1446, 1457, 1458,
1466, 1506, 1576, 1593, 1595, 1622.

print esc : 67, 90, 201, 202, 209, 210, 213, 214,
215, 216, 217, 218, 220, 221, 222, 223, 251, 253,
255, 257, 259, 260, 261, 263, 265, 268, 273,
275, 277, 292, 293, 296, 297, 322, 323, 324,
353, 365, 407, 411, 419, 451, 462, 504, 521,
523, 527, 535, 614, 733, 736, 737, 738, 739,
741, 824, 829, 840, 904, 990, 1014, 1015, 1032,
1038, 1040, 1063, 1069, 1082, 1107, 1113, 1119,
1123, 1126, 1143, 1149, 1153, 1162, 1169, 1174,
1183, 1186, 1189, 1197, 1211, 1220, 1233, 1243,
1246, 1263, 1267, 1274, 1277, 1285, 1295, 1298,
1305, 1309, 1317, 1327, 1332, 1341, 1346, 1349,
1376, 1389, 1401, 1415, 1416, 1453, 1459, 1468,
1469, 1474, 1477, 1480, 1483, 1486, 1489, 1491,
1495, 1497, 1500, 1501, 1503, 1508, 1510, 1512,
1559, 1571, 1574, 1575, 1576, 1582, 1588, 1590,
1613, 1617, 1634, 1643, 1644, 1673, 1676.

print fam and char : 733, 734, 738.
print file name : 507, 553, 565, 596, 1376, 1416,

1445.
print font and char : 202, 209, 219.
print glue : 203, 204, 211, 212.
print glyph name : 1461.
print group : 1471, 1472, 1489, 1585, 1588.
print hex : 71, 733, 1277.
print if line : 329, 1501, 1587, 1588.
print int : 69, 88, 95, 98, 107, 136, 193, 194, 195,

§1679 X ETEX PART 55: INDEX 705

196, 197, 211, 214, 220, 221, 222, 244, 245, 253,
255, 257, 259, 260, 261, 265, 268, 275, 277, 281,
315, 318, 329, 343, 366, 434, 500, 506, 507, 544,
571, 595, 596, 614, 653, 676, 677, 680, 702,
705, 709, 716, 717, 720, 733, 744, 766, 894,
904, 987, 1040, 1060, 1063, 1065, 1078, 1082,
1153, 1286, 1350, 1363, 1365, 1372, 1374, 1378,
1382, 1389, 1393, 1415, 1416, 1436, 1458, 1471,
1489, 1491, 1501, 1523, 1633, 1634.

print lc hex : 59.
print length param : 273, 275, 277.
print ln : 57, 58, 59, 63, 65, 66, 75, 90, 93, 94, 136,

208, 224, 244, 262, 271, 326, 336, 344, 347, 360,
390, 393, 435, 519, 569, 572, 676, 677, 702, 705,
708, 709, 716, 717, 719, 720, 734, 1040, 1319,
1334, 1363, 1365, 1372, 1374, 1378, 1394, 1433,
1489, 1501, 1523, 1541, 1566, 1585, 1587, 1588.

print locs : 192.
print mark : 202, 222, 1416.
print meaning : 326, 507, 1348.
print mode : 237, 244, 329, 1103.
print native word : 201, 1415, 1416.
print nl : 66, 77, 86, 88, 89, 94, 193, 194, 195, 196,

197, 244, 245, 271, 281, 315, 318, 329, 336,
341, 343, 344, 353, 390, 434, 565, 569, 595,
616, 676, 677, 679, 680, 702, 708, 709, 716,
719, 720, 744, 894, 904, 905, 911, 987, 1040,
1041, 1046, 1060, 1065, 1175, 1348, 1350, 1351,
1376, 1378, 1382, 1387, 1389, 1392, 1433, 1458,
1489, 1501, 1523, 1585, 1587, 1588.

print param : 263, 265, 268.
print plus : 1039.
print plus end : 1039.
print raw char : 58, 59.
print roman int : 73, 507.
print rule dimen : 202, 213.
print sa num : 1633, 1634, 1643, 1644.
print scaled : 107, 125, 136, 202, 203, 204, 209,

210, 214, 217, 218, 245, 277, 500, 507, 595,
596, 678, 708, 719, 739, 1039, 1040, 1041,
1060, 1065, 1313, 1315, 1376, 1436, 1445,
1490, 1491, 1634, 1663.

print size : 741, 766, 1285.
print skip param : 215, 251, 253, 255.
print spec : 204, 214, 215, 216, 255, 500, 1634.
print style : 732, 736, 1224.
print subsidiary data : 734, 738, 739.
print the digs : 68, 69, 71.
print totals : 244, 1039, 1040, 1060.
print two : 70, 571, 653.
print utf8 str : 744.
print visible char : 58, 59, 64, 347, 744, 1416, 1436.

print word : 136, 1393.
print write whatsit : 1415, 1416.
printed node : 869, 904, 905, 906, 912.
privileged : 1105, 1108, 1184, 1194.
prompt file name : 565, 567, 570, 572, 1382, 1437.
prompt input : 75, 87, 91, 390, 393, 519, 565.
protected : 1581.
\protected primitive: 1581.
protected token : 319, 423, 513, 1267, 1349, 1583.
prune movements : 651, 655, 667.
prune page top : 1022, 1031, 1075.
pseudo : 54, 57, 58, 59, 63, 346.
pseudo close : 359, 1568, 1569.
pseudo files : 1561, 1562, 1565, 1567, 1568, 1569.
pseudo input : 392, 1567.
pseudo start : 1560, 1563, 1564.
pstack : 422, 424, 430, 434.
pt : 488.
ptmp : 925, 929.
ptr : 169.
punct noad : 724, 732, 738, 740, 771, 796, 805,

809, 1210, 1211.
push : 620, 621, 622, 626, 628, 637, 644, 652,

655, 667.
push alignment : 820, 822.
push input : 351, 353, 355, 358.
push LR : 1515, 1518, 1521, 1527, 1539, 1548, 1550.
push math : 1190, 1193, 1199, 1207, 1226, 1228,

1245.
push nest : 242, 822, 834, 835, 1079, 1137, 1145,

1153, 1171, 1173, 1190, 1221, 1254.
push node : 877.
put : 26, 29, 1359.
put LR : 1515, 1520.
put rule : 621, 622, 671.
put sa ptr : 1630, 1642.
put1 : 621.
put2 : 621.
put3 : 621.
put4 : 621.
q: 116, 118, 126, 145, 147, 152, 153, 166, 175, 176,

177, 192, 197, 228, 230, 244, 305, 322, 345,
366, 396, 423, 441, 447, 485, 496, 498, 499,
500, 508, 517, 532, 533, 643, 655, 689, 748,
749, 752, 755, 763, 769, 777, 778, 779, 780,
781, 787, 793, 796, 800, 810, 839, 848, 874,
878, 910, 925, 954, 960, 988, 1002, 1007, 1011,
1013, 1014, 1022, 1024, 1048, 1066, 1097, 1122,
1133, 1147, 1159, 1173, 1177, 1192, 1238, 1245,
1252, 1265, 1290, 1356, 1357, 1403, 1431, 1433,
1493, 1533, 1549, 1555, 1564, 1568, 1593, 1626,
1630, 1632, 1633, 1636, 1648.

706 PART 55: INDEX X ETEX §1679

qi : 134, 580, 584, 599, 605, 608, 611, 618, 652,
658, 797, 805, 961, 962, 965, 967, 977, 1012,
1013, 1035, 1062, 1063, 1088, 1089, 1092, 1093,
1094, 1154, 1205, 1209, 1214, 1219, 1363, 1379,
1481, 1565, 1580, 1667, 1669.

qo : 134, 184, 200, 202, 211, 214, 589, 605, 611,
638, 652, 658, 733, 751, 765, 766, 781, 785,
796, 799, 805, 949, 950, 951, 956, 963, 977,
999, 1035, 1040, 1062, 1072, 1075, 1093, 1364,
1378, 1379, 1471, 1669.

qqqq : 132, 135, 136, 169, 585, 589, 604, 608, 609,
725, 756, 785, 796, 963, 1093, 1235, 1359,
1360, 1565, 1567.

quad : 582, 593, 688, 744, 1545.
quad code : 582, 593.
quarterword : 132, 135, 166, 279, 294, 301, 306,

307, 309, 311, 328, 330, 353, 628, 723, 749,
754, 755, 793, 800, 925, 975, 997, 998, 1001,
1014, 1115, 1133, 1159, 1466, 1489, 1588,
1626, 1646, 1648.

quote char : 328, 505, 507, 1315.
quoted filename : 595.
quotient : 1607, 1608.
qw : 595, 599, 605, 608, 611.
r: 112, 126, 145, 147, 153, 230, 244, 396, 423,

447, 500, 517, 533, 655, 689, 710, 749, 763,
769, 781, 796, 839, 848, 877, 910, 925, 954,
1007, 1020, 1022, 1024, 1048, 1066, 1133, 1159,
1177, 1214, 1252, 1290, 1403, 1431, 1433, 1544,
1555, 1564, 1567, 1593, 1610.

R code : 171, 218, 1527, 1542.
r count : 966, 968, 972.
r hyf : 939, 940, 943, 952, 955, 957, 977, 1422,

1423.
r type : 769, 770, 771, 772, 808, 814, 815.
radical : 234, 295, 296, 1100, 1216.
\radical primitive: 295.
radical noad : 725, 732, 738, 740, 776, 809, 1217.
radical noad size : 725, 740, 809, 1217.
radicalDegreeBottomRaisePercent : 742.
radicalDisplayStyleVerticalGap : 742, 780.
radicalExtraAscender : 742.
radicalKernAfterDegree : 742.
radicalKernBeforeDegree : 742.
radicalRuleThickness : 742, 780.
radicalVerticalGap : 742, 780.
radix : 396, 472, 473, 474, 478, 479, 482.
radix backup : 396.
\raise primitive: 1125.
Ramshaw, Lyle Harold: 574.
random seed : 114, 458, 1391, 1413.
\randomseed primitive: 450.

random seed code : 450, 451, 458.
randoms : 114, 128, 129, 130, 131.
rbrace ptr : 423, 433, 434.
read : 52, 53, 1392, 1393.
\read primitive: 295.
read file : 515, 520, 521, 1329.
read font info : 595, 599, 1094, 1311.
\readline primitive: 1570.
read ln : 52.
read open : 515, 516, 518, 520, 521, 536, 1329.
read sixteen : 599, 600, 603.
read to cs : 235, 295, 296, 1264, 1279, 1570.
read toks : 333, 517, 1279.
ready already : 1385, 1386.
real : 3, 113, 132, 208, 212, 655, 667, 1177,

1179, 1445, 1533.
real addition: 1179.
real division: 700, 706, 715, 718, 858, 859,

1177, 1179.
real multiplication: 136, 212, 663, 672, 857, 1179.
real point : 1445.
real rect : 1445.
rebox : 758, 788, 794.
reconstitute : 959, 960, 967, 969, 970, 971, 1086.
recursion: 80, 82, 199, 206, 224, 228, 229, 396,

436, 441, 533, 562, 628, 654, 734, 762, 763, 768,
798, 1003, 1011, 1013, 1387, 1438, 1492.

ref count : 423, 424, 435.
reference counts: 174, 226, 227, 229, 305, 321,

337, 1631, 1632.
reflected : 652, 1532, 1549.
register : 235, 445, 446, 447, 1264, 1275, 1278,

1289, 1290, 1291, 1634, 1643, 1645.
rel noad : 724, 732, 738, 740, 771, 805, 809,

815, 1210, 1211.
rel penalty : 262, 724, 809.
\relpenalty primitive: 264.
rel penalty code : 262, 263, 264.
relax : 233, 295, 296, 388, 403, 406, 438, 513,

541, 1099, 1278, 1595.
\relax primitive: 295.
release font engine : 744.
rem byte : 580, 589, 592, 605, 751, 756, 784,

793, 797, 965, 1094.
remainder : 108, 110, 111, 492, 493, 578, 579,

580, 759, 760.
remove item : 234, 1158, 1161, 1162.
rep : 581.
replace count : 167, 201, 221, 877, 888, 906, 917,

930, 931, 972, 1088, 1134, 1174, 1420.
report illegal case : 1099, 1104, 1105, 1297, 1440,

1442, 1443, 1444.

§1679 X ETEX PART 55: INDEX 707

requires units : 482.
reset : 26, 27, 33.
reset OK : 27.
\resettimer primitive: 1398.
reset timer code : 1398, 1401, 1403.
restart : 15, 147, 148, 371, 376, 387, 389, 390, 392,

403, 414, 447, 474, 689, 796, 797, 830, 833, 837,
863, 946, 1205, 1269, 1420, 1593, 1594, 1599.

restore cur string : 505, 506.
restore old value : 298, 306, 312.
restore sa : 298, 312, 1648.
restore trace : 307, 313, 314, 1634.
restore zero : 298, 306, 308.
restrictedshell : 458.
result : 45, 46, 1445.
resume after display : 848, 1253, 1254, 1260.
reswitch : 15, 371, 373, 382, 396, 402, 498, 655,

658, 689, 691, 692, 769, 771, 988, 989, 1083,
1084, 1088, 1090, 1099, 1192, 1201, 1205, 1532,
1533, 1534, 1538, 1576.

return: 15, 16.
return sign : 126, 127.
reverse : 3, 1531, 1532, 1533.
reversed : 652, 1524, 1531.
rewrite : 26, 27, 33.
rewrite OK : 27.
rgba : 621.
rh : 132, 135, 136, 140, 170, 239, 245, 247, 260,

282, 283, 298, 727, 975, 1012, 1628.
\right primitive: 1242.
right brace : 233, 319, 324, 328, 377, 387, 423, 476,

509, 512, 833, 989, 1015, 1121, 1306, 1493.
right brace limit : 319, 355, 356, 426, 433, 434,

509, 512, 1493.
right brace token : 319, 369, 1119, 1181, 1280,

1434.
right delimiter : 725, 739, 792, 1235, 1236.
right hyphen min : 262, 1145, 1254, 1439, 1440.
\righthyphenmin primitive: 264.
right hyphen min code : 262, 263, 264.
\rightmarginkern primitive: 503.
right margin kern code : 503, 504, 506, 507.
right noad : 729, 732, 738, 740, 768, 770, 771, 808,

809, 810, 1238, 1242, 1245.
right ptr : 641, 642, 643, 651.
right pw : 688, 877, 929.
right side : 179, 460, 507, 688, 929, 1307.
right skip : 250, 875, 928, 929, 1551, 1654.
\rightskip primitive: 252.
right skip code : 250, 251, 252, 507, 929, 934,

1551, 1557.

right to left : 652, 661, 664, 666, 670, 671, 675,
1524, 1525, 1545.

rightskip : 929.
right1 : 621, 622, 643, 646, 652.
right2 : 621, 646.
right3 : 621, 646.
right4 : 621, 646.
rlink : 146, 147, 148, 149, 151, 152, 153, 154, 167,

173, 189, 194, 820, 867, 869, 1365, 1366.
\romannumeral primitive: 503.
roman numeral code : 503, 504, 506, 507.
round : 3, 136, 212, 656, 663, 672, 749, 857, 1179.
round decimals : 106, 107, 487.
round glue : 663, 1537.
round xn over d : 198, 688.
rover : 146, 147, 148, 149, 150, 151, 152, 153,

154, 189, 194, 1365, 1366.
\rpcode primitive: 1308.
rp code base : 179, 460, 1307, 1308, 1309.
rsb : 1177, 1179.
rt hit : 960, 961, 964, 965, 1087, 1089, 1094.
rule dp : 628, 660, 662, 664, 669, 671, 673.
rule ht : 628, 660, 662, 664, 669, 671, 672, 673, 674.
rule node : 160, 161, 172, 201, 209, 228, 232, 660,

664, 669, 673, 691, 693, 711, 712, 773, 809,
853, 889, 890, 914, 918, 919, 1022, 1027, 1054,
1128, 1141, 1175, 1201, 1535, 1544.

rule node size : 160, 161, 228, 232, 1544.
rule save : 848, 852.
rule thickness : 780.
rule wd : 628, 660, 662, 663, 664, 665, 669, 671,

673, 1509, 1532, 1535, 1536, 1539, 1540.
rules aligning with characters: 625.
run : 877.
runaway : 142, 336, 368, 430, 521.
Runaway... : 336.
rval : 742, 743.
s: 44, 45, 46, 58, 59, 63, 66, 67, 97, 98, 99, 107,

112, 147, 152, 171, 203, 204, 289, 294, 314,
423, 441, 505, 508, 517, 564, 565, 595, 676,
684, 689, 710, 730, 741, 749, 763, 769, 781,
839, 848, 878, 910, 925, 954, 988, 1020, 1022,
1041, 1066, 1114, 1115, 1177, 1192, 1252, 1290,
1311, 1333, 1404, 1411, 1415, 1489, 1493, 1529,
1555, 1564, 1593, 1632, 1634.

s max : 749.
sa : 781.
sa bot mark : 1636, 1639, 1641.
sa chain : 298, 312, 1646, 1647, 1648, 1652.
sa def : 1650, 1651.
sa def box : 1131, 1650.
sa define : 1280, 1281, 1290, 1650.

708 PART 55: INDEX X ETEX §1679

sa destroy : 1649, 1650, 1651, 1652.
sa dim : 1631, 1634.
sa first mark : 1636, 1639, 1640, 1641.
sa index : 1626, 1631, 1632, 1633, 1648, 1649, 1652.
sa int : 461, 1291, 1631, 1632, 1634, 1648, 1650,

1651, 1652.
sa lev : 1631, 1648, 1650, 1651, 1652.
sa level : 298, 312, 1646, 1647, 1648.
sa loc : 1648, 1652.
sa mark : 1031, 1066, 1389, 1627, 1628.
sa null : 1626, 1627, 1628, 1631.
sa num : 1631, 1633.
sa ptr : 449, 461, 1088, 1281, 1291, 1631, 1632,

1634, 1648, 1649, 1650, 1651, 1652.
sa ref : 1631, 1632, 1648.
sa restore : 312, 1652.
sa root : 1365, 1366, 1627, 1629, 1630, 1632.
sa save : 1648, 1650.
sa split bot mark : 1636, 1637, 1638.
sa split first mark : 1636, 1637, 1638.
sa top mark : 1636, 1639, 1640.
sa type : 461, 1291, 1631, 1634, 1643.
sa used : 1626, 1630, 1631, 1632, 1636.
sa w def : 1650, 1651.
sa word define : 1290, 1650.
save cond ptr : 533, 535, 544.
save cs ptr : 822, 825.
save cur cs : 441, 1410.
save cur string : 505, 506.
save cur val : 485, 490.
save def ref : 505, 506.
save f : 793, 795, 800, 801, 802, 803, 805.
save for after : 310, 1325.
save h : 655, 661, 665, 666, 667, 670, 675, 1426,

1430, 1531, 1532.
save index : 298, 304, 306, 310, 312, 1489, 1585,

1588, 1648.
save level : 298, 299, 304, 306, 310, 312, 1489,

1588, 1648.
save link : 878, 905.
save loc : 655, 667.
save native len : 61, 1088.
save pointer : 1488, 1489, 1584.
save ptr : 298, 301, 302, 303, 304, 306, 310, 312,

313, 315, 684, 852, 1140, 1153, 1154, 1171,
1174, 1196, 1207, 1222, 1226, 1228, 1240, 1248,
1358, 1489, 1585, 1588, 1648.

save scanner status : 396, 401, 402, 423, 505, 506,
529, 533, 536, 542, 1577.

save size : 11, 133, 301, 303, 1388, 1488.
save split top skip : 1066, 1068.

save stack : 229, 298, 300, 301, 303, 304, 305, 306,
307, 311, 312, 313, 315, 330, 406, 524, 684, 816,
1116, 1125, 1185, 1194, 1204, 1207, 1393, 1488.

save style : 763, 769, 798.
save type : 298, 304, 306, 310, 312, 1648.
save v : 655, 661, 666, 667, 670, 674, 675, 1426,

1430.
save vbadness : 1066, 1071.
save vfuzz : 1066, 1071.
save warning index : 423, 505, 506.
saved : 304, 684, 852, 1137, 1140, 1153, 1154, 1171,

1173, 1196, 1207, 1222, 1226, 1228, 1240, 1248,
1471, 1472, 1489, 1490, 1491.

saved chr : 505, 506.
saved math style : 800, 805.
saving hyph codes : 262, 1014.
\savinghyphcodes primitive: 1467.
saving hyph codes code : 262, 1467, 1469.
saving vdiscards : 262, 1031, 1053, 1670.
\savingvdiscards primitive: 1467.
saving vdiscards code : 262, 1467, 1469.
sc : 132, 135, 136, 157, 174, 184, 189, 239, 245, 273,

276, 277, 447, 454, 459, 585, 587, 589, 592, 593,
606, 608, 610, 615, 742, 743, 744, 823, 870, 871,
880, 891, 892, 896, 898, 908, 909, 937, 1096,
1203, 1260, 1301, 1302, 1307, 1484, 1631, 1653.

scaled : 105, 106, 107, 108, 109, 110, 111, 112, 114,
130, 132, 135, 171, 174, 180, 198, 202, 203, 481,
482, 485, 488, 583, 584, 595, 620, 628, 643, 652,
655, 667, 685, 688, 689, 710, 721, 742, 743, 744,
747, 748, 749, 755, 758, 759, 760, 762, 769, 778,
779, 780, 781, 787, 793, 800, 810, 839, 848, 871,
877, 878, 887, 895, 925, 960, 1024, 1025, 1031,
1034, 1036, 1048, 1066, 1122, 1140, 1177, 1192,
1252, 1311, 1429, 1529, 1533, 1555, 1653, 1655.

scaled : 1312.
scaled base : 273, 275, 277, 1278, 1291.
scan and pack name : 467, 1446, 1447, 1454,

1455, 1456.
scan box : 1127, 1138, 1295.
scan char class : 467, 1286.
scan char class not ignored : 449, 467, 1280, 1281.
scan char num : 460, 467, 468, 989, 1092, 1177,

1178, 1205, 1208, 1307.
scan decimal : 483, 1445.
scan delimiter : 1214, 1217, 1236, 1237, 1245, 1246.
scan delimiter int : 471, 1205, 1208, 1214.
scan dimen : 444, 474, 481, 482, 483, 496, 497,

1115.
scan eight bit int : 467, 1153.
scan expr : 1591, 1592, 1593.
scan fifteen bit int : 470, 1205, 1208, 1219, 1278.

§1679 X ETEX PART 55: INDEX 709

scan file name : 295, 364, 561, 562, 572, 1311,
1329, 1406, 1445, 1448, 1456.

scan font ident : 449, 460, 506, 612, 613, 1288,
1307, 1454, 1460, 1481, 1580.

scan four bit int : 469, 536, 1329, 1405.
scan general text : 1492, 1493, 1498, 1564.
scan glue : 444, 496, 830, 1114, 1282, 1292, 1598.
scan glyph number : 460, 467, 1307.
scan int : 443, 444, 466, 467, 468, 469, 470, 471,

472, 474, 481, 482, 496, 506, 538, 539, 544, 613,
1157, 1279, 1282, 1286, 1292, 1294, 1297, 1298,
1300, 1302, 1307, 1312, 1405, 1413, 1440, 1444,
1445, 1454, 1458, 1460, 1484, 1596, 1622, 1677.

scan keyword : 187, 441, 467, 488, 489, 490, 491,
493, 497, 498, 506, 684, 1136, 1153, 1219, 1279,
1290, 1312, 1409, 1445.

scan left brace : 437, 508, 684, 833, 988, 1014,
1079, 1153, 1171, 1173, 1207, 1226, 1228, 1493.

scan math : 1204, 1205, 1212, 1217, 1219, 1230.
scan math class int : 469, 1205, 1208, 1214, 1219,

1278, 1286.
scan math fam int : 469, 612, 1205, 1208, 1214,

1219, 1278, 1286, 1288.
scan mu glue : 1596, 1597, 1598, 1618.
scan normal dimen : 482, 498, 538, 684, 1127,

1136, 1236, 1237, 1282, 1292, 1297, 1299, 1301,
1302, 1307, 1313, 1445, 1596.

scan normal glue : 1596, 1597, 1598, 1614, 1615,
1619.

scan optional equals : 439, 830, 1278, 1280, 1282,
1286, 1288, 1290, 1295, 1297, 1298, 1299, 1300,
1301, 1302, 1307, 1311, 1329, 1406.

scan pdf ext toks : 506, 1410.
scan register num : 420, 449, 454, 461, 506, 540,

1133, 1136, 1155, 1164, 1278, 1280, 1281, 1291,
1295, 1301, 1350, 1621, 1622.

scan rule spec : 498, 1110, 1138.
scan something internal : 443, 444, 447, 466, 474,

484, 486, 490, 496, 500, 1591.
scan spec : 684, 816, 822, 1125, 1137, 1221.
scan tokens : 1558.
\scantokens primitive: 1558.
scan toks : 321, 499, 508, 1014, 1155, 1272, 1280,

1333, 1342, 1407, 1409, 1410, 1434, 1492.
scan usv num : 447, 448, 468, 506, 1084, 1088,

1205, 1208, 1214, 1219, 1278, 1286, 1481, 1580.
scan xetex del code int : 1286.
scan xetex math char int : 469, 1205, 1208, 1278,

1286.
scanned result : 447, 448, 449, 452, 456, 459,

460, 462, 467.
scanned result end : 447.

scanner status : 335, 336, 361, 366, 369, 396, 401,
402, 423, 425, 505, 506, 508, 517, 529, 533,
536, 542, 825, 837, 1099, 1493, 1577.

script c : 800, 805.
script f : 800, 801, 802, 803, 805.
\scriptfont primitive: 1284.
script g : 800, 801, 802, 803, 805.
script head : 800, 801, 802, 803, 805.
script mlist : 731, 737, 740, 774, 805, 1228.
script ptr : 800, 805.
\scriptscriptfont primitive: 1284.
script script mlist : 731, 737, 740, 774, 805, 1228.
script script size : 12, 260, 800, 1249, 1284.
script script style : 730, 736, 774, 1223.
\scriptscriptstyle primitive: 1223.
script size : 12, 260, 741, 746, 750, 800, 1249, 1284.
script space : 273, 801, 802, 803.
\scriptspace primitive: 274.
script space code : 273, 274.
script style : 730, 736, 745, 746, 774, 800, 814,

1223.
\scriptstyle primitive: 1223.
scriptPercentScaleDown : 742.
scripts allowed : 729, 1230.
scriptScriptPercentScaleDown : 742.
scroll mode : 75, 77, 88, 90, 97, 565, 1316,

1317, 1335.
\scrollmode primitive: 1316.
search mem : 190, 197, 281, 1393.
second indent : 895, 896, 897, 937.
second pass : 876, 911, 914.
second width : 895, 896, 897, 898, 937.
seconds and micros : 1411, 1412, 1414.
Sedgewick, Robert: 2.
see the transcript file... : 1389.
seed : 129.
selector : 54, 55, 57, 58, 59, 63, 66, 75, 79, 90,

94, 96, 102, 271, 341, 342, 346, 390, 500,
505, 506, 569, 570, 653, 676, 678, 1311, 1319,
1333, 1352, 1382, 1387, 1389, 1410, 1431,
1433, 1436, 1498, 1564.

semi simple group : 299, 1117, 1119, 1122, 1123,
1471, 1489.

serial : 869, 893, 894, 904.
set aux : 235, 447, 450, 451, 452, 1264, 1296.
set box : 235, 295, 296, 1264, 1295.
\setbox primitive: 295.
set box allowed : 80, 81, 1295, 1324.
set box dimen : 235, 447, 450, 451, 1264, 1296.
set box lr : 652, 855, 856, 1248, 1256, 1524, 1531.
set box lr end : 652.
set break width to background : 885.

710 PART 55: INDEX X ETEX §1679

set char 0 : 621, 622, 658.
set class field : 258, 1205, 1208, 1219, 1278, 1286.
set conversion : 493.
set conversion end : 493.
set cp code : 1307.
set cur lang : 988, 1014, 1145, 1254.
set cur r : 962, 964, 965.
set family field : 258, 1205, 1208, 1219, 1278, 1286.
set font : 235, 447, 588, 612, 1264, 1271, 1311,

1315.
set glue ratio one : 113, 706, 718, 858, 859.
set glue ratio zero : 113, 158, 699, 700, 706, 714,

715, 718, 858, 859.
set glyphs : 621, 622, 1426, 1430.
set height zero : 1024.
set hyph index : 939, 988, 1422, 1423, 1669.
set input file encoding : 1446.
set interaction : 235, 1264, 1316, 1317, 1318.
set justified native glyphs : 656.
\setlanguage primitive: 1398.
set language code : 1398, 1401, 1403.
set lc code : 946, 949, 950, 951, 991, 1669.
set math char : 1208, 1209.
set native char : 656, 744, 947, 957, 1088, 1420.
set native glyph metrics : 749, 781, 783, 793,

799, 1444.
set native metrics : 169, 744, 947, 957, 1088, 1420.
set page dimen : 235, 447, 1036, 1037, 1038,

1264, 1296.
set page int : 235, 447, 450, 451, 1264, 1296, 1502.
set page so far zero : 1041.
set prev graf : 235, 295, 296, 447, 1264, 1296.
set random seed code : 1398, 1401, 1403.
\setrandomseed primitive: 1398.
set rule : 619, 621, 622, 662.
set sa box : 1632.
set shape : 235, 259, 295, 296, 447, 1264, 1302,

1675.
set text and glyphs : 621, 622, 1430.
set trick count : 346, 347, 348, 350.
setLen : 744.
setPoint : 1445.
settingNameP : 744.
set1 : 621, 622, 658.
set2 : 621.
set3 : 621.
set4 : 621.
sf code : 256, 258, 447, 1088, 1286.
\sfcode primitive: 1284.
sf code base : 256, 261, 447, 448, 1284, 1285,

1286, 1287.
shape ref : 236, 258, 305, 1124, 1302.

shellenabledp : 458.
shift amount : 157, 158, 184, 210, 661, 666, 670,

675, 689, 693, 710, 712, 723, 749, 763, 780,
781, 793, 794, 800, 801, 803, 807, 847, 854,
855, 856, 937, 1130, 1135, 1179, 1545, 1551,
1555, 1556, 1557.

shift case : 1339, 1342.
shift down : 787, 788, 789, 790, 791, 793, 795,

800, 801, 803, 806.
shift up : 787, 788, 789, 790, 791, 793, 795, 800,

802, 803, 807.
ship out : 628, 676, 683, 855, 856, 1077, 1129,

1451, 1510, 1515.
\shipout primitive: 1125.
ship out flag : 1125, 1129, 1491.
short display : 199, 200, 201, 219, 705, 905, 1393.
short display n : 224.
short real : 113, 132.
shortcut : 481, 482.
shortfall : 878, 899, 900, 901, 1653, 1658, 1660,

1661.
shorthand def : 235, 1264, 1276, 1277, 1278.
\show primitive: 1345.
show activities : 244, 1347.
show box : 206, 208, 224, 244, 245, 262, 676, 679,

705, 717, 1040, 1046, 1175, 1350, 1393.
\showbox primitive: 1345.
show box breadth : 262, 1393.
\showboxbreadth primitive: 264.
show box breadth code : 262, 263, 264.
show box code : 1345, 1346, 1347.
show box depth : 262, 1393.
\showboxdepth primitive: 264.
show box depth code : 262, 263, 264.
show code : 1345, 1347.
show context : 54, 82, 86, 92, 340, 341, 348, 565,

570, 572, 1585, 1587, 1588.
show cur cmd chr : 329, 399, 529, 533, 545,

1085, 1265.
show eqtb : 278, 314, 1634.
show groups : 1485, 1486, 1487.
\showgroups primitive: 1485.
show ifs : 1499, 1500, 1501.
\showifs primitive: 1499.
show info : 734, 735.
show lists code : 1345, 1346, 1347.
\showlists primitive: 1345.
show node list : 199, 202, 206, 207, 208, 221, 224,

259, 732, 734, 735, 737, 1393, 1634.
show sa : 1634, 1650, 1651, 1652.
show save groups : 1389, 1487, 1489.
\showthe primitive: 1345.

§1679 X ETEX PART 55: INDEX 711

show the code : 1345, 1346.
show token list : 202, 249, 259, 322, 325, 336, 349,

350, 434, 506, 1393, 1410, 1431, 1634.
show tokens : 1494, 1495, 1496.
\showtokens primitive: 1494.
show whatever : 1344, 1347.
shown mode : 239, 241, 329.
shrink : 174, 175, 189, 204, 465, 497, 656, 663,

672, 698, 713, 759, 857, 873, 875, 886, 916,
1030, 1058, 1063, 1096, 1098, 1202, 1283,
1293, 1294, 1509, 1557, 1601, 1602, 1605,
1606, 1607, 1609, 1615.

shrink order : 174, 189, 204, 497, 656, 663, 672,
698, 713, 759, 857, 873, 874, 1030, 1058, 1063,
1202, 1293, 1509, 1557, 1602, 1605, 1614.

shrinking : 157, 212, 655, 667, 706, 718, 857, 858,
859, 1202, 1509, 1533.

si : 38, 42, 73, 1005, 1018, 1364, 1565, 1667.
side : 688.
simple group : 299, 1117, 1122, 1471, 1489.
Single-character primitives: 297.
\− : 1168.
\/ : 295.
\␣ : 295.

single base : 248, 292, 293, 294, 384, 402, 403, 408,
476, 536, 1099, 1311, 1343, 1579.

size code : 742.
sizeof : 60, 62, 744, 1417, 1445.
skew char : 179, 460, 584, 587, 611, 744, 785,

1307, 1376, 1377.
\skewchar primitive: 1308.
skewedFractionHorizontalGap : 742.
skewedFractionVerticalGap : 742.
skip : 250, 461, 1063.
\skip primitive: 445.
skip base : 250, 253, 255, 1278, 1291.
skip blanks : 333, 374, 375, 377, 379, 384.
skip byte : 580, 592, 785, 796, 797, 963, 1093.
skip code : 1112, 1113, 1114.
\skipdef primitive: 1276.
skip def code : 1276, 1277, 1278.
skip line : 366, 528, 529.
skipping : 335, 336, 366, 529.
SLANT : 621.
slant : 582, 593, 610, 621, 744, 1177, 1179.
slant code : 582, 593.
slow make string : 744.
slow print : 64, 65, 67, 88, 553, 571, 572, 616, 680,

1315, 1334, 1337, 1382, 1387, 1393.
small char : 725, 733, 739, 749.
small char field : 725, 1214.
small fam : 725, 733, 739, 749, 780.

small node size : 163, 166, 167, 171, 176, 177, 180,
183, 228, 232, 697, 764, 956, 964, 968, 1091,
1154, 1155, 1417, 1418, 1439, 1440, 1450, 1532,
1535, 1538, 1540, 1544, 1549.

small number : 59, 105, 106, 171, 176, 178, 294,
371, 396, 423, 447, 472, 474, 485, 496, 499, 500,
505, 517, 524, 529, 532, 533, 558, 643, 688, 689,
710, 730, 762, 763, 769, 800, 810, 877, 940,
942, 959, 960, 975, 988, 998, 1014, 1024, 1041,
1114, 1129, 1140, 1145, 1230, 1235, 1245, 1252,
1265, 1290, 1300, 1301, 1311, 1347, 1379, 1389,
1404, 1405, 1433, 1436, 1445, 1515, 1529, 1593,
1626, 1630, 1632, 1634, 1636, 1653.

small plane and fam field : 725, 1214.
so : 38, 45, 63, 73, 74, 294, 441, 499, 554, 639, 653,

678, 814, 985, 1007, 1009, 1010, 1013, 1017,
1363, 1431, 1436, 1565, 1666.

Sorry, I can’t find... : 559.
sort avail : 153, 1365.
sp: 108, 623.
sp : 493.
space : 582, 593, 744, 796, 799, 1096.
space adjustment : 179, 217, 656, 885, 927, 1088.
space class : 1086, 1088.
space code : 582, 593, 613, 1096.
space factor : 238, 239, 452, 834, 835, 847, 1084,

1088, 1097, 1098, 1110, 1130, 1137, 1145, 1147,
1171, 1173, 1177, 1250, 1254, 1296, 1297.

\spacefactor primitive: 450.
space shrink : 582, 593, 744, 1096.
space shrink code : 582, 593, 613.
space skip : 250, 1095, 1097.
\spaceskip primitive: 252.
space skip code : 250, 251, 252, 1095.
space stretch : 582, 593, 744, 1096.
space stretch code : 582, 593.
space token : 319, 427, 499, 1269, 1572.
spaceAfterScript : 742.
spacer : 233, 234, 258, 319, 321, 324, 328, 333,

367, 375, 377, 378, 379, 384, 438, 440, 441,
477, 478, 487, 499, 505, 831, 833, 839, 989,
1015, 1084, 1099, 1275.

\span primitive: 828.
span code : 828, 829, 830, 837, 839.
span count : 184, 211, 844, 849, 856.
span node size : 845, 846, 851.
spec code : 684.
spec log : 121, 122, 124.
\special primitive: 1398.
special char : 12, 388, 828.
special node : 1395, 1398, 1401, 1403, 1409, 1416,

1417, 1418, 1436.

712 PART 55: INDEX X ETEX §1679

special out : 1431, 1436.
split : 1065.
split bot mark : 416, 417, 1031, 1033, 1620,

1637, 1638.
\splitbotmark primitive: 418.
split bot mark code : 416, 418, 419, 1389, 1620,

1642.
\splitbotmarks primitive: 1620.
split disc : 1022, 1031, 1670, 1671.
\splitdiscards primitive: 1672.
split first mark : 416, 417, 1031, 1033, 1620, 1638.
\splitfirstmark primitive: 418.
split first mark code : 416, 418, 419, 1620.
\splitfirstmarks primitive: 1620.
split fist mark : 1637.
split max depth : 162, 273, 1031, 1122, 1154.
\splitmaxdepth primitive: 274.
split max depth code : 273, 274.
split top ptr : 162, 214, 228, 232, 1075, 1076, 1154.
split top skip : 162, 250, 1022, 1031, 1066, 1068,

1075, 1154.
\splittopskip primitive: 252.
split top skip code : 250, 251, 252, 1023.
split up : 1035, 1040, 1062, 1064, 1074, 1075.
spotless : 80, 81, 271, 1386, 1389, 1585, 1587, 1588.
spread : 684.
sprint cs : 249, 293, 368, 429, 430, 432, 507,

514, 519, 596, 1348.
square roots: 780.
src : 169.
ss code : 1112, 1113, 1114.
ss glue : 187, 189, 758, 1114.
stack conventions: 330.
stack glue into box : 749.
stack glyph into box : 749.
stack into box : 754, 756.
stack size : 11, 331, 340, 351, 1388.
stackBottomDisplayStyleShiftDown : 742.
stackBottomShiftDown : 742.
stackDisplayStyleGapMin : 742, 789.
stackGapMin : 742, 789.
stackTopDisplayStyleShiftUp : 742.
stackTopShiftUp : 742.
start : 330, 332, 333, 337, 348, 349, 353, 354,

355, 356, 358, 359, 361, 390, 392, 393, 401,
402, 518, 573, 1566.

start cs : 371, 384, 385.
start eq no : 1194, 1196.
start field : 330, 332.
start font error message : 596, 602.
start here : 5, 1386.
start input : 396, 410, 412, 572, 1391.

start of TEX : 6, 1386.
start par : 234, 1142, 1143, 1144, 1146.
stat: 7, 139, 142, 143, 144, 145, 147, 152, 278,

287, 304, 307, 312, 313, 314, 677, 874, 877,
893, 903, 911, 1041, 1059, 1064, 1387, 1472,
1634, 1650, 1651, 1652.

state : 91, 330, 332, 333, 337, 341, 342, 353, 355,
358, 360, 361, 367, 371, 373, 374, 376, 377, 379,
382, 383, 384, 424, 518, 572, 1088, 1389.

state field : 330, 332, 1185, 1586.
stomach: 436.
stop : 233, 1099, 1100, 1106, 1107, 1108, 1148.
stop flag : 580, 592, 785, 796, 797, 963, 1093.
store background : 912.
store break width : 891.
store fmt file : 1356, 1389.
store four quarters : 599, 603, 604, 608, 609.
store new token : 405, 406, 427, 431, 433, 441,

499, 501, 508, 509, 511, 512, 517, 518, 1493,
1572, 1578.

store scaled : 606, 608, 610.
str : 749.
str eq buf : 45, 286.
str eq str : 46, 289, 744, 1314.
str number : 2, 38, 39, 40, 43, 44, 45, 46, 47, 66,

67, 83, 97, 98, 99, 198, 203, 204, 289, 294, 314,
328, 441, 505, 547, 554, 560, 562, 564, 565, 567,
584, 595, 744, 980, 983, 988, 1311, 1333, 1353,
1410, 1415, 1489, 1564, 1625, 1634.

str pool : 38, 39, 42, 43, 44, 45, 46, 47, 63, 73, 74,
282, 287, 291, 294, 333, 441, 499, 507, 554,
638, 639, 653, 656, 676, 678, 744, 812, 814,
983, 985, 988, 995, 1315, 1363, 1364, 1388,
1410, 1431, 1436, 1564, 1565.

str ptr : 38, 39, 41, 43, 44, 47, 48, 63, 74, 287,
289, 292, 505, 552, 560, 572, 653, 656, 678,
744, 1314, 1363, 1364, 1377, 1379, 1381, 1386,
1388, 1410, 1431, 1436.

str room : 42, 44, 206, 287, 499, 551, 560, 656, 744,
993, 1311, 1333, 1382, 1387, 1431, 1564.

str start : 38, 39, 47, 282, 983, 988, 1363, 1364.
str start macro : 38, 40, 41, 43, 44, 45, 46, 48,

63, 73, 74, 287, 289, 294, 441, 505, 507, 552,
554, 639, 653, 656, 678, 744, 813, 985, 995,
1315, 1410, 1431, 1436, 1565.

str toks : 499, 500, 505, 506, 1498.
str toks cat : 499, 505.
stretch : 174, 175, 189, 204, 465, 497, 656, 663,

672, 698, 713, 749, 759, 857, 875, 886, 916,
1030, 1058, 1063, 1096, 1098, 1202, 1283, 1293,
1294, 1509, 1557, 1601, 1602, 1605, 1606, 1607,
1609, 1615, 1654, 1664.

§1679 X ETEX PART 55: INDEX 713

stretch order : 174, 189, 204, 497, 656, 663, 672,
698, 713, 759, 857, 875, 886, 916, 1030,
1058, 1063, 1202, 1293, 1509, 1557, 1602,
1605, 1614, 1654.

stretching : 157, 656, 663, 672, 700, 715, 749, 857,
858, 859, 1202, 1509.

stretchStackBottomShiftDown : 742.
stretchStackGapAboveMin : 742.
stretchStackGapBelowMin : 742.
stretchStackTopShiftUp : 742.
string pool: 47, 1362.
\string primitive: 503.
string code : 503, 504, 506, 507.
string vacancies : 11, 52.
stringcast : 595.
strlen : 1445.
style : 769, 770, 808, 809, 810.
style node : 185, 730, 732, 740, 773, 774, 805,

809, 1223, 1529.
style node size : 730, 731, 740, 811, 1529.
sub box : 723, 729, 734, 740, 763, 777, 778, 780,

781, 793, 798, 805, 1130, 1147, 1222.
sub cmd : 804, 806.
sub drop : 742, 800.
sub f : 800, 801, 803, 806.
sub g : 800, 801, 803, 806.
sub kern : 800, 803, 806.
sub mark : 233, 324, 328, 377, 1100, 1229.
sub mlist : 723, 725, 734, 763, 781, 786, 798, 805,

1235, 1239, 1240, 1245.
sub style : 745, 794, 801, 803, 805.
sub sup : 1229, 1230.
subscr : 723, 725, 728, 729, 732, 738, 740, 781, 786,

793, 794, 795, 796, 797, 798, 799, 800, 801, 803,
807, 1205, 1217, 1219, 1229, 1230, 1231, 1240.

subscriptBaselineDropMin : 742.
subscripts: 798, 1229.
subscriptShiftDown : 742.
subscriptTopMax : 742, 801.
subSuperscriptGapMin : 742, 803.
subtype : 155, 156, 157, 158, 161, 162, 164, 165,

166, 167, 168, 169, 170, 171, 173, 174, 176, 177,
178, 179, 180, 183, 184, 201, 209, 214, 215, 216,
217, 218, 219, 458, 507, 524, 530, 531, 652, 656,
663, 665, 667, 672, 674, 688, 689, 698, 710, 713,
723, 724, 728, 729, 730, 731, 732, 738, 744, 749,
760, 773, 774, 775, 776, 781, 783, 793, 799, 805,
811, 814, 816, 834, 841, 843, 857, 867, 868, 870,
877, 885, 889, 890, 891, 892, 914, 916, 918, 919,
927, 929, 945, 947, 949, 950, 951, 952, 956,
957, 964, 1035, 1040, 1042, 1062, 1063, 1072,
1074, 1075, 1088, 1089, 1114, 1115, 1132, 1134,

1154, 1155, 1167, 1175, 1179, 1202, 1213, 1217,
1219, 1225, 1235, 1245, 1389, 1395, 1404, 1416,
1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424,
1425, 1426, 1430, 1431, 1436, 1437, 1445, 1501,
1509, 1521, 1527, 1529, 1530, 1536, 1539, 1547,
1548, 1550, 1588, 1599, 1600, 1626.

sub1 : 742, 801.
sub2 : 742, 803.
succumb : 97, 98, 99, 198, 1358.
sup cmd : 804, 807.
sup count : 371, 382, 385.
sup drop : 742, 800.
sup f : 800, 802, 807.
sup g : 800, 802, 807.
sup kern : 800, 803, 807.
sup mark : 233, 324, 328, 371, 374, 385, 1100,

1229, 1230, 1231.
sup style : 745, 794, 802.
superscriptBaselineDropMax : 742.
superscriptBottomMaxWithSubscript : 742, 803.
superscriptBottomMin : 742, 802.
superscripts: 798, 1229.
superscriptShiftUp : 742.
superscriptShiftUpCramped : 742.
suppress fontnotfound error : 262, 595.
suppress fontnotfound error code : 262, 1510,

1511.
supscr : 723, 725, 728, 729, 732, 738, 740, 781,

786, 794, 795, 796, 797, 798, 800, 802, 1205,
1217, 1219, 1229, 1230, 1231, 1240.

sup1 : 742, 802.
sup2 : 742, 802.
sup3 : 742, 802.
sw : 595, 606, 610.
switch : 371, 373, 374, 376, 380.
synch h : 652, 658, 662, 666, 671, 675, 1426,

1430, 1431, 1436.
synch v : 652, 658, 662, 666, 670, 671, 675, 1426,

1430, 1431, 1436.
sys day : 267, 272, 571.
sys month : 267, 272, 571.
sys time : 267, 272, 571.
sys year : 267, 272, 571.
system dependencies: 2, 3, 4, 9, 10, 11, 12, 19, 21,

23, 26, 27, 28, 32, 33, 34, 35, 37, 38, 49, 56,
63, 65, 76, 85, 88, 100, 113, 116, 132, 134, 135,
186, 212, 267, 334, 343, 358, 520, 546, 547, 548,
549, 550, 551, 552, 553, 554, 555, 556, 558, 560,
572, 573, 592, 599, 627, 631, 633, 846, 1360,
1385, 1386, 1387, 1392, 1394, 1642, 1678.

sz : 1564, 1565, 1567.
s1 : 86, 92, 1410.

714 PART 55: INDEX X ETEX §1679

s2 : 86, 92, 1410.
s3 : 86, 92.
s4 : 86, 92.
t: 46, 111, 112, 147, 198, 244, 307, 309, 310, 311,

353, 371, 396, 423, 499, 508, 747, 748, 769, 800,
848, 877, 878, 925, 960, 988, 1020, 1024, 1084,
1177, 1230, 1245, 1252, 1311, 1342, 1347, 1533,
1544, 1549, 1555, 1593, 1610, 1630, 1634.

t open in : 33, 37.
t open out : 33, 1386.
tab mark : 233, 319, 324, 372, 377, 828, 829, 830,

831, 832, 836, 1180.
tab skip : 250.
\tabskip primitive: 252.
tab skip code : 250, 251, 252, 826, 830, 834,

841, 843, 857.
tab token : 319, 1182.
tag : 578, 579, 589.
tail : 164, 238, 239, 240, 241, 242, 458, 721, 744,

761, 824, 834, 843, 844, 847, 860, 864, 938,
1049, 1071, 1077, 1080, 1088, 1089, 1090, 1091,
1094, 1095, 1097, 1108, 1114, 1115, 1130, 1132,
1134, 1145, 1150, 1154, 1155, 1159, 1164, 1167,
1171, 1173, 1174, 1177, 1179, 1199, 1204, 1209,
1212, 1213, 1217, 1219, 1222, 1225, 1228, 1230,
1231, 1235, 1238, 1240, 1241, 1245, 1250, 1259,
1260, 1404, 1405, 1406, 1407, 1408, 1409, 1438,
1439, 1440, 1444, 1445, 1674.

tail append : 240, 744, 834, 843, 864, 1088, 1089,
1091, 1094, 1108, 1110, 1114, 1115, 1145,
1147, 1154, 1157, 1166, 1167, 1171, 1204, 1212,
1217, 1219, 1222, 1225, 1226, 1231, 1245, 1250,
1257, 1259, 1260, 1513.

tail field : 238, 239, 1049.
tail page disc : 1053, 1670.
take frac : 118, 130, 131.
take fraction : 1610.
tally : 54, 55, 57, 58, 322, 342, 345, 346, 347.
tats: 7.
temp head : 187, 336, 425, 430, 434, 499, 501, 502,

505, 506, 513, 762, 763, 798, 808, 864, 910,
911, 912, 925, 927, 928, 929, 935, 1022, 1118,
1119, 1248, 1250, 1253, 1351, 1493, 1498, 1517,
1519, 1545, 1546, 1548, 1549, 1564.

temp ptr : 137, 178, 654, 655, 661, 666, 667, 670,
675, 678, 721, 734, 735, 1023, 1055, 1075, 1088,
1091, 1095, 1389, 1515, 1517, 1519, 1522, 1531,
1532, 1533, 1538, 1557.

term and log : 54, 57, 58, 75, 79, 96, 271, 569,
1352, 1382, 1389, 1433.

term in : 32, 33, 34, 36, 37, 75, 1392, 1393.
term input : 75, 82.

term offset : 54, 55, 57, 58, 65, 66, 75, 572,
676, 1334, 1566.

term only : 54, 55, 57, 58, 75, 79, 96, 570, 1352,
1387, 1389.

term out : 32, 33, 34, 35, 36, 37, 51, 56.
terminal input : 334, 343, 358, 360, 390, 744.
terminate font manager : 1441.
test char : 960, 963.
TEX : 2, 4.
TeX capacity exceeded ... : 98.
buffer size: 35, 294, 358, 408, 1579.
exception dictionary: 994.
font memory: 615.
grouping levels: 304.
hash size: 287.
input stack size: 351.
main memory size: 142, 147.
number of strings: 43, 552.
parameter stack size: 424.
pattern memory: 1008, 1018.
pool size: 42.
primitive size: 290.
save size: 303.
semantic nest size: 242.
text input levels: 358.

TEX.POOL check sum... : 53.
TEX.POOL doesn’t match : 53.
TEX.POOL has no check sum : 52.
TEX.POOL line doesn’t... : 52.
TEX area : 549, 572.
TEX font area : 549, 598.
TEX format default : 555, 556, 558.
tex int pars : 262.
tex toks : 256.
The TEXbook: 1, 23, 49, 112, 233, 449, 480, 491,

494, 725, 730, 812, 1269, 1385.
TeXfonts : 549.
TeXformats : 11, 556.
TeXinputs : 549.
texput : 35, 569, 1311.
text : 282, 284, 285, 286, 287, 292, 293, 294,

295, 402, 403, 526, 536, 588, 828, 1099, 1242,
1270, 1311, 1372, 1432.

Text line contains... : 376.
text char : 19, 20, 25, 47.
\textfont primitive: 1284.
text mlist : 731, 737, 740, 774, 805, 1228.
text size : 12, 741, 746, 775, 1249, 1253.
text style : 730, 736, 746, 774, 780, 788, 789, 790,

792, 793, 802, 1223, 1248, 1250.
\textstyle primitive: 1223.
TeXXeT : 1510.

§1679 X ETEX PART 55: INDEX 715

TeXXeT code : 2, 1510, 1511.
TeXXeT en : 689, 691, 927, 928, 929, 1510, 1513,

1545, 1546, 1547.
TeXXeT state : 1510.
\TeXXeT_state primitive: 1511.
TEX82: 1, 103.
tfm : 1307.
TFM files: 574.
tfm file : 574, 595, 598, 599, 610.
TFtoPL : 596.
That makes 100 errors... : 86.
the : 236, 295, 296, 396, 399, 513, 1496.
The following...deleted : 679, 1046, 1175.
\the primitive: 295.
the toks : 500, 501, 502, 513, 1351, 1498.
thick mu skip : 250.
\thickmuskip primitive: 252.
thick mu skip code : 250, 251, 252, 814.
thickness : 725, 739, 768, 787, 788, 790, 791, 1236.
thin mu skip : 250.
\thinmuskip primitive: 252.
thin mu skip code : 250, 251, 252, 255, 814.
This can’t happen : 99.
/ : 116.
align: 848.
copying: 232.
curlevel: 311.
disc1: 889.
disc2: 890.
disc3: 918.
disc4: 919.
display: 1254.
endv: 839.
ext1: 1403.
ext2: 1417.
ext3: 1418.
ext4: 1436.
flushing: 228.
if: 532.
line breaking: 925.
LR1: 1522.
LR2: 1535.
LR3: 1541.
mlist1: 771.
mlist2: 798.
mlist3: 809.
mlist4: 814.
page: 1054.
paragraph: 914.
prefix: 1265.
pruning: 1022.
right: 1239.

rightbrace: 1122.
tail1: 1134.
too many spans: 846.
vcenter: 779.
vertbreak: 1027.
vlistout: 668.
vpack: 711.

this box : 655, 656, 662, 663, 667, 671, 672, 1524,
1525, 1531, 1532, 1533.

this if : 533, 536, 538, 540, 541.
this math style : 800, 805.
three codes : 684.
threshold : 876, 899, 902, 911.
Tight \hbox... : 709.
Tight \vbox... : 720.
tight fit : 865, 867, 878, 881, 882, 884, 901,

1653, 1659.
time : 262, 267, 653.
\time primitive: 264.
time code : 262, 263, 264.
tini: 8.
to : 684, 1136, 1279.
tok val : 444, 449, 452, 462, 500, 1278, 1280,

1281, 1626, 1634.
tok val limit : 1626, 1648.
token: 319.
token list : 337, 341, 342, 353, 355, 360, 367, 371,

376, 424, 1088, 1185, 1389, 1586.
token ref count : 226, 229, 321, 508, 517, 1033,

1493.
token show : 325, 326, 353, 435, 1333, 1338, 1351,

1433, 1498, 1564.
token type : 337, 341, 342, 344, 349, 353, 354, 355,

357, 413, 424, 1080, 1088, 1149.
tokens to string : 1410.
toks : 256.
\toks primitive: 295.
toks base : 256, 257, 258, 259, 337, 449, 1278,

1280, 1281.
\toksdef primitive: 1276.
toks def code : 1276, 1278.
toks register : 235, 295, 296, 447, 449, 1264, 1275,

1278, 1280, 1281, 1634, 1644, 1645.
tolerance : 262, 266, 876, 911.
\tolerance primitive: 264.
tolerance code : 262, 263, 264.
Too many }’s : 1122.
too big : 1610.
too big char : 12, 38, 48, 441, 584, 940, 1007.
too big lang : 12, 941.
too big usv : 12, 295, 364, 406, 541.
too small : 1357, 1360.

716 PART 55: INDEX X ETEX §1679

top : 581.
top bot mark : 236, 326, 396, 399, 418, 419,

420, 1620.
top edge : 667, 674.
top mark : 416, 417, 1066, 1620, 1639.
\topmark primitive: 418.
top mark code : 416, 418, 420, 1389, 1620, 1642.
\topmarks primitive: 1620.
top skip : 250.
\topskip primitive: 252.
top skip code : 250, 251, 252, 1055.
total chars : 689, 1420.
total demerits : 867, 893, 894, 903, 912, 922, 923.
total height : 1040.
total mathex params : 743, 1249.
total mathsy params : 742, 1249.
total pages : 628, 629, 653, 678, 680.
total pic node size : 1417, 1418.
total pw : 877, 899.
total shrink : 685, 690, 698, 706, 707, 708, 709,

713, 718, 719, 720, 844, 1255.
total stretch : 685, 690, 698, 700, 701, 702, 713,

715, 716, 844.
Trabb Pardo, Luis Isidoro: 2.
tracing assigns : 262, 307, 1650, 1651.
\tracingassigns primitive: 1467.
tracing assigns code : 262, 1467, 1469.
tracing commands : 262, 399, 533, 544, 545,

1085, 1265.
\tracingcommands primitive: 264.
tracing commands code : 262, 263, 264.
tracing groups : 262, 304, 312.
\tracinggroups primitive: 1467.
tracing groups code : 262, 1467, 1469.
tracing ifs : 262, 329, 529, 533, 545.
\tracingifs primitive: 1467.
tracing ifs code : 262, 1467, 1469.
tracing lost chars : 262, 616, 744, 1088.
\tracinglostchars primitive: 264.
tracing lost chars code : 262, 263, 264.
tracing macros : 262, 353, 423, 434.
\tracingmacros primitive: 264.
tracing macros code : 262, 263, 264.
tracing nesting : 262, 392, 1585, 1586, 1587, 1588.
\tracingnesting primitive: 1467.
tracing nesting code : 262, 1467, 1469.
tracing online : 262, 271, 616, 1347, 1352.
\tracingonline primitive: 264.
tracing online code : 262, 263, 264.
tracing output : 262, 676, 679.
\tracingoutput primitive: 264.
tracing output code : 262, 263, 264.

tracing pages : 262, 1041, 1059, 1064.
\tracingpages primitive: 264.
tracing pages code : 262, 263, 264.
tracing paragraphs : 262, 874, 893, 903, 911.
\tracingparagraphs primitive: 264.
tracing paragraphs code : 262, 263, 264.
tracing restores : 262, 313, 1652.
\tracingrestores primitive: 264.
tracing restores code : 262, 263, 264.
tracing scan tokens : 262, 1566.
\tracingscantokens primitive: 1467.
tracing scan tokens code : 262, 1467, 1469.
tracing stats : 139, 262, 677, 1380, 1387.
\tracingstats primitive: 264.
tracing stats code : 262, 263, 264.
Transcript written... : 1387.
transform : 1445.
transform concat : 1445.
transform point : 1445.
trap zero glue : 1282, 1283, 1290.
trick buf : 54, 58, 59, 345, 347.
trick count : 54, 58, 345, 346, 347.
Trickey, Howard Wellington: 2.
trie : 974, 975, 976, 1004, 1006, 1007, 1008, 1012,

1013, 1020, 1378, 1379.
trie back : 1004, 1008, 1010.
trie c : 1001, 1002, 1005, 1007, 1009, 1010, 1013,

1017, 1018, 1666, 1667.
trie char : 974, 975, 977, 1012, 1013, 1669.
trie fix : 1012, 1013.
trie hash : 1001, 1002, 1003, 1004, 1006.
trie l : 1001, 1002, 1003, 1011, 1013, 1014, 1017,

1018, 1667.
trie link : 974, 975, 977, 1004, 1006, 1007, 1008,

1009, 1010, 1012, 1013, 1669.
trie max : 1004, 1006, 1008, 1012, 1378, 1379.
trie min : 1004, 1006, 1007, 1010, 1668.
trie node : 1002, 1003.
trie not ready : 939, 988, 1004, 1005, 1014, 1020,

1378, 1379.
trie o : 1001, 1002, 1013, 1017, 1018, 1667.
trie op : 974, 975, 977, 978, 997, 1012, 1013,

1665, 1669.
trie op hash : 997, 998, 999, 1000, 1002, 1006.
trie op lang : 997, 998, 999, 1006.
trie op ptr : 997, 998, 999, 1000, 1378, 1379.
trie op size : 11, 975, 997, 998, 1000, 1378, 1379.
trie op val : 997, 998, 999, 1006.
trie pack : 1011, 1020, 1668.
trie pointer : 974, 975, 976, 1001, 1002, 1003, 1004,

1007, 1011, 1013, 1014, 1020, 1669.
trie ptr : 1001, 1005, 1006, 1018.

§1679 X ETEX PART 55: INDEX 717

trie r : 1001, 1002, 1003, 1009, 1010, 1011, 1013,
1017, 1018, 1665, 1666, 1667.

trie ref : 1004, 1006, 1007, 1010, 1011, 1013, 1668.
trie root : 1001, 1003, 1005, 1006, 1012, 1020,

1665, 1668.
trie size : 11, 974, 1002, 1004, 1006, 1008, 1018,

1379.
trie taken : 1004, 1006, 1007, 1008, 1010.
trie used : 997, 998, 999, 1000, 1378, 1379.
true : 4, 16, 31, 34, 37, 45, 46, 49, 51, 53, 59, 75,

81, 92, 101, 102, 108, 109, 110, 111, 116, 118,
119, 193, 194, 198, 282, 284, 286, 312, 341, 357,
358, 366, 376, 391, 392, 395, 406, 408, 412, 441,
447, 464, 474, 478, 481, 482, 488, 496, 497,
521, 536, 543, 547, 551, 559, 561, 569, 598,
613, 628, 659, 666, 675, 676, 679, 692, 705,
717, 749, 762, 839, 874, 875, 876, 877, 889,
890, 899, 902, 911, 914, 918, 919, 928, 929,
930, 932, 956, 959, 964, 965, 1005, 1010, 1016,
1017, 1046, 1074, 1075, 1079, 1084, 1089, 1091,
1094, 1105, 1108, 1134, 1137, 1144, 1155, 1175,
1199, 1217, 1248, 1249, 1272, 1278, 1280, 1290,
1291, 1307, 1312, 1324, 1333, 1337, 1352, 1357,
1390, 1396, 1409, 1410, 1431, 1434, 1437, 1443,
1444, 1445, 1451, 1466, 1472, 1489, 1567, 1578,
1579, 1585, 1586, 1588, 1601, 1604, 1608, 1610,
1630, 1636, 1638, 1641, 1650, 1654, 1667.

true : 488.
try break : 876, 877, 887, 899, 906, 910, 914,

916, 917, 921, 927.
two : 105, 106.
two choices : 135.
two halves : 135, 140, 146, 197, 247, 282, 283,

726, 975, 1020.
two to the : 121, 122, 124.
tx : 447, 458, 1133, 1134, 1135, 1159.
type : 4, 155, 156, 157, 158, 159, 160, 161, 162,

163, 164, 165, 166, 167, 168, 171, 172, 173, 174,
176, 177, 179, 180, 182, 183, 184, 185, 201, 209,
210, 228, 232, 458, 506, 507, 524, 530, 531, 532,
540, 656, 660, 661, 664, 666, 669, 670, 673, 675,
678, 688, 689, 691, 693, 697, 710, 711, 712, 722,
723, 724, 725, 728, 729, 730, 731, 738, 740, 744,
749, 756, 758, 763, 764, 769, 770, 771, 772, 774,
775, 779, 781, 791, 794, 796, 799, 805, 808, 809,
810, 815, 816, 844, 847, 849, 853, 855, 857, 858,
859, 864, 867, 868, 870, 877, 878, 880, 885, 889,
890, 891, 892, 893, 904, 906, 907, 908, 909, 910,
912, 913, 914, 916, 918, 919, 922, 923, 927, 929,
945, 949, 950, 952, 956, 957, 968, 1022, 1024,
1026, 1027, 1030, 1032, 1033, 1035, 1040, 1042,
1047, 1050, 1051, 1054, 1058, 1062, 1063, 1064,

1065, 1067, 1068, 1075, 1088, 1128, 1134, 1141,
1154, 1155, 1159, 1164, 1167, 1175, 1201, 1209,
1212, 1213, 1217, 1219, 1222, 1235, 1239, 1240,
1245, 1256, 1257, 1395, 1404, 1420, 1489, 1501,
1509, 1514, 1517, 1521, 1527, 1529, 1535, 1539,
1544, 1549, 1550, 1557, 1588, 1599, 1600, 1626.

Type <return> to proceed... : 89.
t2 : 1445.
u: 73, 111, 131, 198, 423, 505, 595, 749, 839, 848,

983, 988, 998, 1140, 1311, 1555.
u close : 359, 520, 521, 1329.
\Udelcode primitive: 1284.
\Udelcodenum primitive: 1284.
\Udelimiter primitive: 295.
u make name string : 560.
\Umathaccent primitive: 295.
\Umathchar primitive: 295.
\Umathchardef primitive: 1276.
\Umathcharnum primitive: 295.
\Umathcharnumdef primitive: 1276.
\Umathcode primitive: 1284.
\Umathcodenum primitive: 1284.
u part : 816, 817, 827, 836, 842, 849.
\Uradical primitive: 295.
u template : 337, 344, 354, 836.
uc code : 256, 258, 441.
\uccode primitive: 1284.
uc code base : 256, 261, 1284, 1285, 1340, 1342.
uc hyph : 262, 939, 949.
\uchyph primitive: 264.
uc hyph code : 262, 263, 264.
un hbox : 234, 1144, 1161, 1162, 1163.
\unhbox primitive: 1161.
\unhcopy primitive: 1161.
\unkern primitive: 1161.
\unpenalty primitive: 1161.
\unskip primitive: 1161.
un vbox : 234, 1100, 1148, 1161, 1162, 1163, 1672.
\unvbox primitive: 1161.
\unvcopy primitive: 1161.
unbalance : 423, 425, 430, 433, 508, 512, 1493.
Unbalanced output routine : 1081.
Unbalanced write... : 1435.
Undefined control sequence : 404.
undefined control sequence : 248, 258, 282, 284,

286, 292, 298, 312, 320, 1372, 1373.
undefined cs : 236, 248, 396, 406, 536, 1280, 1281,

1349, 1577, 1578.
undefined primitive : 283, 289, 402, 403, 536, 1099.
under noad : 729, 732, 738, 740, 776, 809, 1210,

1211.
underbarExtraDescender : 742.

718 PART 55: INDEX X ETEX §1679

underbarRuleThickness : 742.
underbarVerticalGap : 742.
Underfull \hbox... : 702.
Underfull \vbox... : 716.
\underline primitive: 1210.
undump : 1360, 1364, 1366, 1368, 1373, 1377,

1379, 1381, 1465.
undump end : 1360.
undump end end : 1360.
undump four ASCII : 1364.
undump hh : 1360, 1373, 1379.
undump int : 1360, 1362, 1366, 1371, 1373, 1377,

1379, 1381.
undump qqqq : 1360, 1364, 1377.
undump size : 1360, 1364, 1375, 1379.
undump size end : 1360.
undump size end end : 1360.
undump wd : 1360, 1366, 1371, 1375.
\unexpanded primitive: 1496.
unfloat : 113, 700, 706, 715, 718, 749, 858, 859.
unhyphenated : 867, 877, 885, 912, 914, 916.
unicode file : 515, 560.
UnicodeScalar : 18, 86, 371, 505, 551, 554, 744,

942, 966, 1209.
unif rand : 130, 507.
\uniformdeviate primitive: 503.
uniform deviate code : 503, 504, 506, 507.
unity : 105, 107, 123, 136, 189, 212, 482, 488,

603, 1313, 1428.
\unless primitive: 1573.
unless code : 522, 523, 533, 1478, 1576.
unpackage : 1163, 1164.
unsave : 311, 313, 839, 848, 1080, 1117, 1122,

1140, 1154, 1173, 1187, 1222, 1228, 1240,
1245, 1248, 1250, 1254.

unset node : 184, 201, 209, 210, 228, 232, 458, 691,
711, 724, 730, 731, 816, 844, 847, 849, 853.

update active : 909.
update adjust list : 697.
update corners : 1445.
update heights : 1024, 1026, 1027, 1048, 1051, 1054.
update prev p : 181, 911, 914, 915, 917.
update terminal : 34, 37, 65, 75, 90, 392, 559, 572,

676, 1334, 1392, 1566.
update width : 880, 908.
\uppercase primitive: 1340.
upperLimitBaselineRiseMin : 742.
upperLimitGapMin : 742.
upwards : 667, 669, 670, 671, 721.
Use of x doesn’t match... : 432.
use err help : 83, 84, 93, 94, 1337.
use penalty : 744.

use skip : 744.
usingGraphite : 584.
usingOpenType : 584.
UTF16 code : 18, 26, 60, 61, 62, 328, 371, 505,

548, 636, 744.
UTF8 code : 18.
v: 73, 111, 198, 423, 485, 749, 758, 779, 787, 793,

848, 878, 976, 988, 998, 1014, 1031, 1192, 1489.
v offset : 273, 678, 679, 1428.
\voffset primitive: 274.
v offset code : 273, 274.
v part : 816, 817, 827, 837, 842, 849.
v template : 337, 344, 355, 424, 837, 1185.
vacuous : 474, 478, 479.
vadjust : 234, 295, 296, 1151, 1152, 1153, 1154.
\vadjust primitive: 295.
valign : 234, 295, 296, 1100, 1144, 1184, 1510, 1511.
\valign primitive: 295.
var delimiter : 749, 780, 792, 810.
var fam class : 258.
var used : 139, 147, 152, 189, 677, 1365, 1366.
vbadness : 262, 716, 719, 720, 1066, 1071.
\vbadness primitive: 264.
vbadness code : 262, 263, 264.
\vbox primitive: 1125.
vbox group : 299, 1137, 1139, 1471, 1489.
vcenter : 234, 295, 296, 1100, 1221.
\vcenter primitive: 295.
vcenter group : 299, 1221, 1222, 1471, 1489.
vcenter noad : 729, 732, 738, 740, 776, 809, 1222.
vert break : 1024, 1025, 1030, 1031, 1034, 1036,

1064.
very loose fit : 865, 867, 878, 881, 882, 884, 900,

1653, 1658.
vet glue : 663, 672.
\vfil primitive: 1112.
\vfilneg primitive: 1112.
\vfill primitive: 1112.
vfuzz : 273, 719, 1066, 1071.
\vfuzz primitive: 274.
vfuzz code : 273, 274.
VIRTEX : 1385.
virtual memory: 148.
Vitter, Jeffrey Scott: 288.
vlist node : 159, 172, 184, 201, 209, 210, 228, 232,

540, 654, 660, 661, 666, 667, 669, 670, 675,
678, 683, 691, 710, 711, 723, 749, 756, 758,
763, 779, 791, 794, 855, 857, 859, 889, 890,
914, 918, 919, 1022, 1027, 1032, 1054, 1128,
1134, 1141, 1164, 1201, 1535, 1544.

vlist out : 628, 651, 652, 654, 655, 661, 666, 667,
670, 675, 676, 678, 735, 1436.

§1679 X ETEX PART 55: INDEX 719

vmode : 237, 241, 450, 451, 452, 456, 458, 536, 823,
833, 834, 852, 855, 856, 857, 860, 1079, 1083,
1099, 1100, 1102, 1110, 1111, 1125, 1126, 1127,
1130, 1132, 1133, 1134, 1137, 1144, 1145, 1148,
1152, 1153, 1157, 1159, 1163, 1164, 1165, 1184,
1221, 1297, 1298, 1444, 1489, 1491.

vmove : 234, 1102, 1125, 1126, 1127, 1491.
void pointer : 744, 749, 781, 793.
vpack : 262, 683, 684, 685, 710, 748, 778, 781, 803,

847, 852, 1031, 1075, 1154, 1222.
vpackage : 710, 844, 1031, 1071, 1140.
vrule : 234, 295, 296, 498, 1110, 1138, 1144.
\vrule primitive: 295.
vsize : 273, 1034, 1041.
\vsize primitive: 274.
vsize code : 273, 274.
vskip : 234, 1100, 1111, 1112, 1113, 1132, 1148.
\vskip primitive: 1112.
vsplit : 1021, 1031, 1032, 1034, 1136, 1620,

1636, 1637.
\vsplit needs a \vbox : 1032.
\vsplit primitive: 1125.
vsplit code : 1125, 1126, 1133, 1389, 1670, 1672,

1673.
vsplit init : 1031, 1636, 1637.
\vss primitive: 1112.
\vtop primitive: 1125.
vtop code : 1125, 1126, 1137, 1139, 1140.
vtop group : 299, 1137, 1139, 1471, 1489.
w: 136, 171, 180, 305, 308, 309, 643, 689, 710,

749, 758, 781, 839, 848, 960, 1048, 1177, 1192,
1252, 1290, 1356, 1357, 1404, 1405, 1493, 1529,
1564, 1567, 1585, 1587, 1630, 1650, 1651.

w close : 28, 1383, 1391.
w make name string : 560, 1382.
w open in : 27, 559.
w open out : 27, 1382.
wait : 1066, 1074, 1075, 1076.
wake up terminal : 34, 37, 51, 75, 77, 393, 519,

559, 565, 1348, 1351, 1357, 1387, 1392.
Warning: end of file when... : 1588.
Warning: end of... : 1585, 1587.
warning index : 335, 361, 368, 423, 424, 429, 430,

432, 435, 506, 508, 514, 517, 822, 825, 1493.
warning issued : 80, 271, 1389, 1585, 1587, 1588.
warningType : 744.
was free : 190, 192, 196.
was hi min : 190, 191, 192, 196.
was lo max : 190, 191, 192, 196.
was mem end : 190, 191, 192, 196.
\wd primitive: 450.
wdField : 1445.

WEB : 1, 4, 38, 40, 50, 1362.
what lang : 1395, 1416, 1422, 1423, 1439, 1440.
what lhm : 1395, 1416, 1422, 1423, 1439, 1440.
what rhm : 1395, 1416, 1422, 1423, 1439, 1440.
whatsit node : 168, 172, 201, 209, 228, 232, 656,

660, 669, 691, 711, 744, 749, 773, 781, 799,
809, 889, 890, 914, 918, 919, 945, 949, 952,
1022, 1027, 1054, 1167, 1175, 1201, 1395, 1404,
1420, 1510, 1536, 1544.

\widowpenalties primitive: 1675.
widow penalties loc : 256, 1675, 1676.
widow penalties ptr : 938, 1675.
widow penalty : 262, 862, 938.
\widowpenalty primitive: 264.
widow penalty code : 262, 263, 264.
width : 498.
width : 157, 158, 160, 161, 169, 170, 171, 174, 175,

179, 180, 204, 209, 210, 213, 217, 218, 458, 463,
465, 486, 497, 498, 507, 589, 641, 643, 647, 656,
660, 661, 663, 664, 669, 671, 672, 673, 679, 688,
691, 693, 698, 699, 708, 710, 711, 712, 713, 721,
725, 730, 744, 749, 752, 757, 758, 759, 760,
774, 781, 783, 788, 791, 793, 794, 801, 802,
803, 816, 827, 841, 844, 845, 846, 849, 850,
851, 852, 854, 855, 856, 857, 858, 859, 875,
877, 885, 886, 889, 890, 914, 916, 918, 919,
929, 1023, 1030, 1050, 1055, 1058, 1063, 1088,
1096, 1098, 1108, 1145, 1147, 1177, 1179, 1201,
1202, 1253, 1255, 1259, 1283, 1293, 1294, 1419,
1420, 1421, 1422, 1428, 1430, 1445, 1509, 1524,
1526, 1529, 1530, 1531, 1532, 1535, 1536, 1539,
1540, 1545, 1547, 1549, 1551, 1556, 1557, 1591,
1601, 1605, 1606, 1607, 1609, 1664.

width base : 585, 587, 589, 601, 604, 606, 611,
1376, 1377.

width index : 578, 585.
width offset : 157, 450, 451, 1301.
Wirth, Niklaus: 10.
wlog : 56, 58, 571, 1388.
wlog cr : 56, 57, 58, 571, 1387.
wlog ln : 56, 1388.
word define : 1268, 1282, 1286, 1650.
word define1 : 1268.
word file : 25, 27, 28, 135, 560, 1359.
word node size : 1631, 1632, 1648, 1652.
words : 230, 231, 232, 1417, 1544.
wrap lig : 964, 965.
wrapup : 1089, 1094.
write : 37, 56, 58, 633.
\write primitive: 1398.
write dvi : 633, 634, 635.
write file : 57, 58, 1396, 1437, 1441.

720 PART 55: INDEX X ETEX §1679

write ln : 35, 37, 51, 56, 57.
write loc : 1367, 1368, 1398, 1400, 1434.
write node : 1395, 1398, 1401, 1403, 1416, 1417,

1418, 1436, 1437.
write node size : 1395, 1405, 1407, 1408, 1409,

1417, 1418.
write open : 1396, 1397, 1433, 1437, 1441.
write out : 1433, 1437.
write stream : 1395, 1405, 1409, 1415, 1433, 1437.
write text : 337, 344, 353, 1394, 1434.
write tokens : 1395, 1407, 1408, 1409, 1416, 1417,

1418, 1431, 1434.
writing : 613.
wterm : 56, 58, 65.
wterm cr : 56, 57, 58.
wterm ln : 56, 65, 559, 1357, 1386, 1391.
Wyatt, Douglas Kirk: 2.
w0 : 621, 622, 640, 645.
w1 : 621, 622, 643.
w2 : 621, 781, 783.
w3 : 621.
w4 : 621.
x: 104, 109, 110, 111, 123, 128, 130, 131, 198,

623, 636, 689, 710, 749, 763, 769, 778, 780,
781, 787, 793, 800, 1177, 1192, 1356, 1357,
1555, 1604, 1610.

x height : 582, 593, 594, 744, 781, 1177.
x height code : 582, 593.
x ht : 744.
x leaders : 173, 216, 665, 1125, 1126.
\xleaders primitive: 1125.
x over n : 110, 746, 759, 760, 1040, 1062, 1063,

1064, 1294.
x size req : 1445.
x token : 394, 415, 513, 1088, 1092, 1206.
xchr : 20, 21, 23, 24, 38, 49, 58, 554.
xclause: 16.
xCoord : 1445.
\xdef primitive: 1262.
xdv buffer : 638.
xdv buffer byte : 1430.
xeq level : 279, 280, 298, 308, 309, 313, 1358.
XETEX : 2.
XeTeX banner : 2.
\XeTeXcharclass primitive: 1284.
XeTeX convert codes : 503.
XeTeX count features code : 450, 1452, 1453, 1454.
XeTeX count glyphs code : 450, 1452, 1453, 1454.
XeTeX count selectors code : 450, 1452, 1453,

1454.
XeTeX count variations code : 450, 1452, 1453,

1454.

XeTeX dash break code : 2, 1510, 1511.
XeTeX dash break en : 1088, 1510.
XeTeX dash break state : 1510.
\XeTeXdashbreakstate primitive: 1511.
XeTeX def code : 235, 447, 1264, 1284, 1285, 1286.
XeTeX default encoding extension code : 1398,

1401, 1403, 1511.
XeTeX default input encoding : 1447, 1510.
XeTeX default input encoding code : 2, 1510.
XeTeX default input mode : 1447, 1510.
XeTeX default input mode code : 2, 1510.
XeTeX dim : 450, 458.
XeTeX feature code code : 450, 1452, 1453, 1454.
XeTeX feature name code : 503, 1452, 1459,

1460, 1461.
XeTeX find feature by name code : 450, 1452,

1453, 1454.
XeTeX find selector by name code : 450, 1452,

1453, 1454.
XeTeX find variation by name code : 450, 1452,

1453, 1454.
XeTeX first char code : 450, 1452, 1453, 1454.
XeTeX first expand code : 503.
XeTeX font type code : 450, 1452, 1453, 1454.
\XeTeXgenerateactualtext primitive: 1511.
XeTeX generate actual text code : 2, 1510, 1511.
XeTeX generate actual text en : 744, 1510.
XeTeX generate actual text state : 1510.
\XeTeXglyph primitive: 1399.
XeTeX glyph bounds code : 450, 1452, 1453, 1458.
XeTeX glyph index code : 450, 1452, 1453, 1454.
XeTeX glyph name code : 503, 1452, 1459, 1460,

1461.
XeTeX hyphenatable length : 944, 1510, 1665.
\XeTeXhyphenatablelength primitive: 1511.
XeTeX hyphenatable length code : 2, 1510, 1511.
XeTeX input encoding extension code : 1398,

1401, 1403, 1511.
XeTeX input mode auto : 2, 1446.
XeTeX input mode icu mapping : 2.
XeTeX input mode raw : 2.
XeTeX input mode utf16be : 2.
XeTeX input mode utf16le : 2.
XeTeX input mode utf8 : 2.
\XeTeXinputnormalization primitive: 1511.
XeTeX input normalization code : 2, 1510, 1511.
XeTeX input normalization state : 744, 1510.
XeTeX int : 450, 1454.
XeTeX inter char loc : 256, 337, 449, 1280, 1281,

1399, 1468.
XeTeX inter char tokens code : 2, 1510, 1511.
XeTeX inter char tokens en : 1088, 1510.

§1679 X ETEX PART 55: INDEX 721

XeTeX inter char tokens state : 1510.
\XeTeXinterchartoks primitive: 1399.
\XeTeXinterwordspaceshaping primitive: 1511.
XeTeX interword space shaping code : 2, 1510,

1511.
XeTeX interword space shaping state : 655, 1088,

1510.
XeTeX is default selector code : 450, 1452, 1453,

1454.
XeTeX is exclusive feature code : 450, 1452, 1453,

1454.
XeTeX last char code : 450, 1452, 1453, 1454.
XeTeX last dim codes : 450.
XeTeX last item codes : 450.
XeTeX linebreak locale : 262, 744, 1448.
\XeTeXlinebreaklocale primitive: 1399.
XeTeX linebreak locale code : 262.
XeTeX linebreak locale extension code : 1398,

1399, 1401, 1403.
XeTeX linebreak penalty : 262, 744.
\XeTeXlinebreakpenalty primitive: 264.
XeTeX linebreak penalty code : 262, 263, 264.
XeTeX linebreak skip : 250, 744.
\XeTeXlinebreakskip primitive: 252.
XeTeX linebreak skip code : 250, 251, 252, 744.
XeTeX map char to glyph code : 450, 1452, 1453,

1454.
XeTeX math char def code : 1276, 1277, 1278.
XeTeX math char num def code : 1276, 1277,

1278.
XeTeX math given : 234, 447, 1100, 1205, 1208,

1277, 1278.
XeTeX OT count features code : 450, 1452, 1453,

1454.
XeTeX OT count languages code : 450, 1452,

1453, 1454.
XeTeX OT count scripts code : 450, 1452, 1453,

1454.
XeTeX OT feature code : 450, 1452, 1453, 1454.
XeTeX OT language code : 450, 1452, 1453, 1454.
XeTeX OT script code : 450, 1452, 1453, 1454.
\XeTeXpdffile primitive: 1399.
XeTeX pdf page count code : 450, 1452, 1453,

1454.
\XeTeXpicfile primitive: 1399.
XeTeX protrude chars : 262, 899, 929, 935.
\XeTeXprotrudechars primitive: 264.
XeTeX protrude chars code : 262, 263, 264.
XeTeX revision : 2, 1461.
XeTeX revision code : 503, 1452, 1459, 1460, 1461.
xetex scan dimen : 482, 483.
XeTeX selector code code : 450, 1452, 1453, 1454.

XeTeX selector name code : 503, 1452, 1459,
1460, 1461.

XeTeX tracing fonts code : 2, 1510, 1511.
XeTeX tracing fonts state : 595, 744, 1510.
\Uchar primitive: 503.
XeTeX Uchar code : 503, 506, 507, 1459.
\Ucharcat primitive: 503.
XeTeX Ucharcat code : 503, 506, 507, 1459.
XeTeX upwards : 710, 721, 1023, 1055, 1510.
XeTeX upwards code : 2, 1510, 1511.
\XeTeXupwardsmode primitive: 1511.
XeTeX upwards state : 1140, 1510.
XeTeX use glyph metrics : 744, 947, 957, 1088,

1420, 1444, 1510.
\XeTeXuseglyphmetrics primitive: 1511.
XeTeX use glyph metrics code : 2, 1510, 1511.
XeTeX use glyph metrics state : 1510.
\XeTeXinterchartokenstate primitive: 1511.
XeTeX variation code : 450, 1452, 1453, 1454.
XeTeX variation default code : 450, 1452, 1453,

1454.
XeTeX variation max code : 450, 1452, 1453, 1454.
XeTeX variation min code : 450, 1452, 1453, 1454.
XeTeX variation name code : 503, 1452, 1459,

1460, 1461.
XeTeX version : 2, 1454.
\XeTeXversion primitive: 1452.
XeTeX version code : 450, 1452, 1453, 1454.
XeTeX version string : 2.
\XeTeXrevision primitive: 1452.
xField : 1445.
xmalloc : 62.
xmalloc array : 169.
xmax : 1445.
xmin : 1445.
xn over d : 111, 490, 492, 493, 603, 744, 759,

1098, 1314.
xord : 20, 24, 31, 52, 53, 558.
xpand : 508, 512, 514.
xray : 234, 1344, 1345, 1346, 1485, 1494, 1499.
xrealloc : 60.
xspace skip : 250, 1097.
\xspaceskip primitive: 252.
xspace skip code : 250, 251, 252, 1097.
xtx ligature present : 692, 889, 890, 914, 918, 919.
xxx1 : 621, 622, 678, 1431, 1436.
xxx2 : 621.
xxx3 : 621.
xxx4 : 621, 622, 1431, 1436.
xy : 621.
x0 : 621, 622, 640, 645.
x1 : 621, 622, 643.

722 PART 55: INDEX X ETEX §1679

x2 : 621.
x3 : 621.
x4 : 621.
y: 109, 123, 130, 749, 769, 778, 780, 781, 787,

793, 800, 1604.
y here : 644, 645, 647, 648, 649.
y OK : 644, 645, 648.
y seen : 647, 648.
y size req : 1445.
yCoord : 1445.
year : 262, 267, 653, 1382.
\year primitive: 264.
year code : 262, 263, 264.
yField : 1445.
ymax : 1445.
ymin : 1445.
You already have nine... : 511.
You can’t \insert255 : 1153.
You can’t dump... : 1358.
You can’t use \hrule... : 1149.
You can’t use \long... : 1267.
You can’t use \unless... : 1576.
You can’t use a prefix with x : 1266.
You can’t use x after ... : 462, 1291.
You can’t use x in y mode : 1103.
You have to increase POOLSIZE : 52.
You want to edit file x : 88.
you cant : 1103, 1104, 1134, 1160.
yz OK : 644, 645, 646, 648.
y0 : 621, 622, 630, 640, 645.
y1 : 621, 622, 643, 649.
y2 : 621, 630.
y3 : 621.
y4 : 621.
z: 123, 595, 749, 769, 787, 793, 800, 976, 981,

1007, 1013, 1252, 1555.
z here : 644, 645, 647, 648, 650.
z OK : 644, 645, 648.
z seen : 647, 648.
Zabala Salelles, Ignacio Andrés: 2.
zero glue : 187, 201, 250, 254, 458, 461, 497, 744,

749, 775, 850, 877, 935, 1095, 1096, 1097, 1225,
1283, 1551, 1593, 1601, 1620, 1631, 1632.

zero token : 479, 487, 508, 511, 514.
z0 : 621, 622, 640, 645.
z1 : 621, 622, 643, 650.
z2 : 621.
z3 : 621.
z4 : 621.

X ETEX NAMES OF THE SECTIONS 723

⟨Accumulate the constant until cur tok is not a suitable digit 479 ⟩ Used in section 478.

⟨Add the width of node s to act width 919 ⟩ Used in section 917.

⟨Add the width of node s to break width 890 ⟩ Used in section 888.

⟨Add the width of node s to disc width 918 ⟩ Used in section 917.

⟨Adjust for the magnification ratio 492 ⟩ Used in section 488.

⟨Adjust for the setting of \globaldefs 1268 ⟩ Used in section 1265.

⟨Adjust shift up and shift down for the case of a fraction line 790 ⟩ Used in section 787.

⟨Adjust shift up and shift down for the case of no fraction line 789 ⟩ Used in section 787.

⟨Adjust the LR stack for the hlist out routine; if necessary reverse an hlist segment and goto reswitch 1527 ⟩
Used in section 1526.

⟨Adjust the LR stack for the hpack routine 1521 ⟩ Used in section 691.

⟨Adjust the LR stack for the init math routine 1548 ⟩ Used in section 1547.

⟨Adjust the LR stack for the just reverse routine 1550 ⟩ Used in section 1549.

⟨Adjust the LR stack for the post line break routine 1518 ⟩ Used in sections 927, 929, and 1517.

⟨Adjust the additional data for last line 1660 ⟩ Used in section 899.

⟨Adjust the final line of the paragraph 1664 ⟩ Used in section 911.

⟨Advance cur p to the node following the present string of characters 915 ⟩ Used in section 914.

⟨Advance past a whatsit node in the line break loop 1422 ⟩ Used in section 914.

⟨Advance past a whatsit node in the pre-hyphenation loop 1423 ⟩ Used in section 949.

⟨Advance r; goto found if the parameter delimiter has been fully matched, otherwise goto continue 428 ⟩
Used in section 426.

⟨Advance q past ignorable nodes 657 ⟩ Used in sections 656, 656, and 656.

⟨Allocate entire node p and goto found 151 ⟩ Used in section 149.

⟨Allocate from the top of node p and goto found 150 ⟩ Used in section 149.

⟨Apologize for inability to do the operation now, unless \unskip follows non-glue 1160 ⟩ Used in section 1159.

⟨Apologize for not loading the font, goto done 602 ⟩ Used in sections 601 and 744.

⟨Append a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures is
nonempty 964 ⟩ Used in section 960.

⟨Append a new leader node that uses cur box 1132 ⟩ Used in section 1129.

⟨Append a new letter or a hyphen level 1016 ⟩ Used in section 1015.

⟨Append a new letter or hyphen 991 ⟩ Used in section 989.

⟨Append a normal inter-word space to the current list, then goto big switch 1095 ⟩ Used in section 1084.

⟨Append a penalty node, if a nonzero penalty is appropriate 938 ⟩ Used in section 928.

⟨Append an insertion to the current page and goto contribute 1062 ⟩ Used in section 1054.

⟨Append any new hlist entries for q, and any appropriate penalties 815 ⟩ Used in section 808.

⟨Append box cur box to the current list, shifted by box context 1130 ⟩ Used in section 1129.

⟨Append character cur chr and the following characters (if any) to the current hlist in the current font;
goto reswitch when a non-character has been fetched 1088 ⟩ Used in section 1084.

⟨Append characters of hu [j . .] to major tail , advancing j 971 ⟩ Used in section 970.

⟨Append inter-element spacing based on r type and t 814 ⟩ Used in section 808.

⟨Append tabskip glue and an empty box to list u, and update s and t as the prototype nodes are passed 857 ⟩
Used in section 856.

⟨Append the accent with appropriate kerns, then set p← q 1179 ⟩ Used in section 1177.

⟨Append the current tabskip glue to the preamble list 826 ⟩ Used in section 825.

⟨Append the display and perhaps also the equation number 1258 ⟩ Used in section 1253.

⟨Append the glue or equation number following the display 1259 ⟩ Used in section 1253.

⟨Append the glue or equation number preceding the display 1257 ⟩ Used in section 1253.

⟨Append the new box to the current vertical list, followed by the list of special nodes taken out of the box
by the packager 936 ⟩ Used in section 928.

⟨Append the value n to list p 992 ⟩ Used in section 991.

⟨Assign the values depth threshold ← show box depth and breadth max ← show box breadth 262 ⟩ Used in

section 224.

724 NAMES OF THE SECTIONS X ETEX

⟨Assignments 1271, 1272, 1275, 1278, 1279, 1280, 1282, 1286, 1288, 1289, 1295, 1296, 1302, 1306, 1307, 1310, 1318 ⟩ Used

in section 1265.

⟨Attach list p to the current list, and record its length; then finish up and return 1174 ⟩ Used in section 1173.

⟨Attach subscript OpenType math kerning 806 ⟩ Used in sections 801 and 803.

⟨Attach superscript OpenType math kerning 807 ⟩ Used in sections 802 and 803.

⟨Attach the limits to y and adjust height (v), depth (v) to account for their presence 795 ⟩ Used in section 794.

⟨Back up an outer control sequence so that it can be reread 367 ⟩ Used in section 366.

⟨Basic printing procedures 57, 58, 59, 63, 66, 67, 68, 69, 292, 293, 553, 741, 1415, 1633 ⟩ Used in section 4.

⟨Break the current page at node p, put it in box 255, and put the remaining nodes on the contribution
list 1071 ⟩ Used in section 1068.

⟨Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and
append them to the current vertical list 924 ⟩ Used in section 863.

⟨Calculate page dimensions and margins 1428 ⟩ Used in section 653.

⟨Calculate the length, l, and the shift amount, s, of the display lines 1203 ⟩ Used in section 1199.

⟨Calculate the natural width, w, by which the characters of the final line extend to the right of the reference
point, plus two ems; or set w ← max dimen if the non-blank information on that line is affected by
stretching or shrinking 1200 ⟩ Used in section 1199.

⟨Call the packaging subroutine, setting just box to the justified box 937 ⟩ Used in section 928.

⟨Call try break if cur p is a legal breakpoint; on the second pass, also try to hyphenate the next word, if
cur p is a glue node; then advance cur p to the next node of the paragraph that could possibly be a
legal breakpoint 914 ⟩ Used in section 911.

⟨Carry out a ligature replacement, updating the cursor structure and possibly advancing j; goto continue
if the cursor doesn’t advance, otherwise goto done 965 ⟩ Used in section 963.

⟨Case statement to copy different types and set words to the number of initial words not yet copied 232 ⟩
Used in section 231.

⟨Cases for ‘Fetch the dead cycles or the insert penalties ’ 1504 ⟩ Used in section 453.

⟨Cases for evaluation of the current term 1602, 1606, 1607, 1609 ⟩ Used in section 1594.

⟨Cases for fetching a dimension value 1458, 1481, 1484, 1615 ⟩ Used in section 458.

⟨Cases for fetching a glue value 1618 ⟩ Used in section 1591.

⟨Cases for fetching a mu value 1619 ⟩ Used in section 1591.

⟨Cases for fetching an integer value 1454, 1475, 1478, 1614 ⟩ Used in section 458.

⟨Cases for noads that can follow a bin noad 776 ⟩ Used in section 771.

⟨Cases for nodes that can appear in an mlist, after which we goto done with node 773 ⟩ Used in section 771.

⟨Cases for alter integer 1506 ⟩ Used in section 1300.

⟨Cases for conditional 1577, 1578, 1580 ⟩ Used in section 536.

⟨Cases for do marks 1637, 1639, 1640, 1642 ⟩ Used in section 1636.

⟨Cases for eq destroy 1645 ⟩ Used in section 305.

⟨Cases for input 1560 ⟩ Used in section 412.

⟨Cases for print param 1469, 1510 ⟩ Used in section 263.

⟨Cases for show whatever 1487, 1501 ⟩ Used in section 1347.

⟨Cases of ‘Let d be the natural width’ that need special treatment 1547 ⟩ Used in section 1201.

⟨Cases of ‘Print the result of command c’ 1461 ⟩ Used in section 507.

⟨Cases of ‘Scan the argument for command c’ 1460 ⟩ Used in section 506.

⟨Cases of assign toks for print cmd chr 1468 ⟩ Used in section 257.

⟨Cases of convert for print cmd chr 1459 ⟩ Used in section 504.

⟨Cases of expandafter for print cmd chr 1574 ⟩ Used in section 296.

⟨Cases of flush node list that arise in mlists only 740 ⟩ Used in section 228.

⟨Cases of handle right brace where a right brace triggers a delayed action 1139, 1154, 1172, 1186, 1187, 1222,

1227, 1240 ⟩ Used in section 1122.

⟨Cases of hlist out that arise in mixed direction text only 1530 ⟩ Used in section 660.

⟨Cases of if test for print cmd chr 1575 ⟩ Used in section 523.

⟨Cases of input for print cmd chr 1559 ⟩ Used in section 411.

X ETEX NAMES OF THE SECTIONS 725

⟨Cases of last item for print cmd chr 1453, 1474, 1477, 1480, 1483, 1590, 1613, 1617 ⟩ Used in section 451.

⟨Cases of left right for print cmd chr 1508 ⟩ Used in section 1243.

⟨Cases of main control for hmode + valign 1513 ⟩ Used in section 1184.

⟨Cases of main control that are for extensions to TEX 1402 ⟩ Used in section 1099.

⟨Cases of main control that are not part of the inner loop 1099 ⟩ Used in section 1084.

⟨Cases of main control that build boxes and lists 1110, 1111, 1117, 1121, 1127, 1144, 1146, 1148, 1151, 1156, 1158,

1163, 1166, 1170, 1176, 1180, 1184, 1188, 1191, 1194, 1204, 1208, 1212, 1216, 1218, 1221, 1225, 1229, 1234, 1244, 1247 ⟩
Used in section 1099.

⟨Cases of main control that don’t depend on mode 1264, 1322, 1325, 1328, 1330, 1339, 1344 ⟩ Used in section 1099.

⟨Cases of prefix for print cmd chr 1582 ⟩ Used in section 1263.

⟨Cases of print cmd chr for symbolic printing of primitives 253, 257, 265, 275, 296, 365, 411, 419, 446, 451, 504,

523, 527, 829, 1038, 1107, 1113, 1126, 1143, 1162, 1169, 1197, 1211, 1224, 1233, 1243, 1263, 1274, 1277, 1285, 1305, 1309,

1315, 1317, 1327, 1332, 1341, 1346, 1349, 1401 ⟩ Used in section 328.

⟨Cases of read for print cmd chr 1571 ⟩ Used in section 296.

⟨Cases of register for print cmd chr 1643 ⟩ Used in section 446.

⟨Cases of reverse that need special treatment 1536, 1537, 1538, 1539 ⟩ Used in section 1535.

⟨Cases of set page int for print cmd chr 1503 ⟩ Used in section 451.

⟨Cases of set shape for print cmd chr 1676 ⟩ Used in section 296.

⟨Cases of show node list that arise in mlists only 732 ⟩ Used in section 209.

⟨Cases of the for print cmd chr 1497 ⟩ Used in section 296.

⟨Cases of toks register for print cmd chr 1644 ⟩ Used in section 296.

⟨Cases of un vbox for print cmd chr 1673 ⟩ Used in section 1162.

⟨Cases of valign for print cmd chr 1512 ⟩ Used in section 296.

⟨Cases of xray for print cmd chr 1486, 1495, 1500 ⟩ Used in section 1346.

⟨Cases where character is ignored 375 ⟩ Used in section 374.

⟨Change buffered instruction to y or w and goto found 649 ⟩ Used in section 648.

⟨Change buffered instruction to z or x and goto found 650 ⟩ Used in section 648.

⟨Change current mode to −vmode for \halign, −hmode for \valign 823 ⟩ Used in section 822.

⟨Change discretionary to compulsory and set disc break ← true 930 ⟩ Used in section 929.

⟨Change font dvi f to f 659 ⟩ Used in sections 658, 1426, and 1430.

⟨Change state if necessary, and goto switch if the current character should be ignored, or goto reswitch if
the current character changes to another 374 ⟩ Used in section 373.

⟨Change the case of the token in p, if a change is appropriate 1343 ⟩ Used in section 1342.

⟨Change the current style and goto delete q 811 ⟩ Used in section 809.

⟨Change the interaction level and return 90 ⟩ Used in section 88.

⟨Change this node to a style node followed by the correct choice, then goto done with node 774 ⟩ Used in

section 773.

⟨Character s is the current new-line character 270 ⟩ Used in sections 59 and 63.

⟨Check flags of unavailable nodes 195 ⟩ Used in section 192.

⟨Check for LR anomalies at the end of hlist out 1528 ⟩ Used in section 1525.

⟨Check for LR anomalies at the end of hpack 1522 ⟩ Used in section 689.

⟨Check for LR anomalies at the end of ship out 1541 ⟩ Used in section 676.

⟨Check for charlist cycle 605 ⟩ Used in section 604.

⟨Check for improper alignment in displayed math 824 ⟩ Used in section 822.

⟨Check for special treatment of last line of paragraph 1654 ⟩ Used in section 875.

⟨Check if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-far
is already too full 1028 ⟩ Used in section 1026.

⟨Check if node p is a new champion breakpoint; then if it is time for a page break, prepare for output, and
either fire up the user’s output routine and return or ship out the page and goto done 1059 ⟩ Used in

section 1051.

⟨Check single-word avail list 193 ⟩ Used in section 192.

⟨Check that another $ follows 1251 ⟩ Used in sections 1248, 1248, and 1260.

726 NAMES OF THE SECTIONS X ETEX

⟨Check that nodes after native word permit hyphenation; if not, goto done1 945 ⟩ Used in section 943.

⟨Check that the necessary fonts for math symbols are present; if not, flush the current math lists and set
danger ← true 1249 ⟩ Used in sections 1248 and 1248.

⟨Check that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters have been
found, otherwise goto done1 952 ⟩ Used in section 943.

⟨Check the “constant” values for consistency 14, 133, 320, 557, 1303 ⟩ Used in section 1386.

⟨Check the pool check sum 53 ⟩ Used in section 52.

⟨Check variable-size avail list 194 ⟩ Used in section 192.

⟨Clean up the memory by removing the break nodes 913 ⟩ Used in sections 863 and 911.

⟨Clear dimensions to zero 690 ⟩ Used in sections 689 and 710.

⟨Clear off top level from save stack 312 ⟩ Used in section 311.

⟨Close the format file 1383 ⟩ Used in section 1356.

⟨Coerce glue to a dimension 486 ⟩ Used in sections 484 and 490.

⟨Compiler directives 9 ⟩ Used in section 4.

⟨Complain about an undefined family and set cur i null 766 ⟩ Used in section 765.

⟨Complain about an undefined macro 404 ⟩ Used in section 399.

⟨Complain about missing \endcsname 407 ⟩ Used in sections 406 and 1578.

⟨Complain about unknown unit and goto done2 494 ⟩ Used in section 493.

⟨Complain that \the can’t do this; give zero result 462 ⟩ Used in section 447.

⟨Complain that the user should have said \mathaccent 1220 ⟩ Used in section 1219.

⟨Compleat the incompleat noad 1239 ⟩ Used in section 1238.

⟨Complete a potentially long \show command 1352 ⟩ Used in section 1347.

⟨Compute f = ⌊228(1 + p/q) + 1
2⌋ 117 ⟩ Used in section 116.

⟨Compute p = ⌊qf/228 + 1
2⌋ − q 120 ⟩ Used in section 118.

⟨Compute f = ⌊xn/d+ 1
2⌋ 1611 ⟩ Used in section 1610.

⟨Compute result of multiply or divide , put it in cur val 1294 ⟩ Used in section 1290.

⟨Compute result of register or advance , put it in cur val 1292 ⟩ Used in section 1290.

⟨Compute the amount of skew 785 ⟩ Used in section 781.

⟨Compute the badness, b, of the current page, using awful bad if the box is too full 1061 ⟩ Used in section 1059.

⟨Compute the badness, b, using awful bad if the box is too full 1029 ⟩ Used in section 1028.

⟨Compute the demerits, d, from r to cur p 907 ⟩ Used in section 903.

⟨Compute the discretionary break width values 888 ⟩ Used in section 885.

⟨Compute the hash code h 288 ⟩ Used in section 286.

⟨Compute the magic offset 813 ⟩ Used in section 1391.

⟨Compute the mark pointer for mark type t and class cur val 1635 ⟩ Used in section 420.

⟨Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also set
width (b) 757 ⟩ Used in section 756.

⟨Compute the new line width 898 ⟩ Used in section 883.

⟨Compute the primitive code h 291 ⟩ Used in section 289.

⟨Compute the register location l and its type p; but return if invalid 1291 ⟩ Used in section 1290.

⟨Compute the sum of two glue specs 1293 ⟩ Used in section 1292.

⟨Compute the sum or difference of two glue specs 1605 ⟩ Used in section 1603.

⟨Compute the trie op code, v, and set l← 0 1019 ⟩ Used in section 1017.

⟨Compute the values of break width 885 ⟩ Used in section 884.

⟨Consider a node with matching width; goto found if it’s a hit 648 ⟩ Used in section 647.

⟨Consider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active; then
goto continue if a line from r to cur p is infeasible, otherwise record a new feasible break 899 ⟩ Used

in section 877.

⟨Constants in the outer block 11 ⟩ Used in section 4.

⟨Construct a box with limits above and below it, skewed by delta 794 ⟩ Used in section 793.

⟨Construct a sub/superscript combination box x, with the superscript offset by delta 803 ⟩ Used in section 800.

⟨Construct a subscript box x when there is no superscript 801 ⟩ Used in section 800.

X ETEX NAMES OF THE SECTIONS 727

⟨Construct a superscript box x 802 ⟩ Used in section 800.

⟨Construct a vlist box for the fraction, according to shift up and shift down 791 ⟩ Used in section 787.

⟨Construct an extensible character in a new box b, using recipe rem byte (q) and font f 756 ⟩ Used in

section 753.

⟨Contribute an entire group to the current parameter 433 ⟩ Used in section 426.

⟨Contribute the recently matched tokens to the current parameter, and goto continue if a partial match is
still in effect; but abort if s = null 431 ⟩ Used in section 426.

⟨Convert a final bin noad to an ord noad 772 ⟩ Used in sections 769 and 771.

⟨Convert cur val to a lower level 463 ⟩ Used in section 447.

⟨Convert math glue to ordinary glue 775 ⟩ Used in section 773.

⟨Convert nucleus (q) to an hlist and attach the sub/superscripts 798 ⟩ Used in section 771.

⟨Convert string s into a new pseudo file 1565 ⟩ Used in section 1564.

⟨Copy the tabskip glue between columns 843 ⟩ Used in section 839.

⟨Copy the templates from node cur loop into node p 842 ⟩ Used in section 841.

⟨Copy the token list 501 ⟩ Used in section 500.

⟨Create a character node p for nucleus (q), possibly followed by a kern node for the italic correction, and set
delta to the italic correction if a subscript is present 799 ⟩ Used in section 798.

⟨Create a character node q for the next character, but set q ← null if problems arise 1178 ⟩ Used in

section 1177.

⟨Create a new array element of type t with index i 1631 ⟩ Used in section 1630.

⟨Create a new glue specification whose width is cur val ; scan for its stretch and shrink components 497 ⟩
Used in section 496.

⟨Create a page insertion node with subtype (r) = qi (n), and include the glue correction for box n in the
current page state 1063 ⟩ Used in section 1062.

⟨Create an active breakpoint representing the beginning of the paragraph 912 ⟩ Used in section 911.

⟨Create and append a discretionary node as an alternative to the unhyphenated word, and continue to
develop both branches until they become equivalent 968 ⟩ Used in section 967.

⟨Create equal-width boxes x and z for the numerator and denominator, and compute the default amounts
shift up and shift down by which they are displaced from the baseline 788 ⟩ Used in section 787.

⟨Create new active nodes for the best feasible breaks just found 884 ⟩ Used in section 883.

⟨Create the format ident , open the format file, and inform the user that dumping has begun 1382 ⟩ Used in

section 1356.

⟨Current mem equivalent of glue parameter number n 250 ⟩ Used in sections 176 and 178.

⟨Deactivate node r 908 ⟩ Used in section 899.

⟨Declare ε-TEX procedures for expanding 1563, 1621, 1626, 1630 ⟩ Used in section 396.

⟨Declare ε-TEX procedures for scanning 1492, 1583, 1592, 1597 ⟩ Used in section 443.

⟨Declare ε-TEX procedures for token lists 1493, 1564 ⟩ Used in section 499.

⟨Declare ε-TEX procedures for tracing and input 314, 1471, 1472, 1567, 1568, 1585, 1587, 1588, 1632, 1634, 1648,

1649, 1650, 1651, 1652 ⟩ Used in section 298.

⟨Declare ε-TEX procedures for use by main control 1466, 1489, 1505 ⟩ Used in section 863.

⟨Declare action procedures for use by main control 1097, 1101, 1103, 1104, 1105, 1108, 1114, 1115, 1118, 1123, 1124,

1129, 1133, 1138, 1140, 1145, 1147, 1149, 1150, 1153, 1155, 1157, 1159, 1164, 1167, 1171, 1173, 1177, 1181, 1183, 1185,

1189, 1190, 1192, 1196, 1205, 1209, 1213, 1214, 1217, 1219, 1226, 1228, 1230, 1235, 1245, 1248, 1254, 1265, 1324, 1329,

1333, 1342, 1347, 1356, 1403, 1439 ⟩ Used in section 1084.

⟨Declare math construction procedures 777, 778, 779, 780, 781, 787, 793, 796, 800, 810 ⟩ Used in section 769.

⟨Declare procedures for preprocessing hyphenation patterns 998, 1002, 1003, 1007, 1011, 1013, 1014, 1020 ⟩ Used

in section 996.

⟨Declare procedures needed for displaying the elements of mlists 733, 734, 736 ⟩ Used in section 205.

⟨Declare procedures needed for expressions 1593, 1598 ⟩ Used in section 496.

⟨Declare procedures needed in do extension 1404, 1405, 1445, 1456 ⟩ Used in section 1403.

⟨Declare procedures needed in hlist out , vlist out 1431, 1433, 1436, 1529, 1533 ⟩ Used in section 655.

⟨Declare procedures that need to be declared forward for pdfTEX 1411 ⟩ Used in section 198.

728 NAMES OF THE SECTIONS X ETEX

⟨Declare procedures that scan font-related stuff 612, 613 ⟩ Used in section 443.

⟨Declare procedures that scan restricted classes of integers 467, 468, 469, 470, 471, 1622 ⟩ Used in section 443.

⟨Declare subprocedures for after math 1555 ⟩ Used in section 1248.

⟨Declare subprocedures for init math 1544, 1549 ⟩ Used in section 1192.

⟨Declare subprocedures for line break 874, 877, 925, 944, 996 ⟩ Used in section 863.

⟨Declare subprocedures for prefixed command 1269, 1283, 1290, 1297, 1298, 1299, 1300, 1301, 1311, 1319 ⟩ Used in

section 1265.

⟨Declare subprocedures for scan expr 1604, 1608, 1610 ⟩ Used in section 1593.

⟨Declare subprocedures for var delimiter 752, 754, 755 ⟩ Used in section 749.

⟨Declare subroutines for new character 616, 744 ⟩ Used in section 617.

⟨Declare the function called do marks 1636 ⟩ Used in section 1031.

⟨Declare the function called fin mlist 1238 ⟩ Used in section 1228.

⟨Declare the function called open fmt file 559 ⟩ Used in section 1357.

⟨Declare the function called reconstitute 960 ⟩ Used in section 944.

⟨Declare the procedure called align peek 833 ⟩ Used in section 848.

⟨Declare the procedure called fire up 1066 ⟩ Used in section 1048.

⟨Declare the procedure called get preamble token 830 ⟩ Used in section 822.

⟨Declare the procedure called handle right brace 1122 ⟩ Used in section 1084.

⟨Declare the procedure called init span 835 ⟩ Used in section 834.

⟨Declare the procedure called insert relax 413 ⟩ Used in section 396.

⟨Declare the procedure called macro call 423 ⟩ Used in section 396.

⟨Declare the procedure called print cmd chr 328, 1457 ⟩ Used in section 278.

⟨Declare the procedure called print skip param 251 ⟩ Used in section 205.

⟨Declare the procedure called runaway 336 ⟩ Used in section 141.

⟨Declare the procedure called show token list 322 ⟩ Used in section 141.

⟨Decry the invalid character and goto restart 376 ⟩ Used in section 374.

⟨Delete c− "0" tokens and goto continue 92 ⟩ Used in section 88.

⟨Delete the page-insertion nodes 1073 ⟩ Used in section 1068.

⟨Destroy the t nodes following q, and make r point to the following node 931 ⟩ Used in section 930.

⟨Determine horizontal glue shrink setting, then return or goto common ending 706 ⟩ Used in section 699.

⟨Determine horizontal glue stretch setting, then return or goto common ending 700 ⟩ Used in section 699.

⟨Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming
that l = false 1256 ⟩ Used in section 1253.

⟨Determine the shrink order 707 ⟩ Used in sections 706, 718, and 844.

⟨Determine the stretch order 701 ⟩ Used in sections 700, 715, and 844.

⟨Determine the value of height (r) and the appropriate glue setting; then return or goto
common ending 714 ⟩ Used in section 710.

⟨Determine the value of width (r) and the appropriate glue setting; then return or goto
common ending 699 ⟩ Used in section 689.

⟨Determine vertical glue shrink setting, then return or goto common ending 718 ⟩ Used in section 714.

⟨Determine vertical glue stretch setting, then return or goto common ending 715 ⟩ Used in section 714.

⟨Discard erroneous prefixes and return 1266 ⟩ Used in section 1265.

⟨Discard the prefixes \long and \outer if they are irrelevant 1267 ⟩ Used in section 1265.

⟨Dispense with trivial cases of void or bad boxes 1032 ⟩ Used in section 1031.

⟨Display adjustment p 223 ⟩ Used in section 209.

⟨Display box p 210 ⟩ Used in section 209.

⟨Display choice node p 737 ⟩ Used in section 732.

⟨Display discretionary p 221 ⟩ Used in section 209.

⟨Display fraction noad p 739 ⟩ Used in section 732.

⟨Display glue p 215 ⟩ Used in section 209.

⟨Display if this box is never to be reversed 1514 ⟩ Used in section 210.

⟨Display insertion p 214 ⟩ Used in section 209.

X ETEX NAMES OF THE SECTIONS 729

⟨Display kern p 217 ⟩ Used in section 209.

⟨Display leaders p 216 ⟩ Used in section 215.

⟨Display ligature p 219 ⟩ Used in section 209.

⟨Display mark p 222 ⟩ Used in section 209.

⟨Display math node p 218 ⟩ Used in section 209.

⟨Display node p 209 ⟩ Used in section 208.

⟨Display normal noad p 738 ⟩ Used in section 732.

⟨Display penalty p 220 ⟩ Used in section 209.

⟨Display rule p 213 ⟩ Used in section 209.

⟨Display special fields of the unset node p 211 ⟩ Used in section 210.

⟨Display the current context 342 ⟩ Used in section 341.

⟨Display the insertion split cost 1065 ⟩ Used in section 1064.

⟨Display the page break cost 1060 ⟩ Used in section 1059.

⟨Display the token (m, c) 324 ⟩ Used in section 323.

⟨Display the value of b 537 ⟩ Used in section 533.

⟨Display the value of glue set (p) 212 ⟩ Used in section 210.

⟨Display the whatsit node p 1416 ⟩ Used in section 209.

⟨Display token p, and return if there are problems 323 ⟩ Used in section 322.

⟨Do first-pass processing based on type (q); goto done with noad if a noad has been fully processed, goto
check dimensions if it has been translated into new hlist (q), or goto done with node if a node has been
fully processed 771 ⟩ Used in section 770.

⟨Do ligature or kern command, returning to main lig loop or main loop wrapup or main loop move 1094 ⟩
Used in section 1093.

⟨Do magic computation 350 ⟩ Used in section 322.

⟨Do some work that has been queued up for \write 1437 ⟩ Used in section 1436.

⟨Drop current token and complain that it was unmatched 1120 ⟩ Used in section 1118.

⟨Dump a couple more things and the closing check word 1380 ⟩ Used in section 1356.

⟨Dump constants for consistency check 1361 ⟩ Used in section 1356.

⟨Dump regions 1 to 4 of eqtb 1369 ⟩ Used in section 1367.

⟨Dump regions 5 and 6 of eqtb 1370 ⟩ Used in section 1367.

⟨Dump the ε-TEX state 1464, 1569 ⟩ Used in section 1361.

⟨Dump the array info for internal font number k 1376 ⟩ Used in section 1374.

⟨Dump the dynamic memory 1365 ⟩ Used in section 1356.

⟨Dump the font information 1374 ⟩ Used in section 1356.

⟨Dump the hash table 1372 ⟩ Used in section 1367.

⟨Dump the hyphenation tables 1378 ⟩ Used in section 1356.

⟨Dump the string pool 1363 ⟩ Used in section 1356.

⟨Dump the table of equivalents 1367 ⟩ Used in section 1356.

⟨Either append the insertion node p after node q, and remove it from the current page, or delete
node (p) 1076 ⟩ Used in section 1074.

⟨Either insert the material specified by node p into the appropriate box, or hold it for the next page; also
delete node p from the current page 1074 ⟩ Used in section 1068.

⟨Either process \ifcase or set b to the value of a boolean condition 536 ⟩ Used in section 533.

⟨Empty the last bytes out of dvi buf 635 ⟩ Used in section 680.

⟨Enable ε-TEX, if requested 1451 ⟩ Used in section 1391.

⟨Ensure that box 255 is empty after output 1082 ⟩ Used in section 1080.

⟨Ensure that box 255 is empty before output 1069 ⟩ Used in section 1068.

⟨Ensure that trie max ≥ h+max hyph char 1008 ⟩ Used in section 1007.

⟨Enter a hyphenation exception 993 ⟩ Used in section 989.

⟨Enter all of the patterns into a linked trie, until coming to a right brace 1015 ⟩ Used in section 1014.

⟨Enter as many hyphenation exceptions as are listed, until coming to a right brace; then return 989 ⟩ Used

in section 988.

730 NAMES OF THE SECTIONS X ETEX

⟨Enter skip blanks state, emit a space 379 ⟩ Used in section 377.

⟨Error handling procedures 82, 85, 86, 97, 98, 99, 1455 ⟩ Used in section 4.

⟨Evaluate the current expression 1603 ⟩ Used in section 1594.

⟨Examine node p in the hlist, taking account of its effect on the dimensions of the new box, or moving it to
the adjustment list; then advance p to the next node 691 ⟩ Used in section 689.

⟨Examine node p in the vlist, taking account of its effect on the dimensions of the new box; then advance p
to the next node 711 ⟩ Used in section 710.

⟨Expand a nonmacro 399 ⟩ Used in section 396.

⟨Expand macros in the token list and make link (def ref) point to the result 1434 ⟩ Used in sections 1431

and 1433.

⟨Expand the next part of the input 513 ⟩ Used in section 512.

⟨Expand the token after the next token 400 ⟩ Used in section 399.

⟨Explain that too many dead cycles have occurred in a row 1078 ⟩ Used in section 1066.

⟨Express astonishment that no number was here 480 ⟩ Used in section 478.

⟨Express consternation over the fact that no alignment is in progress 1182 ⟩ Used in section 1181.

⟨Express shock at the missing left brace; goto found 510 ⟩ Used in section 509.

⟨Feed the macro body and its parameters to the scanner 424 ⟩ Used in section 423.

⟨Fetch a box dimension 454 ⟩ Used in section 447.

⟨Fetch a character code from some table 448 ⟩ Used in section 447.

⟨Fetch a font dimension 459 ⟩ Used in section 447.

⟨Fetch a font integer 460 ⟩ Used in section 447.

⟨Fetch a penalties array element 1677 ⟩ Used in section 457.

⟨Fetch a register 461 ⟩ Used in section 447.

⟨Fetch a token list or font identifier, provided that level = tok val 449 ⟩ Used in section 447.

⟨Fetch an internal dimension and goto attach sign , or fetch an internal integer 484 ⟩ Used in section 482.

⟨Fetch an item in the current node, if appropriate 458 ⟩ Used in section 447.

⟨Fetch first character of a sub/superscript 805 ⟩ Used in sections 801, 802, and 803.

⟨Fetch something on the page so far 455 ⟩ Used in section 447.

⟨Fetch the dead cycles or the insert penalties 453 ⟩ Used in section 447.

⟨Fetch the par shape size 457 ⟩ Used in section 447.

⟨Fetch the prev graf 456 ⟩ Used in section 447.

⟨Fetch the space factor or the prev depth 452 ⟩ Used in section 447.

⟨Find an active node with fewest demerits 922 ⟩ Used in section 921.

⟨Find hyphen locations for the word in hc , or return 977 ⟩ Used in section 944.

⟨Find optimal breakpoints 911 ⟩ Used in section 863.

⟨Find the best active node for the desired looseness 923 ⟩ Used in section 921.

⟨Find the best way to split the insertion, and change type (r) to split up 1064 ⟩ Used in section 1062.

⟨Find the glue specification, main p , for text spaces in the current font 1096 ⟩ Used in sections 1095 and 1097.

⟨Finish an alignment in a display 1260 ⟩ Used in section 860.

⟨Finish displayed math 1253 ⟩ Used in section 1248.

⟨Finish issuing a diagnostic message for an overfull or underfull hbox 705 ⟩ Used in section 689.

⟨Finish issuing a diagnostic message for an overfull or underfull vbox 717 ⟩ Used in section 710.

⟨Finish line, emit a \par 381 ⟩ Used in section 377.

⟨Finish line, emit a space 378 ⟩ Used in section 377.

⟨Finish line, goto switch 380 ⟩ Used in section 377.

⟨Finish math in text 1250 ⟩ Used in section 1248.

⟨Finish the DVI file 680 ⟩ Used in section 1387.

⟨Finish the extensions 1441 ⟩ Used in section 1387.

⟨Finish the natural width computation 1546 ⟩ Used in section 1200.

⟨Finish the reversed hlist segment and goto done 1540 ⟩ Used in section 1539.

⟨Finish hlist out for mixed direction typesetting 1525 ⟩ Used in section 655.

⟨Fire up the user’s output routine and return 1079 ⟩ Used in section 1066.

X ETEX NAMES OF THE SECTIONS 731

⟨Fix the reference count, if any, and negate cur val if negative 464 ⟩ Used in section 447.

⟨Flush the box from memory, showing statistics if requested 677 ⟩ Used in section 676.

⟨Flush the prototype box 1554 ⟩ Used in section 1253.

⟨Forbidden cases detected in main control 1102, 1152, 1165, 1198 ⟩ Used in section 1099.

⟨Generate a down or right command for w and return 646 ⟩ Used in section 643.

⟨Generate a y0 or z0 command in order to reuse a previous appearance of w 645 ⟩ Used in section 643.

⟨Generate all ε-TEX primitives 1399, 1452, 1467, 1473, 1476, 1479, 1482, 1485, 1494, 1496, 1499, 1502, 1507, 1511, 1558,

1570, 1573, 1581, 1589, 1612, 1616, 1620, 1672, 1675 ⟩ Used in section 1451.

⟨Get ready to compress the trie 1006 ⟩ Used in section 1020.

⟨Get ready to start line breaking 864, 875, 882, 896 ⟩ Used in section 863.

⟨Get the first line of input and prepare to start 1391 ⟩ Used in section 1386.

⟨Get the next non-blank non-call token 440 ⟩ Used in sections 439, 475, 490, 538, 561, 612, 1099, 1595, and 1596.

⟨Get the next non-blank non-relax non-call token 438 ⟩ Used in sections 437, 1132, 1138, 1205, 1214, 1265, 1280,

and 1324.

⟨Get the next non-blank non-sign token; set negative appropriately 475 ⟩ Used in sections 474, 482, and 496.

⟨Get the next token, suppressing expansion 388 ⟩ Used in section 387.

⟨Get user’s advice and return 87 ⟩ Used in section 86.

⟨Give diagnostic information, if requested 1085 ⟩ Used in section 1084.

⟨Give improper \hyphenation error 990 ⟩ Used in section 989.

⟨Global variables 13, 20, 26, 30, 32, 39, 50, 54, 61, 77, 80, 83, 100, 108, 114, 121, 137, 138, 139, 140, 146, 181, 190, 199,

207, 239, 272, 279, 282, 283, 301, 316, 327, 331, 334, 335, 338, 339, 340, 363, 391, 397, 416, 421, 422, 444, 472, 481, 515,

524, 528, 547, 548, 555, 562, 567, 574, 584, 585, 590, 628, 631, 641, 652, 682, 685, 686, 695, 703, 726, 762, 767, 812, 818,

862, 869, 871, 873, 876, 881, 887, 895, 920, 940, 953, 959, 961, 975, 980, 997, 1001, 1004, 1025, 1034, 1036, 1043, 1086,

1128, 1320, 1335, 1353, 1359, 1385, 1396, 1400, 1429, 1449, 1462, 1470, 1515, 1561, 1584, 1625, 1627, 1646, 1653, 1669,

1670 ⟩ Used in section 4.

⟨Go into display math mode 1199 ⟩ Used in section 1192.

⟨Go into ordinary math mode 1193 ⟩ Used in sections 1192 and 1196.

⟨Go through the preamble list, determining the column widths and changing the alignrecords to dummy
unset boxes 849 ⟩ Used in section 848.

⟨Grow more variable-size memory and goto restart 148 ⟩ Used in section 147.

⟨Handle \readline and goto done 1572 ⟩ Used in section 518.

⟨Handle \unexpanded or \detokenize and return 1498 ⟩ Used in section 500.

⟨Handle a glue node for mixed direction typesetting 1509 ⟩ Used in sections 663 and 1537.

⟨Handle a math node in hlist out 1526 ⟩ Used in section 660.

⟨Handle non-positive logarithm 125 ⟩ Used in section 123.

⟨Handle saved items and goto done 1674 ⟩ Used in section 1164.

⟨Handle situations involving spaces, braces, changes of state 377 ⟩ Used in section 374.

⟨Hyphenate the native word node at ha 957 ⟩ Used in section 956.

⟨ If a line number class has ended, create new active nodes for the best feasible breaks in that class; then
return if r = last active , otherwise compute the new line width 883 ⟩ Used in section 877.

⟨ If all characters of the family fit relative to h, then goto found , otherwise goto not found 1009 ⟩ Used in

section 1007.

⟨ If an alignment entry has just ended, take appropriate action 372 ⟩ Used in section 371.

⟨ If an expanded code is present, reduce it and goto start cs 385 ⟩ Used in sections 384 and 386.

⟨ If dumping is not allowed, abort 1358 ⟩ Used in section 1356.

⟨ If instruction cur i is a kern with cur c , attach the kern after q; or if it is a ligature with cur c , combine
noads q and p appropriately; then return if the cursor has moved past a noad, or goto restart 797 ⟩
Used in section 796.

⟨ If no hyphens were found, return 955 ⟩ Used in section 944.

⟨ If node cur p is a legal breakpoint, call try break ; then update the active widths by including the glue in
glue ptr (cur p) 916 ⟩ Used in section 914.

732 NAMES OF THE SECTIONS X ETEX

⟨ If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if the
page-so-far is already too full to accept more stuff 1026 ⟩ Used in section 1024.

⟨ If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, put it into the
hlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to the associated type
(ord noad . . inner noad), and set pen to the associated penalty 809 ⟩ Used in section 808.

⟨ If node r is of type delta node , update cur active width , set prev r and prev prev r , then goto continue 880 ⟩
Used in section 877.

⟨ If the current list ends with a box node, delete it from the list and make cur box point to it; otherwise set
cur box ← null 1134 ⟩ Used in section 1133.

⟨ If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to update the
state of the current page; if this node is an insertion, goto contribute ; otherwise if this node is not a
legal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associated with
this breakpoint 1054 ⟩ Used in section 1051.

⟨ If the cursor is immediately followed by the right boundary, goto reswitch ; if it’s followed by an invalid
character, goto big switch ; otherwise move the cursor one step to the right and goto main lig loop 1090 ⟩
Used in section 1088.

⟨ If the next character is a parameter number, make cur tok a match token; but if it is a left brace, store
‘left brace , end match ’, set hash brace , and goto done 511 ⟩ Used in section 509.

⟨ If the preamble list has been traversed, check that the row has ended 840 ⟩ Used in section 839.

⟨ If the right-hand side is a token parameter or token register, finish the assignment and goto done 1281 ⟩
Used in section 1280.

⟨ If the string hyph word [h] is less than hc [1 . . hn], goto not found ; but if the two strings are equal, set hyf
to the hyphen positions and goto found 985 ⟩ Used in section 984.

⟨ If the string hyph word [h] is less than or equal to s, interchange (hyph word [h], hyph list [h]) with (s, p) 995 ⟩
Used in section 994.

⟨ If there’s a ligature or kern at the cursor position, update the data structures, possibly advancing j;
continue until the cursor moves 963 ⟩ Used in section 960.

⟨ If there’s a ligature/kern command relevant to cur l and cur r , adjust the text appropriately; exit to
main loop wrapup 1093 ⟩ Used in section 1088.

⟨ If this font has already been loaded, set f to the internal font number and goto common ending 1314 ⟩
Used in section 1311.

⟨ If this sup mark starts an expanded character like ^^A or ^^df, then goto reswitch , otherwise set
state ← mid line 382 ⟩ Used in section 374.

⟨ Ignore the fraction operation and complain about this ambiguous case 1237 ⟩ Used in section 1235.

⟨ Implement \XeTeXdefaultencoding 1447 ⟩ Used in section 1403.

⟨ Implement \XeTeXglyph 1444 ⟩ Used in section 1403.

⟨ Implement \XeTeXinputencoding 1446 ⟩ Used in section 1403.

⟨ Implement \XeTeXlinebreaklocale 1448 ⟩ Used in section 1403.

⟨ Implement \XeTeXpdffile 1443 ⟩ Used in section 1403.

⟨ Implement \XeTeXpicfile 1442 ⟩ Used in section 1403.

⟨ Implement \closeout 1408 ⟩ Used in section 1403.

⟨ Implement \immediate 1438 ⟩ Used in section 1403.

⟨ Implement \openout 1406 ⟩ Used in section 1403.

⟨ Implement \pdfsavepos 1450 ⟩ Used in section 1403.

⟨ Implement \primitive 402 ⟩ Used in section 399.

⟨ Implement \resettimer 1414 ⟩ Used in section 1403.

⟨ Implement \setlanguage 1440 ⟩ Used in section 1403.

⟨ Implement \setrandomseed 1413 ⟩ Used in section 1403.

⟨ Implement \special 1409 ⟩ Used in section 1403.

⟨ Implement \write 1407 ⟩ Used in section 1403.

⟨ Incorporate a whatsit node into a vbox 1419 ⟩ Used in section 711.

⟨ Incorporate a whatsit node into an hbox 1420 ⟩ Used in section 691.

X ETEX NAMES OF THE SECTIONS 733

⟨ Incorporate box dimensions into the dimensions of the hbox that will contain it 693 ⟩ Used in section 691.

⟨ Incorporate box dimensions into the dimensions of the vbox that will contain it 712 ⟩ Used in section 711.

⟨ Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to the
next node 694 ⟩ Used in section 691.

⟨ Incorporate glue into the horizontal totals 698 ⟩ Used in section 691.

⟨ Incorporate glue into the vertical totals 713 ⟩ Used in section 711.

⟨ Increase the number of parameters in the last font 615 ⟩ Used in section 613.

⟨ Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 124 ⟩ Used in section 123.

⟨ Initialize additional fields of the first active node 1656 ⟩ Used in section 912.

⟨ Initialize for hyphenating a paragraph 939 ⟩ Used in section 911.

⟨ Initialize table entries (done by INITEX only) 189, 248, 254, 258, 266, 276, 285, 587, 1000, 1005, 1270, 1355, 1432,

1463, 1629, 1665 ⟩ Used in section 8.

⟨ Initialize the LR stack 1520 ⟩ Used in sections 689, 1524, and 1545.

⟨ Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1055 ⟩ Used in

section 1054.

⟨ Initialize the input routines 361 ⟩ Used in section 1391.

⟨ Initialize the output routines 55, 65, 563, 568 ⟩ Used in section 1386.

⟨ Initialize the print selector based on interaction 79 ⟩ Used in sections 1319 and 1391.

⟨ Initialize the special list heads and constant nodes 838, 845, 868, 1035, 1042 ⟩ Used in section 189.

⟨ Initialize variables as ship out begins 653 ⟩ Used in section 678.

⟨ Initialize variables for ε-TEX compatibility mode 1623 ⟩ Used in sections 1463 and 1465.

⟨ Initialize variables for ε-TEX extended mode 1624 ⟩ Used in sections 1451 and 1465.

⟨ Initialize whatever TEX might access 8 ⟩ Used in section 4.

⟨ Initialize hlist out for mixed direction typesetting 1524 ⟩ Used in section 655.

⟨ Initiate input from new pseudo file 1566 ⟩ Used in section 1564.

⟨ Initiate or terminate input from a file 412 ⟩ Used in section 399.

⟨ Initiate the construction of an hbox or vbox, then return 1137 ⟩ Used in section 1133.

⟨ Input and store tokens from the next line of the file 518 ⟩ Used in section 517.

⟨ Input for \read from the terminal 519 ⟩ Used in section 518.

⟨ Input from external file, goto restart if no input found 373 ⟩ Used in section 371.

⟨ Input from token list, goto restart if end of list or if a parameter needs to be expanded 387 ⟩ Used in

section 371.

⟨ Input the first line of read file [m] 520 ⟩ Used in section 518.

⟨ Input the next line of read file [m] 521 ⟩ Used in section 518.

⟨ Insert LR nodes at the beginning of the current line and adjust the LR stack based on LR nodes in this
line 1517 ⟩ Used in section 928.

⟨ Insert LR nodes at the end of the current line 1519 ⟩ Used in section 928.

⟨ Insert a delta node to prepare for breaks at cur p 891 ⟩ Used in section 884.

⟨ Insert a delta node to prepare for the next active node 892 ⟩ Used in section 884.

⟨ Insert a dummy noad to be sub/superscripted 1231 ⟩ Used in section 1230.

⟨ Insert a new active node from best place [fit class] to cur p 893 ⟩ Used in section 884.

⟨ Insert a new control sequence after p, then make p point to it 287 ⟩ Used in section 286.

⟨ Insert a new pattern into the linked trie 1017 ⟩ Used in section 1015.

⟨ Insert a new primitive after p, then make p point to it 290 ⟩ Used in section 289.

⟨ Insert a new trie node between q and p, and make p point to it 1018 ⟩ Used in sections 1017, 1666, and 1667.

⟨ Insert a token containing frozen endv 409 ⟩ Used in section 396.

⟨ Insert a token saved by \afterassignment, if any 1323 ⟩ Used in section 1265.

⟨ Insert glue for split top skip and set p← null 1023 ⟩ Used in section 1022.

⟨ Insert hyphens as specified in hyph list [h] 986 ⟩ Used in section 985.

⟨ Insert macro parameter and goto restart 389 ⟩ Used in section 387.

⟨ Insert the appropriate mark text into the scanner 420 ⟩ Used in section 399.

⟨ Insert the current list into its environment 860 ⟩ Used in section 848.

734 NAMES OF THE SECTIONS X ETEX

⟨ Insert the pair (s, p) into the exception table 994 ⟩ Used in section 993.

⟨ Insert the ⟨vj⟩ template and goto restart 837 ⟩ Used in section 372.

⟨ Insert token p into TEX’s input 356 ⟩ Used in section 312.

⟨ Interpret code c and return if done 88 ⟩ Used in section 87.

⟨ Introduce new material from the terminal and return 91 ⟩ Used in section 88.

⟨ Issue an error message if cur val = fmem ptr 614 ⟩ Used in section 613.

⟨ Justify the line ending at breakpoint cur p , and append it to the current vertical list, together with
associated penalties and other insertions 928 ⟩ Used in section 925.

⟨Labels in the outer block 6 ⟩ Used in section 4.

⟨Last-minute procedures 1387, 1389, 1390, 1392 ⟩ Used in section 1384.

⟨Lengthen the preamble periodically 841 ⟩ Used in section 840.

⟨Let cur h be the position of the first box, and set leader wd + lx to the spacing between corresponding
parts of boxes 665 ⟩ Used in section 664.

⟨Let cur v be the position of the first box, and set leader ht + lx to the spacing between corresponding
parts of boxes 674 ⟩ Used in section 673.

⟨Let d be the natural width of node p; if the node is “visible,” goto found ; if the node is glue that stretches
or shrinks, set v ← max dimen 1201 ⟩ Used in section 1200.

⟨Let d be the natural width of this glue; if stretching or shrinking, set v ← max dimen ; goto found in the
case of leaders 1202 ⟩ Used in section 1201.

⟨Let d be the width of the whatsit p, and goto found if “visible” 1421 ⟩ Used in section 1201.

⟨Let j be the prototype box for the display 1551 ⟩ Used in section 1545.

⟨Let n be the largest legal code value, based on cur chr 1287 ⟩ Used in section 1286.

⟨Link node p into the current page and goto done 1052 ⟩ Used in section 1051.

⟨Local variables for dimension calculations 485 ⟩ Used in section 482.

⟨Local variables for finishing a displayed formula 1252, 1552 ⟩ Used in section 1248.

⟨Local variables for formatting calculations 345 ⟩ Used in section 341.

⟨Local variables for hyphenation 954, 966, 976, 983 ⟩ Used in section 944.

⟨Local variables for initialization 19, 188, 981 ⟩ Used in section 4.

⟨Local variables for line breaking 910, 942, 948 ⟩ Used in section 863.

⟨Look ahead for another character, or leave lig stack empty if there’s none there 1092 ⟩ Used in section 1088.

⟨Look at all the marks in nodes before the break, and set the final link to null at the break 1033 ⟩ Used in

section 1031.

⟨Look at the list of characters starting with x in font g; set f and c whenever a better character is found;
goto found as soon as a large enough variant is encountered 751 ⟩ Used in section 750.

⟨Look at the other stack entries until deciding what sort of DVI command to generate; goto found if node
p is a “hit” 647 ⟩ Used in section 643.

⟨Look at the variants of (z, x); set f and c whenever a better character is found; goto found as soon as a
large enough variant is encountered 750 ⟩ Used in section 749.

⟨Look for parameter number or ## 514 ⟩ Used in section 512.

⟨Look for the word hc [1 . . hn] in the exception table, and goto found (with hyf containing the hyphens)
if an entry is found 984 ⟩ Used in section 977.

⟨Look up the characters of list n in the hash table, and set cur cs 1579 ⟩ Used in section 1578.

⟨Look up the characters of list r in the hash table, and set cur cs 408 ⟩ Used in section 406.

⟨Make a copy of node p in node r 231 ⟩ Used in section 230.

⟨Make a ligature node, if ligature present ; insert a null discretionary, if appropriate 1089 ⟩ Used in section 1088.

⟨Make a partial copy of the whatsit node p and make r point to it; set words to the number of initial words
not yet copied 1417 ⟩ Used in sections 232 and 1544.

⟨Make a second pass over the mlist, removing all noads and inserting the proper spacing and penalties 808 ⟩
Used in section 769.

⟨Make final adjustments and goto done 611 ⟩ Used in section 597.

⟨Make node p look like a char node and goto reswitch 692 ⟩ Used in sections 660, 691, and 1201.

⟨Make sure that f is in the proper range 1601 ⟩ Used in section 1594.

X ETEX NAMES OF THE SECTIONS 735

⟨Make sure that page max depth is not exceeded 1057 ⟩ Used in section 1051.

⟨Make sure that pi is in the proper range 879 ⟩ Used in section 877.

⟨Make the contribution list empty by setting its tail to contrib head 1049 ⟩ Used in section 1048.

⟨Make the first 256 strings 48 ⟩ Used in section 47.

⟨Make the height of box y equal to h 782 ⟩ Used in section 781.

⟨Make the running dimensions in rule q extend to the boundaries of the alignment 854 ⟩ Used in section 853.

⟨Make the unset node r into a vlist node of height w, setting the glue as if the height were t 859 ⟩ Used in

section 856.

⟨Make the unset node r into an hlist node of width w, setting the glue as if the width were t 858 ⟩ Used in

section 856.

⟨Make variable b point to a box for (f, c) 753 ⟩ Used in section 749.

⟨Manufacture a control sequence name 406 ⟩ Used in section 399.

⟨Math-only cases in non-math modes, or vice versa 1100 ⟩ Used in section 1099.

⟨Merge sequences of words using native fonts and inter-word spaces into single nodes 656 ⟩ Used in section 655.

⟨Merge the widths in the span nodes of q with those of p, destroying the span nodes of q 851 ⟩ Used in

section 849.

⟨Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the proper
value of disc break 929 ⟩ Used in section 928.

⟨Modify the glue specification in main p according to the space factor 1098 ⟩ Used in section 1097.

⟨Move down or output leaders 672 ⟩ Used in section 669.

⟨Move node p to the current page; if it is time for a page break, put the nodes following the break back onto
the contribution list, and return to the user’s output routine if there is one 1051 ⟩ Used in section 1048.

⟨Move node p to the new list and go to the next node; or goto done if the end of the reflected segment has
been reached 1534 ⟩ Used in section 1533.

⟨Move pointer s to the end of the current list, and set replace count (r) appropriately 972 ⟩ Used in section 968.

⟨Move right or output leaders 663 ⟩ Used in section 660.

⟨Move the characters of a ligature node to hu and hc ; but goto done3 if they are not all letters 951 ⟩ Used

in section 950.

⟨Move the cursor past a pseudo-ligature, then goto main loop lookahead or main lig loop 1091 ⟩ Used in

section 1088.

⟨Move the data into trie 1012 ⟩ Used in section 1020.

⟨Move the non-char node p to the new list 1535 ⟩ Used in section 1534.

⟨Move to next line of file, or goto restart if there is no next line, or return if a \read line has finished 390 ⟩
Used in section 373.

⟨Negate a boolean conditional and goto reswitch 1576 ⟩ Used in section 399.

⟨Negate all three glue components of cur val 465 ⟩ Used in sections 464 and 1591.

⟨Nullify width (q) and the tabskip glue following this column 850 ⟩ Used in section 849.

⟨Numbered cases for debug help 1393 ⟩ Used in section 1392.

⟨Open tfm file for input and begin 598 ⟩ Used in section 597.

⟨Other local variables for try break 878, 1655 ⟩ Used in section 877.

⟨Output a box in a vlist 670 ⟩ Used in section 669.

⟨Output a box in an hlist 661 ⟩ Used in section 660.

⟨Output a leader box at cur h , then advance cur h by leader wd + lx 666 ⟩ Used in section 664.

⟨Output a leader box at cur v , then advance cur v by leader ht + lx 675 ⟩ Used in section 673.

⟨Output a rule in a vlist, goto next p 671 ⟩ Used in section 669.

⟨Output a rule in an hlist 662 ⟩ Used in section 660.

⟨Output leaders in a vlist, goto fin rule if a rule or to next p if done 673 ⟩ Used in section 672.

⟨Output leaders in an hlist, goto fin rule if a rule or to next p if done 664 ⟩ Used in section 663.

⟨Output node p for hlist out and move to the next node, maintaining the condition cur v = base line 658 ⟩
Used in section 655.

⟨Output node p for vlist out and move to the next node, maintaining the condition cur h = left edge 668 ⟩
Used in section 667.

736 NAMES OF THE SECTIONS X ETEX

⟨Output statistics about this job 1388 ⟩ Used in section 1387.

⟨Output the font definitions for all fonts that were used 681 ⟩ Used in section 680.

⟨Output the font name whose internal number is f 639 ⟩ Used in section 638.

⟨Output the non-char node p for hlist out and move to the next node 660 ⟩ Used in section 658.

⟨Output the non-char node p for vlist out 669 ⟩ Used in section 668.

⟨Output the whatsit node p in a vlist 1426 ⟩ Used in section 669.

⟨Output the whatsit node p in an hlist 1430 ⟩ Used in section 660.

⟨Pack all stored hyph codes 1668 ⟩ Used in section 1020.

⟨Pack the family into trie relative to h 1010 ⟩ Used in section 1007.

⟨Package an unset box for the current column and record its width 844 ⟩ Used in section 839.

⟨Package the display line 1557 ⟩ Used in section 1555.

⟨Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototype
box 852 ⟩ Used in section 848.

⟨Perform computations for last line and goto found 1657 ⟩ Used in section 900.

⟨Perform the default output routine 1077 ⟩ Used in section 1066.

⟨Pontificate about improper alignment in display 1261 ⟩ Used in section 1260.

⟨Pop the condition stack 531 ⟩ Used in sections 533, 535, 544, and 545.

⟨Pop the expression stack and goto found 1600 ⟩ Used in section 1594.

⟨Prepare a native word node for hyphenation 946 ⟩ Used in section 943.

⟨Prepare all the boxes involved in insertions to act as queues 1072 ⟩ Used in section 1068.

⟨Prepare for display after a non-empty paragraph 1545 ⟩ Used in section 1200.

⟨Prepare for display after an empty paragraph 1543 ⟩ Used in section 1199.

⟨Prepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from r
to cur p 902 ⟩ Used in section 899.

⟨Prepare to insert a token that matches cur group , and print what it is 1119 ⟩ Used in section 1118.

⟨Prepare to move a box or rule node to the current page, then goto contribute 1056 ⟩ Used in section 1054.

⟨Prepare to move whatsit p to the current page, then goto contribute 1424 ⟩ Used in section 1054.

⟨Print a short indication of the contents of node p 201 ⟩ Used in section 200.

⟨Print a symbolic description of the new break node 894 ⟩ Used in section 893.

⟨Print a symbolic description of this feasible break 904 ⟩ Used in section 903.

⟨Print additional data in the new active node 1663 ⟩ Used in section 894.

⟨Print either ‘definition’ or ‘use’ or ‘preamble’ or ‘text’, and insert tokens that should lead to
recovery 369 ⟩ Used in section 368.

⟨Print location of current line 343 ⟩ Used in section 342.

⟨Print newly busy locations 196 ⟩ Used in section 192.

⟨Print string s as an error message 1337 ⟩ Used in section 1333.

⟨Print string s on the terminal 1334 ⟩ Used in section 1333.

⟨Print the banner line, including the date and time 571 ⟩ Used in section 569.

⟨Print the font identifier for font (p) 297 ⟩ Used in sections 200 and 202.

⟨Print the help information and goto continue 93 ⟩ Used in section 88.

⟨Print the list between printed node and cur p , then set printed node ← cur p 905 ⟩ Used in section 904.

⟨Print the menu of available options 89 ⟩ Used in section 88.

⟨Print the result of command c 507 ⟩ Used in section 505.

⟨Print two lines using the tricky pseudoprinted information 347 ⟩ Used in section 342.

⟨Print type of token list 344 ⟩ Used in section 342.

⟨Process an active-character control sequence and set state ← mid line 383 ⟩ Used in section 374.

⟨Process an expression and return 1591 ⟩ Used in section 458.

⟨Process node-or-noad q as much as possible in preparation for the second pass of mlist to hlist , then move
to the next item in the mlist 770 ⟩ Used in section 769.

⟨Process whatsit p in vert break loop, goto not found 1425 ⟩ Used in section 1027.

⟨Prune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,
rule node , and ligature node items; set n to the length of the list, and set q to the list’s tail 1175 ⟩ Used

X ETEX NAMES OF THE SECTIONS 737

in section 1173.

⟨Prune unwanted nodes at the beginning of the next line 927 ⟩ Used in section 925.

⟨Pseudoprint the line 348 ⟩ Used in section 342.

⟨Pseudoprint the token list 349 ⟩ Used in section 342.

⟨Push the condition stack 530 ⟩ Used in section 533.

⟨Push the expression stack and goto restart 1599 ⟩ Used in section 1596.

⟨Put each of TEX’s primitives into the hash table 252, 256, 264, 274, 295, 364, 410, 418, 445, 450, 503, 522, 526, 588,

828, 1037, 1106, 1112, 1125, 1142, 1161, 1168, 1195, 1210, 1223, 1232, 1242, 1262, 1273, 1276, 1284, 1304, 1308, 1316,

1326, 1331, 1340, 1345, 1398 ⟩ Used in section 1390.

⟨Put help message on the transcript file 94 ⟩ Used in section 86.

⟨Put the characters hu [i + 1 . .] into post break (r), appending to this list and to major tail until
synchronization has been achieved 970 ⟩ Used in section 968.

⟨Put the characters hu [l . . i] and a hyphen into pre break (r) 969 ⟩ Used in section 968.

⟨Put the fraction into a box with its delimiters, and make new hlist (q) point to it 792 ⟩ Used in section 787.

⟨Put the \leftskip glue at the left and detach this line 935 ⟩ Used in section 928.

⟨Put the optimal current page into box 255, update first mark and bot mark , append insertions to their
boxes, and put the remaining nodes back on the contribution list 1068 ⟩ Used in section 1066.

⟨Put the (positive) ‘at’ size into s 1313 ⟩ Used in section 1312.

⟨Put the \rightskip glue after node q 934 ⟩ Used in section 929.

⟨Read and check the font data if file exists; abort if the TFM file is malformed; if there’s no room for this
font, say so and goto done ; otherwise incr (font ptr) and goto done 597 ⟩ Used in section 595.

⟨Read box dimensions 606 ⟩ Used in section 597.

⟨Read character data 604 ⟩ Used in section 597.

⟨Read extensible character recipes 609 ⟩ Used in section 597.

⟨Read font parameters 610 ⟩ Used in section 597.

⟨Read ligature/kern program 608 ⟩ Used in section 597.

⟨Read next line of file into buffer , or goto restart if the file has ended 392 ⟩ Used in section 390.

⟨Read one string, but return false if the string memory space is getting too tight for comfort 52 ⟩ Used in

section 51.

⟨Read the first line of the new file 573 ⟩ Used in section 572.

⟨Read the other strings from the TEX.POOL file and return true , or give an error message and return
false 51 ⟩ Used in section 47.

⟨Read the TFM header 603 ⟩ Used in section 597.

⟨Read the TFM size fields 600 ⟩ Used in section 597.

⟨Readjust the height and depth of cur box , for \vtop 1141 ⟩ Used in section 1140.

⟨Reconstitute nodes for the hyphenated word, inserting discretionary hyphens 967 ⟩ Used in section 956.

⟨Record a new feasible break 903 ⟩ Used in section 899.

⟨Recover from an unbalanced output routine 1081 ⟩ Used in section 1080.

⟨Recover from an unbalanced write command 1435 ⟩ Used in section 1434.

⟨Recycle node p 1053 ⟩ Used in section 1051.

⟨Reduce to the case that a, c ≥ 0, b, d > 0 127 ⟩ Used in section 126.

⟨Reduce to the case that f ≥ 0 and q > 0 119 ⟩ Used in section 118.

⟨Remove the last box, unless it’s part of a discretionary 1135 ⟩ Used in section 1134.

⟨Replace nodes ha . . hb by a sequence of nodes that includes the discretionary hyphens 956 ⟩ Used in

section 944.

⟨Replace the tail of the list by p 1241 ⟩ Used in section 1240.

⟨Replace z by z′ and compute α, β 607 ⟩ Used in section 606.

⟨Report LR problems 1523 ⟩ Used in sections 1522 and 1541.

⟨Report a runaway argument and abort 430 ⟩ Used in sections 426 and 433.

⟨Report a tight hbox and goto common ending , if this box is sufficiently bad 709 ⟩ Used in section 706.

⟨Report a tight vbox and goto common ending , if this box is sufficiently bad 720 ⟩ Used in section 718.

⟨Report an extra right brace and goto continue 429 ⟩ Used in section 426.

738 NAMES OF THE SECTIONS X ETEX

⟨Report an improper use of the macro and abort 432 ⟩ Used in section 431.

⟨Report an overfull hbox and goto common ending , if this box is sufficiently bad 708 ⟩ Used in section 706.

⟨Report an overfull vbox and goto common ending , if this box is sufficiently bad 719 ⟩ Used in section 718.

⟨Report an underfull hbox and goto common ending , if this box is sufficiently bad 702 ⟩ Used in section 700.

⟨Report an underfull vbox and goto common ending , if this box is sufficiently bad 716 ⟩ Used in section 715.

⟨Report overflow of the input buffer, and abort 35 ⟩ Used in sections 31 and 1567.

⟨Report that an invalid delimiter code is being changed to null; set cur val ← 0 1215 ⟩ Used in section 1214.

⟨Report that the font won’t be loaded 596 ⟩ Used in section 595.

⟨Report that this dimension is out of range 495 ⟩ Used in section 482.

⟨Reset cur tok for unexpandable primitives, goto restart 403 ⟩ Used in sections 447 and 474.

⟨Resume the page builder after an output routine has come to an end 1080 ⟩ Used in section 1154.

⟨Retrieve the prototype box 1553 ⟩ Used in sections 1248 and 1248.

⟨Reverse an hlist segment and goto reswitch 1532 ⟩ Used in section 1527.

⟨Reverse the complete hlist and set the subtype to reversed 1531 ⟩ Used in section 1524.

⟨Reverse the links of the relevant passive nodes, setting cur p to the first breakpoint 926 ⟩ Used in section 925.

⟨ Save current position to pdf last x pos , pdf last y pos 1427 ⟩ Used in sections 1426 and 1430.

⟨ Scan a control sequence and set state ← skip blanks or mid line 384 ⟩ Used in section 374.

⟨ Scan a factor f of type o or start a subexpression 1596 ⟩ Used in section 1594.

⟨ Scan a numeric constant 478 ⟩ Used in section 474.

⟨ Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiter
string 426 ⟩ Used in section 425.

⟨ Scan a subformula enclosed in braces and return 1207 ⟩ Used in section 1205.

⟨ Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it and
goto start cs ; otherwise if a multiletter control sequence is found, adjust cur cs and loc , and goto
found 386 ⟩ Used in section 384.

⟨ Scan an alphabetic character code into cur val 476 ⟩ Used in section 474.

⟨ Scan an optional space 477 ⟩ Used in sections 476, 482, 490, and 1254.

⟨ Scan and build the body of the token list; goto found when finished 512 ⟩ Used in section 508.

⟨ Scan and build the parameter part of the macro definition 509 ⟩ Used in section 508.

⟨ Scan and evaluate an expression e of type l 1594 ⟩ Used in section 1593.

⟨ Scan decimal fraction 487 ⟩ Used in section 482.

⟨ Scan file name in the buffer 566 ⟩ Used in section 565.

⟨ Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaled points 493 ⟩
Used in section 488.

⟨ Scan for fil units; goto attach fraction if found 489 ⟩ Used in section 488.

⟨ Scan for mu units and goto attach fraction 491 ⟩ Used in section 488.

⟨ Scan for units that are internal dimensions; goto attach sign with cur val set if found 490 ⟩ Used in

section 488.

⟨ Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue; append
an alignrecord to the preamble list 827 ⟩ Used in section 825.

⟨ Scan the argument for command c 506 ⟩ Used in section 505.

⟨ Scan the font size specification 1312 ⟩ Used in section 1311.

⟨ Scan the next operator and set o 1595 ⟩ Used in section 1594.

⟨ Scan the parameters and make link (r) point to the macro body; but return if an illegal \par is
detected 425 ⟩ Used in section 423.

⟨ Scan the preamble and record it in the preamble list 825 ⟩ Used in section 822.

⟨ Scan the template ⟨uj⟩, putting the resulting token list in hold head 831 ⟩ Used in section 827.

⟨ Scan the template ⟨vj⟩, putting the resulting token list in hold head 832 ⟩ Used in section 827.

⟨ Scan units and set cur val to x · (cur val + f/216), where there are x sp per unit; goto attach sign if the
units are internal 488 ⟩ Used in section 482.

⟨ Search eqtb for equivalents equal to p 281 ⟩ Used in section 197.

⟨ Search hyph list for pointers to p 987 ⟩ Used in section 197.

X ETEX NAMES OF THE SECTIONS 739

⟨ Search save stack for equivalents that point to p 315 ⟩ Used in section 197.

⟨ Select the appropriate case and return or goto common ending 544 ⟩ Used in section 536.

⟨ Set initial values of key variables 23, 24, 62, 78, 81, 84, 101, 122, 191, 241, 280, 284, 302, 317, 398, 417, 473, 516, 525,

556, 586, 591, 629, 632, 642, 687, 696, 704, 727, 819, 941, 982, 1044, 1087, 1321, 1336, 1354, 1397, 1412, 1516, 1562, 1628,

1647, 1671 ⟩ Used in section 8.

⟨ Set line length parameters in preparation for hanging indentation 897 ⟩ Used in section 896.

⟨ Set the glue in all the unset boxes of the current list 853 ⟩ Used in section 848.

⟨ Set the glue in node r and change it from an unset node 856 ⟩ Used in section 855.

⟨ Set the unset box q and the unset boxes in it 855 ⟩ Used in section 853.

⟨ Set the value of b to the badness for shrinking the line, and compute the corresponding fit class 901 ⟩ Used

in section 899.

⟨ Set the value of b to the badness for stretching the line, and compute the corresponding fit class 900 ⟩
Used in section 899.

⟨ Set the value of b to the badness of the last line for shrinking, compute the corresponding fit class , and
goto found 1659 ⟩ Used in section 1657.

⟨ Set the value of b to the badness of the last line for stretching, compute the corresponding fit class , and
goto found 1658 ⟩ Used in section 1657.

⟨ Set the value of output penalty 1067 ⟩ Used in section 1066.

⟨ Set the value of x to the text direction before the display 1542 ⟩ Used in sections 1543 and 1545.

⟨ Set up data structures with the cursor following position j 962 ⟩ Used in section 960.

⟨ Set up the hlist for the display line 1556 ⟩ Used in section 1555.

⟨ Set up the values of cur size and cur mu , based on cur style 746 ⟩ Used in sections 763, 769, 770, 773, 798, 805,

805, 808, 810, and 811.

⟨ Set variable c to the current escape character 269 ⟩ Used in section 67.

⟨ Set variable w to indicate if this case should be reported 1586 ⟩ Used in sections 1585 and 1587.

⟨ Ship box p out 678 ⟩ Used in section 676.

⟨ Show equivalent n, in region 1 or 2 249 ⟩ Used in section 278.

⟨ Show equivalent n, in region 3 255 ⟩ Used in section 278.

⟨ Show equivalent n, in region 4 259 ⟩ Used in section 278.

⟨ Show equivalent n, in region 5 268 ⟩ Used in section 278.

⟨ Show equivalent n, in region 6 277 ⟩ Used in section 278.

⟨ Show the auxiliary field, a 245 ⟩ Used in section 244.

⟨ Show the box context 1491 ⟩ Used in section 1489.

⟨ Show the box packaging info 1490 ⟩ Used in section 1489.

⟨ Show the current contents of a box 1350 ⟩ Used in section 1347.

⟨ Show the current meaning of a token, then goto common ending 1348 ⟩ Used in section 1347.

⟨ Show the current value of some parameter or register, then goto common ending 1351 ⟩ Used in section 1347.

⟨ Show the font identifier in eqtb [n] 260 ⟩ Used in section 259.

⟨ Show the halfword code in eqtb [n] 261 ⟩ Used in section 259.

⟨ Show the status of the current page 1040 ⟩ Used in section 244.

⟨ Show the text of the macro being expanded 435 ⟩ Used in section 423.

⟨ Simplify a trivial box 764 ⟩ Used in section 763.

⟨ Skip to \else or \fi, then goto common ending 535 ⟩ Used in section 533.

⟨ Skip to node ha , or goto done1 if no hyphenation should be attempted 949 ⟩ Used in section 943.

⟨ Skip to node hb , putting letters into hu and hc 950 ⟩ Used in section 943.

⟨ Sort p into the list starting at rover and advance p to rlink (p) 154 ⟩ Used in section 153.

⟨ Sort the hyphenation op tables into proper order 999 ⟩ Used in section 1006.

⟨ Split off part of a vertical box, make cur box point to it 1136 ⟩ Used in section 1133.

⟨ Split the native word node at l and link the second part after ha 947 ⟩ Used in sections 946 and 946.

⟨ Squeeze the equation as much as possible; if there is an equation number that should go on a separate line
by itself, set e← 0 1255 ⟩ Used in section 1253.

⟨ Start a new current page 1045 ⟩ Used in sections 241 and 1071.

740 NAMES OF THE SECTIONS X ETEX

⟨ Store additional data for this feasible break 1661 ⟩ Used in section 903.

⟨ Store additional data in the new active node 1662 ⟩ Used in section 893.

⟨ Store cur box in a box register 1131 ⟩ Used in section 1129.

⟨ Store maximum values in the hyf table 978 ⟩ Used in section 977.

⟨ Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 313 ⟩ Used in section 312.

⟨ Store all current lc code values 1667 ⟩ Used in section 1666.

⟨ Store hyphenation codes for current language 1666 ⟩ Used in section 1014.

⟨ Store the current token, but goto continue if it is a blank space that would become an undelimited
parameter 427 ⟩ Used in section 426.

⟨ Subtract glue from break width 886 ⟩ Used in section 885.

⟨ Subtract the width of node v from break width 889 ⟩ Used in section 888.

⟨ Suppress expansion of the next token 401 ⟩ Used in section 399.

⟨ Swap the subscript and superscript into box x 786 ⟩ Used in section 781.

⟨ Switch to a larger accent if available and appropriate 784 ⟩ Used in section 781.

⟨ Switch to a larger native-font accent if available and appropriate 783 ⟩ Used in section 781.

⟨Tell the user what has run away and try to recover 368 ⟩ Used in section 366.

⟨Terminate the current conditional and skip to \fi 545 ⟩ Used in section 399.

⟨Test box register status 540 ⟩ Used in section 536.

⟨Test if an integer is odd 539 ⟩ Used in section 536.

⟨Test if two characters match 541 ⟩ Used in section 536.

⟨Test if two macro texts match 543 ⟩ Used in section 542.

⟨Test if two tokens match 542 ⟩ Used in section 536.

⟨Test relation between integers or dimensions 538 ⟩ Used in section 536.

⟨The em width for cur font 593 ⟩ Used in section 490.

⟨The x-height for cur font 594 ⟩ Used in section 490.

⟨Tidy up the parameter just scanned, and tuck it away 434 ⟩ Used in section 426.

⟨Transfer node p to the adjustment list 697 ⟩ Used in section 691.

⟨Transplant the post-break list 932 ⟩ Used in section 930.

⟨Transplant the pre-break list 933 ⟩ Used in section 930.

⟨Treat cur chr as an active character 1206 ⟩ Used in sections 1205 and 1209.

⟨Try the final line break at the end of the paragraph, and goto done if the desired breakpoints have been
found 921 ⟩ Used in section 911.

⟨Try to allocate within node p and its physical successors, and goto found if allocation was possible 149 ⟩
Used in section 147.

⟨Try to break after a discretionary fragment, then goto done5 917 ⟩ Used in section 914.

⟨Try to get a different log file name 570 ⟩ Used in section 569.

⟨Try to hyphenate the following word 943 ⟩ Used in section 914.

⟨Try to recover from mismatched \right 1246 ⟩ Used in section 1245.

⟨Types in the outer block 18, 25, 38, 105, 113, 135, 174, 238, 299, 330, 583, 630, 974, 979, 1488 ⟩ Used in section 4.

⟨Undump a couple more things and the closing check word 1381 ⟩ Used in section 1357.

⟨Undump constants for consistency check 1362 ⟩ Used in section 1357.

⟨Undump regions 1 to 6 of eqtb 1371 ⟩ Used in section 1368.

⟨Undump the ε-TEX state 1465 ⟩ Used in section 1362.

⟨Undump the array info for internal font number k 1377 ⟩ Used in section 1375.

⟨Undump the dynamic memory 1366 ⟩ Used in section 1357.

⟨Undump the font information 1375 ⟩ Used in section 1357.

⟨Undump the hash table 1373 ⟩ Used in section 1368.

⟨Undump the hyphenation tables 1379 ⟩ Used in section 1357.

⟨Undump the string pool 1364 ⟩ Used in section 1357.

⟨Undump the table of equivalents 1368 ⟩ Used in section 1357.

⟨Update the active widths, since the first active node has been deleted 909 ⟩ Used in section 908.

X ETEX NAMES OF THE SECTIONS 741

⟨Update the current height and depth measurements with respect to a glue or kern node p 1030 ⟩ Used in

section 1026.

⟨Update the current marks for fire up 1641 ⟩ Used in section 1068.

⟨Update the current marks for vsplit 1638 ⟩ Used in section 1033.

⟨Update the current page measurements with respect to the glue or kern specified by node p 1058 ⟩ Used in

section 1051.

⟨Update the value of printed node for symbolic displays 906 ⟩ Used in section 877.

⟨Update the values of first mark and bot mark 1070 ⟩ Used in section 1068.

⟨Update the values of last glue , last penalty , and last kern 1050 ⟩ Used in section 1048.

⟨Update the values of max h and max v ; but if the page is too large, goto done 679 ⟩ Used in section 678.

⟨Update width entry for spanned columns 846 ⟩ Used in section 844.

⟨Use code c to distinguish between generalized fractions 1236 ⟩ Used in section 1235.

⟨Use node p to update the current height and depth measurements; if this node is not a legal breakpoint,
goto not found or update heights , otherwise set pi to the associated penalty at the break 1027 ⟩ Used

in section 1026.

⟨Use size fields to allocate font information 601 ⟩ Used in section 597.

⟨Wipe out the whatsit node p and goto done 1418 ⟩ Used in section 228.

⟨Wrap up the box specified by node r, splitting node p if called for; set wait ← true if node p holds a
remainder after splitting 1075 ⟩ Used in section 1074.

Section Page
1. Introduction . 1 3
2. The character set . 17 13
3. Input and output . 25 15
4. String handling . 38 21
5. On-line and off-line printing . 54 27
6. Reporting errors . 76 36
7. Arithmetic with scaled dimensions . 103 44

7b. Random numbers . 114 48
8. Packed data . 132 55
9. Dynamic memory allocation . 137 57
10. Data structures for boxes and their friends 155 63
11. Memory layout . 187 74
12. Displaying boxes . 199 79
13. Destroying boxes . 225 88
14. Copying boxes . 229 90
15. The command codes . 233 92
16. The semantic nest . 237 96
17. The table of equivalents . 246 101
18. The hash table . 282 125
19. Saving and restoring equivalents . 298 135
20. Token lists . 319 142
21. Introduction to the syntactic routines . 327 146
22. Input stacks and states . 330 149
23. Maintaining the input stacks . 351 159
24. Getting the next token . 362 162
25. Expanding the next token . 396 174
26. Basic scanning subroutines . 436 186
27. Building token lists . 499 212
28. Conditional processing . 522 225
29. File names . 546 233
30. Font metric data . 574 242
31. Device-independent file format . 619 261
32. Shipping pages out . 628 268

32b. pdfTEX output low-level subroutines (equivalents) 682 292
33. Packaging . 683 293
34. Data structures for math mode . 722 305
35. Subroutines for math mode . 741 315
36. Typesetting math formulas . 762 332
37. Alignment . 816 360
38. Breaking paragraphs into lines . 861 377
39. Breaking paragraphs into lines, continued 910 397
40. Pre-hyphenation . 939 410
41. Post-hyphenation . 953 417
42. Hyphenation . 973 428
43. Initializing the hyphenation tables . 996 434
44. Breaking vertical lists into pages . 1021 444
45. The page builder . 1034 450
46. The chief executive . 1083 467
47. Building boxes and lists . 1109 483
48. Building math lists . 1190 507
49. Mode-independent processing . 1262 529
50. Dumping and undumping the tables . 1353 554
51. The main program . 1384 564
52. Debugging . 1392 569
53. Extensions . 1394 571
53a. The extended features of ε-TEX . 1451 594
54. System-dependent changes . 1678 667
55. Index . 1679 668

	[1] Introduction
	[2] The character set
	[3] Input and output
	[4] String handling
	[5] On-line and off-line printing
	[6] Reporting errors
	[7] Arithmetic with scaled dimensions
	[7b] Random numbers
	[8] Packed data
	[9] Dynamic memory allocation
	[10] Data structures for boxes and their friends
	[11] Memory layout
	[12] Displaying boxes
	[13] Destroying boxes
	[14] Copying boxes
	[15] The command codes
	[16] The semantic nest
	[17] The table of equivalents
	[18] The hash table
	[19] Saving and restoring equivalents
	[20] Token lists
	[21] Introduction to the syntactic routines
	[22] Input stacks and states
	[23] Maintaining the input stacks
	[24] Getting the next token
	[25] Expanding the next token
	[26] Basic scanning subroutines
	[27] Building token lists
	[28] Conditional processing
	[29] File names
	[30] Font metric data
	[31] Device-independent file format
	[32] Shipping pages out
	[32b] output low-level subroutines (equivalents)
	[33] Packaging
	[34] Data structures for math mode
	[35] Subroutines for math mode
	[36] Typesetting math formulas
	[37] Alignment
	[38] Breaking paragraphs into lines
	[39] Breaking paragraphs into lines, continued
	[40] Pre-hyphenation
	[41] Post-hyphenation
	[42] Hyphenation
	[43] Initializing the hyphenation tables
	[44] Breaking vertical lists into pages
	[45] The page builder
	[46] The chief executive
	[47] Building boxes and lists
	[48] Building math lists
	[49] Mode-independent processing
	[50] Dumping and undumping the tables
	[51] The main program
	[52] Debugging
	[53] Extensions
	[53a] The extended features of
	[54] System-dependent changes
	[55] Index
	Names of the sections
	Accumulate the constant until cur_tok is not a suitable digit
	Add the width of node s to act_width
	Add the width of node s to break_width
	Add the width of node s to disc_width
	Adjust f)for the magnification ratio
	Adjust f)for the setting of \globaldefs
	Adjust s)shift_up and shift_down for the case of a fraction line
	Adjust s)shift_up and shift_down for the case of no fraction line
	Adjust t)the LR stack for the hlist_out routine; if necessary reverse an hlist segment and goto reswitch
	Adjust t)the LR stack for the hpack routine
	Adjust t)the LR stack for the init_math routine
	Adjust t)the LR stack for the just_reverse routine
	Adjust t)the LR stack for the post_line_break routine
	Adjust t)the additional data for last line
	Adjust t)the final line of the paragraph
	Advance c)cur_p to the node following the present string of characters
	Advance p)past a whatsit node in the l)line_break loop
	Advance p)past a whatsit node in the p)pre-hyphenation loop
	Advance r)r; goto found if the parameter delimiter has been fully matched, otherwise goto continue
	Advance q past ignorable nodes
	Allocate entire node p and goto found
	Allocate from the top of node p and goto found
	Apologize for inability to do the operation now, unless \unskip follows non-glue
	Apologize for not loading the font, goto done
	Append a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures is nonempty
	Append a new leader node that uses cur_box
	Append a new letter or a hyphen level
	Append a new letter or hyphen
	Append a normal inter-word space to the current list, then goto big_switch
	Append a penalty node, if a nonzero penalty is appropriate
	Append an insertion to the current page and goto contribute
	Append any new_hlist entries for q, and any appropriate penalties
	Append box cur_box to the current list, shifted by box_context
	Append character cur_chr and the following characters (if any) to the current hlist in the current font; goto reswitch when a non-character has been fetched
	Append characters of hu[j..] to major_tail, advancing j
	Append inter-element spacing based on r_type and t
	Append tabskip glue and an empty box to list u, and update s and t as the prototype nodes are passed
	Append the accent with appropriate kerns, then set p:=q
	Append the current tabskip glue to the preamble list
	Append the display and perhaps also the equation number
	Append the glue or equation number following the display
	Append the glue or equation number preceding the display
	Append the new box to the current vertical list, followed by the list of special nodes taken out of the box by the packager
	Append the value n to list p
	Assign the values depth_threshold:=show_box_depth and breadth_max:=show_box_breadth
	Assignments
	Attach list p to the current list, and record its length; then finish up and return
	Attach subscript OpenType math kerning
	Attach superscript OpenType math kerning
	Attach the limits to y and adjust height(v), depth(v) to account for their presence
	Back up an outer control sequence so that it can be reread
	Basic printing procedures
	Break the current page at node p, put it in box 255, and put the remaining nodes on the contribution list
	Break the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, and append them to the current vertical list
	Calculate page dimensions and margins
	Calculate the length, l, and the shift amount, s, of the display lines
	Calculate the natural width, w, by which the characters of the final line extend to the right of the reference point, plus two ems; or set w:=max_dimen if the non-blank information on that line is affected by stretching or shrinking
	Call the packaging subroutine, setting just_box to the justified box
	Call try_break if cur_p is a legal breakpoint; on the second pass, also try to hyphenate the next word, if cur_p is a glue node; then advance cur_p to the next node of the paragraph that could possibly be a legal breakpoint
	Carry out a ligature replacement, updating the cursor structure and possibly advancing j; goto continue if the cursor doesn't advance, otherwise goto done
	Case statement to copy different types and set words to the number of initial words not yet copied
	Cases for `Fetch the dead_cycles or the insert_penalties'
	Cases for evaluation of the current term
	Cases for fetching a dimension value
	Cases for fetching a glue value
	Cases for fetching a mu value
	Cases for fetching an integer value
	Cases for noads that can follow a bin_noad
	Cases for nodes that can appear in an mlist, after which we goto done_with_node
	Cases for alter_integer
	Cases for conditional
	Cases for do_marks
	Cases for eq_destroy
	Cases for input
	Cases for print_param
	Cases for show_whatever
	Cases of `Let d be the natural width' that need special treatment
	Cases of `Print the result of command c'
	Cases of `Scan the argument for command c'
	Cases of assign_toks for print_cmd_chr
	Cases of convert for print_cmd_chr
	Cases of expandafter for print_cmd_chr
	Cases of flush_node_list that arise in mlists only
	Cases of handle_right_brace where a right_brace triggers a delayed action
	Cases of hlist_out that arise in mixed direction text only
	Cases of if_test for print_cmd_chr
	Cases of input for print_cmd_chr
	Cases of last_item for print_cmd_chr
	Cases of left_right for print_cmd_chr
	Cases of main_control for hmode+valign
	Cases of main_control that are for extensions to TeX
	Cases of main_control that are not part of the inner loop
	Cases of main_control that build boxes and lists
	Cases of main_control that don't depend on mode
	Cases of prefix for print_cmd_chr
	Cases of print_cmd_chr for symbolic printing of primitives
	Cases of read for print_cmd_chr
	Cases of register for print_cmd_chr
	Cases of reverse that need special treatment
	Cases of set_page_int for print_cmd_chr
	Cases of set_shape for print_cmd_chr
	Cases of show_node_list that arise in mlists only
	Cases of the for print_cmd_chr
	Cases of toks_register for print_cmd_chr
	Cases of un_vbox for print_cmd_chr
	Cases of valign for print_cmd_chr
	Cases of xray for print_cmd_chr
	Cases where character is ignored
	Change buffered instruction to y or w and goto found
	Change buffered instruction to z or x and goto found
	Change current mode to -vmode for \halign, -hmode for \valign
	Change discretionary to compulsory and set disc_break:=true
	Change font dvi_f to f
	Change state if necessary, and goto switch if the current character should be ignored, or goto reswitch if the current character changes to another
	Change the case of the token in p, if a change is appropriate
	Change the current style and goto delete_q
	Change the interaction level and return
	Change this node to a style node followed by the correct choice, then goto done_with_node
	Character s is the current new-line character
	Check flags of unavailable nodes
	Check for LR anomalies at the end of hlist_out
	Check for LR anomalies at the end of hpack
	Check for LR anomalies at the end of ship_out
	Check for charlist cycle
	Check for improper alignment in displayed math
	Check for special treatment of last line of paragraph
	Check if node p is a new champion breakpoint; then go)goto done if p is a forced break or if the page-so-far is already too full
	Check if node p is a new champion breakpoint; then if)if it is time for a page break, prepare for output, and either fire up the user's output routine and return or ship out the page and goto done
	Check single-word avail list
	Check that another $ follows
	Check that nodes after native_word permit hyphenation; if not, goto done1
	Check that the necessary fonts for math symbols are present; if not, flush the current math lists and set danger:=true
	Check that the nodes following hb permit hyphenation and that at least l_hyf+r_hyf letters have been found, otherwise goto done1
	Check the ``constant'' values for consistency
	Check the pool check sum
	Check variable-size avail list
	Clean up the memory by removing the break nodes
	Clear dimensions to zero
	Clear off top level from save_stack
	Close the format file
	Coerce glue to a dimension
	Compiler directives
	Complain about an undefined family and set cur_i null
	Complain about an undefined macro
	Complain about missing \endcsname
	Complain about unknown unit and goto done2
	Complain that \the can't do this; give zero result
	Complain that the user should have said \mathaccent
	Compleat the incompleat noad
	Complete a potentially long \show command
	Compute f=2^28(1+p/q)+12
	Compute p=qf/2^28+12-q
	Compute f)f=xn/d+12
	Compute result of multiply or divide, put it in cur_val
	Compute result of register or advance, put it in cur_val
	Compute the amount of skew
	Compute the badness, b, of the current page, using awful_bad if the box is too full
	Compute the badness, b, using awful_bad if the box is too full
	Compute the demerits, d, from r to cur_p
	Compute the discretionary break_width values
	Compute the hash code h
	Compute the magic offset
	Compute the mark pointer for mark type t and class cur_val
	Compute the minimum suitable height, w, and the corresponding number of extension steps, n; also set width(b)
	Compute the new line width
	Compute the primitive code h
	Compute the register location l and its type p; but return if invalid
	Compute the sum of two glue specs
	Compute the sum or difference of two glue specs
	Compute the trie op code, v, and set l:=0
	Compute the values of break_width
	Consider a node with matching width; goto found if it's a hit
	Consider the demerits for a line from r to cur_p; deactivate node r if it should no longer be active; then goto continue if a line from r to cur_p is infeasible, otherwise record a new feasible break
	Constants in the outer block
	Construct a box with limits above and below it, skewed by delta
	Construct a sub/superscript combination box x, with the superscript offset by delta
	Construct a subscript box x when there is no superscript
	Construct a superscript box x
	Construct a vlist box for the fraction, according to shift_up and shift_down
	Construct an extensible character in a new box b, using recipe rem_byte(q) and font f
	Contribute an entire group to the current parameter
	Contribute the recently matched tokens to the current parameter, and goto continue if a partial match is still in effect; but abort if s=null
	Convert a)a final bin_noad to an ord_noad
	Convert c)cur_val to a lower level
	Convert m)math glue to ordinary glue
	Convert n)nucleus(q) to an hlist and attach the sub/superscripts
	Convert string s into a new pseudo file
	Copy the tabskip glue between columns
	Copy the templates from node cur_loop into node p
	Copy the token list
	Create a character node p for nucleus(q), possibly followed by a kern node for the italic correction, and set delta to the italic correction if a subscript is present
	Create a character node q for the next character, but set q:=null if problems arise
	Create a new array element of type t with index i
	Create a new glue specification whose width is cur_val; scan for its stretch and shrink components
	Create a page insertion node with subtype(r)=qi(n), and include the glue correction for box n in the current page state
	Create an active breakpoint representing the beginning of the paragraph
	Create and append a discretionary node as an alternative to the unhyphenated word, and continue to develop both branches until they become equivalent
	Create equal-width boxes x and z for the numerator and denominator, and compute the default amounts shift_up and shift_down by which they are displaced from the baseline
	Create new active nodes for the best feasible breaks just found
	Create the format_ident, open the format file, and inform the user that dumping has begun
	Current mem equivalent of glue parameter number n
	Deactivate node r
	Declare procedures for expanding
	Declare procedures for scanning
	Declare procedures for token lists
	Declare procedures for tracing and input
	Declare procedures for use by main_control
	Declare action procedures for use by main_control
	Declare math construction procedures
	Declare procedures for preprocessing hyphenation patterns
	Declare procedures needed for displaying the elements of mlists
	Declare procedures needed for expressions
	Declare procedures needed in do_extension
	Declare procedures needed in hlist_out, vlist_out
	Declare procedures that need to be declared forward for
	Declare procedures that scan font-related stuff
	Declare procedures that scan restricted classes of integers
	Declare subprocedures for after_math
	Declare subprocedures for init_math
	Declare subprocedures for line_break
	Declare subprocedures for prefixed_command
	Declare subprocedures for scan_expr
	Declare subprocedures for var_delimiter
	Declare subroutines for new_character
	Declare the function called do_marks
	Declare the function called fin_mlist
	Declare the function called open_fmt_file
	Declare the function called reconstitute
	Declare the procedure called align_peek
	Declare the procedure called fire_up
	Declare the procedure called get_preamble_token
	Declare the procedure called handle_right_brace
	Declare the procedure called init_span
	Declare the procedure called insert_relax
	Declare the procedure called macro_call
	Declare the procedure called print_cmd_chr
	Declare the procedure called print_skip_param
	Declare the procedure called runaway
	Declare the procedure called show_token_list
	Decry the invalid character and goto restart
	Delete c)c-"0" tokens and goto continue
	Delete t)the page-insertion nodes
	Destroy the t nodes following q, and make r point to the following node
	Determine horizontal glue shrink setting, then return or goto common_ending
	Determine horizontal glue stretch setting, then return or goto common_ending
	Determine the displacement, d, of the left edge of the equation, with respect to the line size z, assuming that l=false
	Determine the shrink order
	Determine the stretch order
	Determine the value of height(r) and the appropriate glue setting; then return or goto common_ending
	Determine the value of width(r) and the appropriate glue setting; then return or goto common_ending
	Determine vertical glue shrink setting, then return or goto common_ending
	Determine vertical glue stretch setting, then return or goto common_ending
	Discard erroneous prefixes and return
	Discard the prefixes \long and \outer if they are irrelevant
	Dispense with trivial cases of void or bad boxes
	Display adjustment p
	Display box p
	Display choice node p
	Display discretionary p
	Display fraction noad p
	Display glue p
	Display if this box is never to be reversed
	Display insertion p
	Display kern p
	Display leaders p
	Display ligature p
	Display mark p
	Display math node p
	Display node p
	Display normal noad p
	Display penalty p
	Display rule p
	Display special fields of the unset node p
	Display the current context
	Display the insertion split cost
	Display the page break cost
	Display the token (m,c)
	Display the value of b
	Display the value of glue_set(p)
	Display the whatsit node p
	Display token p, and return if there are problems
	Do first-pass processing based on type(q); goto done_with_noad if a noad has been fully processed, goto check_dimensions if it has been translated into new_hlist(q), or goto done_with_node if a node has been fully processed
	Do ligature or kern command, returning to main_lig_loop or main_loop_wrapup or main_loop_move
	Do magic computation
	Do some work that has been queued up for \write
	Drop current token and complain that it was unmatched
	Dump a couple more things and the closing check word
	Dump constants for consistency check
	Dump regions 1 to 4 of eqtb
	Dump regions 5 and 6 of eqtb
	Dump the state
	Dump the array info for internal font number k
	Dump the dynamic memory
	Dump the font information
	Dump the hash table
	Dump the hyphenation tables
	Dump the string pool
	Dump the table of equivalents
	Either append the insertion node p after node q, and remove it from the current page, or delete node(p)
	Either insert the material specified by node p into the appropriate box, or hold it for the next page; also delete node p from the current page
	Either process \ifcase or set b to the value of a boolean condition
	Empty the last bytes out of dvi_buf
	Enable , if requested
	Ensure that box 255 is empty after output
	Ensure that box 255 is empty before output
	Ensure that trie_maxh+max_hyph_char
	Enter a hyphenation exception
	Enter all of the patterns into a linked trie, until coming to a right brace
	Enter as many hyphenation exceptions as are listed, until coming to a right brace; then return
	Enter skip_blanks state, emit a space
	Error handling procedures
	Evaluate the current expression
	Examine node p in the hlist, taking account of its effect on the dimensions of the new box, or moving it to the adjustment list; then advance p to the next node
	Examine node p in the vlist, taking account of its effect on the dimensions of the new box; then advance p to the next node
	Expand a nonmacro
	Expand macros in the token list and make link(def_ref) point to the result
	Expand the next part of the input
	Expand the token after the next token
	Explain that too many dead cycles have occurred in a row
	Express astonishment that no number was here
	Express consternation over the fact that no alignment is in progress
	Express shock at the missing left brace; goto found
	Feed the macro body and its parameters to the scanner
	Fetch a box dimension
	Fetch a character code from some table
	Fetch a font dimension
	Fetch a font integer
	Fetch a penalties array element
	Fetch a register
	Fetch a token list or font identifier, provided that level=tok_val
	Fetch an internal dimension and goto attach_sign, or fetch an internal integer
	Fetch an item in the current node, if appropriate
	Fetch first character of a sub/superscript
	Fetch something on the page_so_far
	Fetch the dead_cycles or the insert_penalties
	Fetch the par_shape size
	Fetch the prev_graf
	Fetch the space_factor or the prev_depth
	Find an active node with fewest demerits
	Find hyphen locations for the word in hc, or return
	Find optimal breakpoints
	Find the best active node for the desired looseness
	Find the best way to split the insertion, and change type(r) to split_up
	Find the glue specification, main_p, for text spaces in the current font
	Finish an alignment in a display
	Finish displayed math
	Finish issuing a diagnostic message for an overfull or underfull hbox
	Finish issuing a diagnostic message for an overfull or underfull vbox
	Finish line, emit a \par
	Finish line, emit a space
	Finish line, goto switch
	Finish math in text
	Finish the DVI file
	Finish the extensions
	Finish the natural width computation
	Finish the reversed hlist segment and goto done
	Finish hlist_out for mixed direction typesetting
	Fire up the user's output routine and return
	Fix the reference count, if any, and negate cur_val if negative
	Flush the box from memory, showing statistics if requested
	Flush the prototype box
	Forbidden cases detected in main_control
	Generate a down or right command for w and return
	Generate a y0 or z0 command in order to reuse a previous appearance of w
	Generate all primitives
	Get ready to compress the trie
	Get ready to start line breaking
	Get the first line of input and prepare to start
	Get the next non-blank non-call token
	Get the next non-blank non-relax non-call token
	Get the next non-blank non-sign token; set negative appropriately
	Get the next token, suppressing expansion
	Get user's advice and return
	Give diagnostic information, if requested
	Give improper \hyphenation error
	Global variables
	Go into display math mode
	Go into ordinary math mode
	Go through the preamble list, determining the column widths and changing the alignrecords to dummy unset boxes
	Grow more variable-size memory and goto restart
	Handle \readline and goto done
	Handle \unexpanded or \detokenize and return
	Handle a glue node for mixed direction typesetting
	Handle a math node in hlist_out
	Handle non-positive logarithm
	Handle saved items and goto done
	Handle situations involving spaces, braces, changes of state
	Hyphenate the native_word_node at ha
	If a line number class has ended, create new active nodes for the best feasible breaks in that class; then return if r=last_active, otherwise compute the new line_width
	If all characters of the family fit relative to h, then goto found,0 otherwise goto not_found
	If an alignment entry has just ended, take appropriate action
	If an expanded code is present, reduce it and goto start_cs
	If dumping is not allowed, abort
	If instruction cur_i is a kern with cur_c, attach the kern after q; or if it is a ligature with cur_c, combine noads q and p appropriately; then return if the cursor has moved past a noad, or goto restart
	If no hyphens were found, return
	If node cur_p is a legal breakpoint, call try_break; then update the active widths by including the glue in glue_ptr(cur_p)
	If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if the page-so-far is already too full to accept more stuff
	If node q is a style node, change the style and goto delete_q; otherwise if it is not a noad, put it into the hlist, advance q, and goto done; otherwise set s to the size of noad q, set t to the associated type (ord_noad..inner_noad), and set pen to the associated penalty
	If node r is of type delta_node, update cur_active_width, set prev_r and prev_prev_r, then goto continue
	If the current list ends with a box node, delete it from the list and make cur_box point to it; otherwise set cur_box:=null
	If the current page is empty and node p is to be deleted, goto done1; otherwise use node p to update the state of the current page; if this node is an insertion, goto contribute; otherwise if this node is not a legal breakpoint, goto contribute or update_heights; otherwise set pi to the penalty associated with this breakpoint
	If the cursor is immediately followed by the right boundary, goto reswitch; if it's followed by an invalid character, goto big_switch; otherwise move the cursor one step to the right and goto main_lig_loop
	If the next character is a parameter number, make cur_tok a match token; but if it is a left brace, store `left_brace, end_match', set hash_brace, and goto done
	If the preamble list has been traversed, check that the row has ended
	If the right-hand side is a token parameter or token register, finish the assignment and goto done
	If the string hyph_word[h] is less than hc)hc[1..hn], goto not_found; but if the two strings are equal, set hyf to the hyphen positions and goto found
	If the string hyph_word[h] is less than or)or equal to s, interchange (hyph_word[h],hyph_list[h]) with (s,p)
	If there's a ligature or kern at the cursor position, update the data structures, possibly advancing j; continue until the cursor moves
	If there's a ligature/kern command relevant to cur_l and cur_r, adjust the text appropriately; exit to main_loop_wrapup
	If this font has already been loaded, set f to the internal font number and goto common_ending
	If this sup_mark starts an expanded character like ^^A or ^^df, then goto reswitch, otherwise set state:=mid_line
	Ignore the fraction operation and complain about this ambiguous case
	Implement \XeTeXdefaultencoding
	Implement \XeTeXglyph
	Implement \XeTeXinputencoding
	Implement \XeTeXlinebreaklocale
	Implement \XeTeXpdffile
	Implement \XeTeXpicfile
	Implement \closeout
	Implement \immediate
	Implement \openout
	Implement \pdfsavepos
	Implement \primitive
	Implement \resettimer
	Implement \setlanguage
	Implement \setrandomseed
	Implement \special
	Implement \write
	Incorporate a whatsit node into a vbox
	Incorporate a whatsit node into an hbox
	Incorporate box dimensions into the dimensions of the hbox that will contain it
	Incorporate box dimensions into the dimensions of the vbox that will contain it
	Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to the next node
	Incorporate glue into the horizontal totals
	Incorporate glue into the vertical totals
	Increase the number of parameters in the last font
	Increase k until x can be multiplied by a factor of 2^-k, and adjust y accordingly
	Initialize additional fields of the first active node
	Initialize for hyphenating a paragraph
	Initialize table entries (done by INITEX only)
	Initialize the LR stack
	Initialize the current page, insert the \topskip glue ahead of p, and goto continue
	Initialize the input routines
	Initialize the output routines
	Initialize the print selector based on interaction
	Initialize the special list heads and constant nodes
	Initialize variables as ship_out begins
	Initialize variables for compatibility mode
	Initialize variables for extended mode
	Initialize whatever TeX might access
	Initialize hlist_out for mixed direction typesetting
	Initiate input from new pseudo file
	Initiate or terminate input from a file
	Initiate the construction of an hbox or vbox, then return
	Input and store tokens from the next line of the file
	Input for \read from the terminal
	Input from external file, goto restart if no input found
	Input from token list, goto restart if end of list or if a parameter needs to be expanded
	Input the first line of read_file[m]
	Input the next line of read_file[m]
	Insert LR nodes at the beginning of the current line and adjust the LR stack based on LR nodes in this line
	Insert LR nodes at the end of the current line
	Insert a delta node to prepare for breaks at cur_p
	Insert a delta node to prepare for the next active node
	Insert a dummy noad to be sub/superscripted
	Insert a new active node from best_place[fit_class] to cur_p
	Insert a new control sequence after p, then make p point to it
	Insert a new pattern into the linked trie
	Insert a new primitive after p, then make p point to it
	Insert a new trie node between q and p, and make p point to it
	Insert a token containing frozen_endv
	Insert a token saved by \afterassignment, if any
	Insert glue for split_top_skip and set p:=null
	Insert hyphens as specified in hyph_list[h]
	Insert macro parameter and goto restart
	Insert the a)appropriate mark text into the scanner
	Insert the c)current list into its environment
	Insert the p)pair (s,p) into the exception table
	Insert the v)v_j> template and goto restart
	Insert token p into TeX's input
	Interpret code c and return if done
	Introduce new material from the terminal and return
	Issue an error message if cur_val=fmem_ptr
	Justify the line ending at breakpoint cur_p, and append it to the current vertical list, together with associated penalties and other insertions
	Labels in the outer block
	Last-minute procedures
	Lengthen the preamble periodically
	Let cur_h be the position of the first box, and set leader_wd+lx to the spacing between corresponding parts of boxes
	Let cur_v be the position of the first box, and set leader_ht+lx to the spacing between corresponding parts of boxes
	Let d be the natural width of node p; if the node is ``visible,'' goto found; if the node is glue that stretches or shrinks, set v:=max_dimen
	Let d be the natural width of this glue; if stretching or shrinking, set v:=max_dimen; goto found in the case of leaders
	Let d be the width of the whatsit p, and goto found if ``visible''
	Let j be the prototype box for the display
	Let n be the largest legal code value, based on cur_chr
	Link node p into the current page and goto done
	Local variables for dimension calculations
	Local variables for finishing a displayed formula
	Local variables for formatting calculations
	Local variables for hyphenation
	Local variables for initialization
	Local variables for line breaking
	Look ahead for another character, or leave lig_stack empty if there's none there
	Look at all the marks in nodes before the break, and set the final link to null at the break
	Look at the list of characters starting with x in font g; set f and c whenever a better character is found; goto found as soon as a large enough variant is encountered
	Look at the other stack entries until deciding what sort of DVI command to generate; goto found if node p is a ``hit''
	Look at the variants of (z,x); set f and c whenever a better character is found; goto found as soon as a large enough variant is encountered
	Look for parameter number or ##
	Look for the word hc[1..hn] in the exception table, and goto found (with hyf containing the hyphens) if an entry is found
	Look up the characters of list n in the hash table, and set cur_cs
	Look up the characters of list r in the hash table, and set cur_cs
	Make a copy of node p in node r
	Make a ligature node, if ligature_present; insert a null discretionary, if appropriate
	Make a partial copy of the whatsit node p and make r point to it; set words to the number of initial words not yet copied
	Make a second pass over the mlist, removing all noads and inserting the proper spacing and penalties
	Make final adjustments and goto done
	Make node p look like a char_node and goto reswitch
	Make sure that f is in the proper range
	Make sure that page_max_depth is not exceeded
	Make sure that pi is in the proper range
	Make the contribution list empty by setting its tail to contrib_head
	Make the first 256 strings
	Make the height of box y equal to h
	Make the running dimensions in rule q extend to the boundaries of the alignment
	Make the unset node r into a vlist_node of height w, setting the glue as if the height were t
	Make the unset node r into an hlist_node of width w, setting the glue as if the width were t
	Make variable b point to a box for (f,c)
	Manufacture a control sequence name
	Math-only cases in non-math modes, or vice versa
	Merge sequences of words using native fonts and inter-word spaces into single nodes
	Merge the widths in the span nodes of q with those of p, destroying the span nodes of q
	Modify the end of the line to reflect the nature of the break and to include \rightskip; also set the proper value of disc_break
	Modify the glue specification in main_p according to the space factor
	Move down or output leaders
	Move node p to the current page; if it is time for a page break, put the nodes following the break back onto the contribution list, and return to the user's output routine if there is one
	Move node p to the new list and go to the next node; or goto done if the end of the reflected segment has been reached
	Move pointer s to the end of the current list, and set replace_count(r) appropriately
	Move right or output leaders
	Move the characters of a ligature node to hu and hc; but goto done3 if they are not all letters
	Move the cursor past a pseudo-ligature, then goto main_loop_lookahead or main_lig_loop
	Move the data into trie
	Move the non-char_node p to the new list
	Move to next line of file, or goto restart if there is no next line, or return if a \read line has finished
	Negate a boolean conditional and goto reswitch
	Negate all three glue components of cur_val
	Nullify width(q) and the tabskip glue following this column
	Numbered cases for debug_help
	Open tfm_file for input and begin
	Other local variables for try_break
	Output a box in a vlist
	Output a box in an hlist
	Output a leader box at cur_h, then advance cur_h by leader_wd+lx
	Output a leader box at cur_v, then advance cur_v by leader_ht+lx
	Output a rule in a vlist, goto next_p
	Output a rule in an hlist
	Output leaders in a vlist, goto fin_rule if a rule or to next_p if done
	Output leaders in an hlist, goto fin_rule if a rule or to next_p if done
	Output node p for hlist_out and move to the next node, maintaining the condition cur_v=base_line
	Output node p for vlist_out and move to the next node, maintaining the condition cur_h=left_edge
	Output statistics about this job
	Output the font definitions for all fonts that were used
	Output the font name whose internal number is f
	Output the non-char_node p for hlist_out and move to the next node
	Output the non-char_node p for vlist_out
	Output the whatsit node p in a vlist
	Output the whatsit node p in an hlist
	Pack all stored hyph_codes
	Pack the family into trie relative to h
	Package an unset box for the current column and record its width
	Package the display line
	Package the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototype box
	Perform computations for last line and goto found
	Perform the default output routine
	Pontificate about improper alignment in display
	Pop the condition stack
	Pop the expression stack and goto found
	Prepare a native_word_node for hyphenation
	Prepare all the boxes involved in insertions to act as queues
	Prepare for display after a non-empty paragraph
	Prepare for display after an empty paragraph
	Prepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from r to cur_p
	Prepare to insert a token that matches cur_group, and print what it is
	Prepare to move a box or rule node to the current page, then goto contribute
	Prepare to move whatsit p to the current page, then goto contribute
	Print a short indication of the contents of node p
	Print a symbolic description of the new break node
	Print a symbolic description of this feasible break
	Print additional data in the new active node
	Print either `definition' or `use' or `preamble' or `text', and insert tokens that should lead to recovery
	Print location of current line
	Print newly busy locations
	Print string s as an error message
	Print string s on the terminal
	Print the banner line, including the date and time
	Print the font identifier for font(p)
	Print the help information and goto continue
	Print the list between printed_node and cur_p, then set printed_node:=cur_p
	Print the menu of available options
	Print the result of command c
	Print two lines using the tricky pseudoprinted information
	Print type of token list
	Process an active-character control sequence and set state:=mid_line
	Process an expression and return
	Process node-or-noad q as much as possible in preparation for the second pass of mlist_to_hlist, then move to the next item in the mlist
	Process whatsit p in vert_break loop, goto not_found
	Prune the current list, if necessary, until it contains only char_node, kern_node, hlist_node, vlist_node, rule_node, and ligature_node items; set n to the length of the list, and set q to the list's tail
	Prune unwanted nodes at the beginning of the next line
	Pseudoprint the line
	Pseudoprint the token list
	Push the condition stack
	Push the expression stack and goto restart
	Put each of TeX's primitives into the hash table
	Put help message on the transcript file
	Put the c)characters hu[i+1..] into post_break(r), appending to this list and to major_tail until synchronization has been achieved
	Put the c)characters hu[l..i] and a hyphen into pre_break(r)
	Put the f)fraction into a box with its delimiters, and make new_hlist(q) point to it
	Put the l)\leftskip glue at the left and detach this line
	Put the o)optimal current page into box 255, update first_mark and bot_mark, append insertions to their boxes, and put the remaining nodes back on the contribution list
	Put the p)(positive) `at' size into s
	Put the r)\rightskip glue after node q
	Read and check the font data if file exists; abort if the TFM file is malformed; if there's no room for this font, say so and goto done; otherwise incr(font_ptr) and goto done
	Read box dimensions
	Read character data
	Read extensible character recipes
	Read font parameters
	Read ligature/kern program
	Read next line of file into buffer, or goto restart if the file has ended
	Read one string, but return false if the string memory space is getting too tight for comfort
	Read the first line of the new file
	Read the other strings from the TEX.POOL file and return true, or give an error message and return false
	Read the TFM header
	Read the TFM size fields
	Readjust the height and depth of cur_box, for \vtop
	Reconstitute nodes for the hyphenated word, inserting discretionary hyphens
	Record a new feasible break
	Recover from an unbalanced output routine
	Recover from an unbalanced write command
	Recycle node p
	Reduce to the case that a,c0, b,d>0
	Reduce to the case that f0 and q>0
	Remove the last box, unless it's part of a discretionary
	Replace nodes ha..hb by a sequence of nodes that includes the discretionary hyphens
	Replace the tail of the list by p
	Replace z by z^' and compute alpha,beta
	Report LR problems
	Report a runaway argument and abort
	Report a tight hbox and goto common_ending, if this box is sufficiently bad
	Report a tight vbox and goto common_ending, if this box is sufficiently bad
	Report an extra right brace and goto continue
	Report an improper use of the macro and abort
	Report an overfull hbox and goto common_ending, if this box is sufficiently bad
	Report an overfull vbox and goto common_ending, if this box is sufficiently bad
	Report an underfull hbox and goto common_ending, if this box is sufficiently bad
	Report an underfull vbox and goto common_ending, if this box is sufficiently bad
	Report overflow of the input buffer, and abort
	Report that an invalid delimiter code is being changed to null; set cur_val:=0
	Report that the font won't be loaded
	Report that this dimension is out of range
	Reset cur_tok for unexpandable primitives, goto restart
	Resume the page builder after an output routine has come to an end
	Retrieve the prototype box
	Reverse an hlist segment and goto reswitch
	Reverse the complete hlist and set the subtype to reversed
	Reverse the links of the relevant passive nodes, setting cur_p to the first breakpoint
	Save current position to pdf_last_x_pos, pdf_last_y_pos
	Scan a control sequence and set state:=skip_blanks or mid_line
	Scan a factor f of type o or start a subexpression
	Scan a numeric constant
	Scan a parameter until its delimiter string has been found; or, if s=null, simply scan the delimiter string
	Scan a subformula enclosed in braces and return
	Scan ahead in the buffer until finding a nonletter; if an expanded code is encountered, reduce it and goto start_cs; otherwise if a multiletter control sequence is found, adjust cur_cs and loc, and goto found
	Scan an alphabetic character code into cur_val
	Scan an optional space
	Scan and build the body of the token list; goto found when finished
	Scan and build the parameter part of the macro definition
	Scan and evaluate an expression e of type l
	Scan decimal fraction
	Scan file name in the buffer
	Scan for a)all other units and adjust cur_val and f accordingly; goto done in the case of scaled points
	Scan for f)fil units; goto attach_fraction if found
	Scan for m)mu units and goto attach_fraction
	Scan for u)units that are internal dimensions; goto attach_sign with cur_val set if found
	Scan preamble text until cur_cmd is tab_mark or car_ret, looking for changes in the tabskip glue; append an alignrecord to the preamble list
	Scan the argument for command c
	Scan the font size specification
	Scan the next operator and set o
	Scan the parameters and make link(r) point to the macro body; but return if an illegal \par is detected
	Scan the preamble and record it in the preamble list
	Scan the template u_j>, putting the resulting token list in hold_head
	Scan the template v_j>, putting the resulting token list in hold_head
	Scan units and set cur_val to x(cur_val+f/2^16), where there are x sp per unit; goto attach_sign if the units are internal
	Search eqtb for equivalents equal to p
	Search hyph_list for pointers to p
	Search save_stack for equivalents that point to p
	Select the appropriate case and return or goto common_ending
	Set initial values of key variables
	Set line length parameters in preparation for hanging indentation
	Set the glue in all the unset boxes of the current list
	Set the glue in node r and change it from an unset node
	Set the unset box q and the unset boxes in it
	Set the value of b to the badness for shrinking the line, and compute the corresponding fit_class
	Set the value of b to the badness for stretching the line, and compute the corresponding fit_class
	Set the value of b to the badness of the last line for shrinking, compute the corresponding fit_class, and goto found
	Set the value of b to the badness of the last line for stretching, compute the corresponding fit_class, and goto found
	Set the value of output_penalty
	Set the value of x to the text direction before the display
	Set up data structures with the cursor following position j
	Set up the hlist for the display line
	Set up the values of cur_size and cur_mu, based on cur_style
	Set variable c to the current escape character
	Set variable w to indicate if this case should be reported
	Ship box p out
	Show equivalent n, in region 1 or 2
	Show equivalent n, in region 3
	Show equivalent n, in region 4
	Show equivalent n, in region 5
	Show equivalent n, in region 6
	Show the auxiliary field, a
	Show the box context
	Show the box packaging info
	Show the current contents of a box
	Show the current meaning of a token, then goto common_ending
	Show the current value of some parameter or register, then goto common_ending
	Show the font identifier in eqtb[n]
	Show the halfword code in eqtb[n]
	Show the status of the current page
	Show the text of the macro being expanded
	Simplify a trivial box
	Skip to \else or \fi, then goto common_ending
	Skip to node ha, or goto done1 if no hyphenation should be attempted
	Skip to node hb, putting letters into hu and hc
	Sort p)p into the list starting at rover and advance p to rlink(p)
	Sort t)the hyphenation op tables into proper order
	Split off part of a vertical box, make cur_box point to it
	Split the native_word_node at l and link the second part after ha
	Squeeze the equation as much as possible; if there is an equation number that should go on a separate line by itself, set e:=0
	Start a new current page
	Store a)additional data for this feasible break
	Store a)additional data in the new active node
	Store c)cur_box in a box register
	Store m)maximum values in the hyf table
	Store s)save_stack[save_ptr] in eqtb[p], unless eqtb[p] holds a global value
	Store all current lc_code values
	Store hyphenation codes for current language
	Store the current token, but goto continue if it is a blank space that would become an undelimited parameter
	Subtract glue from break_width
	Subtract the width of node v from break_width
	Suppress expansion of the next token
	Swap the subscript and superscript into box x
	Switch to a larger accent if available and appropriate
	Switch to a larger native-font accent if available and appropriate
	Tell the user what has run away and try to recover
	Terminate the current conditional and skip to \fi
	Test box register status
	Test if an integer is odd
	Test if two characters match
	Test if two macro texts match
	Test if two tokens match
	Test relation between integers or dimensions
	The em width for cur_font
	The x-height for cur_font
	Tidy up the parameter just scanned, and tuck it away
	Transfer node p to the adjustment list
	Transplant the post-break list
	Transplant the pre-break list
	Treat cur_chr as an active character
	Try the final line break at the end of the paragraph, and goto done if the desired breakpoints have been found
	Try to allocate within node p and its physical successors, and goto found if allocation was possible
	Try to break after a discretionary fragment, then goto done5
	Try to get a different log file name
	Try to hyphenate the following word
	Try to recover from mismatched \right
	Types in the outer block
	Undump a couple more things and the closing check word
	Undump constants for consistency check
	Undump regions 1 to 6 of eqtb
	Undump the state
	Undump the array info for internal font number k
	Undump the dynamic memory
	Undump the font information
	Undump the hash table
	Undump the hyphenation tables
	Undump the string pool
	Undump the table of equivalents
	Update the active widths, since the first active node has been deleted
	Update the current height and depth measurements with respect to a glue or kern node p
	Update the current marks for fire_up
	Update the current marks for vsplit
	Update the current page measurements with respect to the glue or kern specified by node p
	Update the value of printed_node for symbolic displays
	Update the values of first_mark and bot_mark
	Update the values of last_glue, last_penalty, and last_kern
	Update the values of max_h and max_v; but if the page is too large, goto done
	Update width entry for spanned columns
	Use code c to distinguish between generalized fractions
	Use node p to update the current height and depth measurements; if this node is not a legal breakpoint, goto not_found or update_heights, otherwise set pi to the associated penalty at the break
	Use size fields to allocate font information
	Wipe out the whatsit node p and goto done
	Wrap up the box specified by node r, splitting node p if called for; set wait:=true if node p holds a remainder after splitting

